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Abstract
Higher-order probabilistic programs are used to describe statistical models and machine-learning
mechanisms. The programming languages for them are equipped with three features: higher-order
functions, sampling, and conditioning. In this paper, we propose an Isabelle/HOL library for
probabilistic programs supporting all of those three features. We extend our previous quasi-Borel
theory library in Isabelle/HOL. As a basis of the theory, we formalize s-finite kernels, which is
considered as a theoretical foundation of first-order probabilistic programs and a key to support
conditioning of probabilistic programs. We also formalize the Borel isomorphism theorem which plays
an important role in the quasi-Borel theory. Using them, we develop the s-finite measure monad on
quasi-Borel spaces. Our extension enables us to describe higher-order probabilistic programs with
conditioning directly as an Isabelle/HOL term whose type is that of morphisms between quasi-Borel
spaces. We also implement the qbs prover for checking well-typedness of an Isabelle/HOL term as a
morphism between quasi-Borel spaces. We demonstrate several verification examples of higher-order
probabilistic programs with conditioning.
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1 Introduction

Probabilistic programs are used to describe statistical models and machine-learning mechan-
isms. Programmers can conduct statistical inference just by writing statistical models as
programs, without implementing complex inference algorithms by themselves. Higher-order
probablistic programming languages, e.g. Anglican [29] and Church [9], integrate fundamental
features of probabilistic programming languages such as sampling and conditioning into
expressive higher-order funcaional languages and have been an active research topic recently.

Let us see a concrete example by Staton [25, Section 2.2]. The following probabilistic
program uses two language features: higher-order functions and conditioning.
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1. λf. do {
2. let T = uniform (0 ,24) in
3. query T (λt. let r = f t in
4. exponential_pdf r 0.0167)
5. }

This program is higher-order since f is given as a parameter. The query command at line 3
receives a prior distribution and a likelihood, and then returns the posterior distribution.
We will explain details of this program in Section 4.2.

Basically, probabilistic programs are interpreted as measurable functions between meas-
urable spaces. Various measure-theoretic structures such as the Giry monad [8] and s-finite
kernels [24] are used for such semantic models. However, there is a difficulty to interpret
higher-order functions. The result by Aumann [2] implies that there is no suitable measurable
space corresponding to the function type real ⇒ real. In order to overcome this difficulty,
Heunen et al. have introduced quasi-Borel spaces and the probability monad on it [10]. The
theory provides a suitable denotational semantics for higher-order probabilistic programs.
Ścibior et al. have developed the s-finite measure monad1 on quasi-Borel spaces [22], which
enable us to treat infinite measures and to denote higher-order probabilistic programs with
conditioning.

In previous work, we have formalized the quasi-Borel spaces and the probability monad in
Isabelle/HOL [11]. Using them, we have verified the Monte Carlo approximation algorithm.
Our previous work can treat probabilistic programs supporting higher-order functions and
sampling but not conditioning. Affeldt et al. have formalized s-finite kernels in Coq [1].
They have embedded a probabilistic program using s-finite kernels. Their work can treat
probabilistic programs supporting sampling and conditioning but not higher-order functions.

In this paper, we propose an Isabelle/HOL library for probabilistic programs supporting
all of higher-order functions, sampling, and conditioning by extending our previous work.
Our contributions are the following.
1. We formalize s-finite kernels and the Borel isomorphism theorem. They are a theoretical

basis of quasi-Borel theory, especially a basis of the s-finite measure monad.
2. We develop proof automation for checking well-typedness of probabilistic programs and

construct the s-finite measure monad.
3. We implement several program examples from previous works and prove their properties.
Our library enables us to interpret an Isabelle/HOL term as a probabilistic program and
that makes it easier to write probabilistic programs and reason about them in Isabelle/HOL.
Our qbs prover for automated type checking is also helpful to reason about probabilistic
programs. Both of previous formalizations by us [11] and Affeldt et al. [1] use de Bruijn
index to describe programs, which makes it harder to read and write programs. Our previous
work spent around 450 lines to prove integrability and the weak law of large numbers of the
Monte Carlo approximation algorithm, while we have spent around 140 lines to prove them
in our new formalization.

In Section 2, we review the standard library for measure theory in Isabelle/HOL. Then
we formalize s-finite kernels and the Borel isomorphism theorem. In Section 3, we review
our previous formalization of quasi-Borel spaces. Then we discuss our proof automation
and formalization of the s-finite measure monad. In Section 4, we show three verification
examples of probabilistic programs. In Section 5, we conclude our work.

1 Details of definition vary among prior studies. In their original paper, they have introduced the σ-finite
measure monad. Later Vákár et al. reformulate it as s-finite measure monad [27, 28](see also Section 3.3).
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2 Measure Theory

Measure theory is a theoretical basis of probability theory and quasi-Borel theory. We first
review the standard definitions of measure theory library in Isabelle/HOL. Then we formalize
s-finite kernels which are used to construct the s-finite measure monad in Section 3.3. We
also formalize the Borel isomorphism theorem, which plays an important role in quasi-Borel
theory.

2.1 Measure Theory in Isabelle/HOL
We use the Isabelle/HOL’s libraries: HOL-Analysis and HOL-Probability [3, 7, 12, 13, 16, 18].
The type ′a measure denotes the type of measures on the type ′a. A measure M :: ′a measure
consists of three components:

space M :: ′a set, sets M :: ′a set set, emeasure M :: ′a set ⇒ ennreal,

where the type ennreal denotes the type of extended non-negative real numbers. They
correspond to the space, the measurable sets, and the measure, respectively. We often
write M for emeasure M using a coercion. The triple (space M, sets M, emeasure M) forms
a measure space, that is, sets M is a σ-algebra on space M and emeasure M is a countably
additive function on sets M such that emeasure M ∅ = 0. We use a measure M as a
measurable space when we are not interested in its measure. The library defines the constant
borel :: ( ′a :: topological-space) measure on topological space type class. The borel denotes
the Borel space, that is, sets borel = σ[{U . open U}] is the least measurable sets including
all open sets. We denote the borel space on real numbers by IR, the borel space on extended
non-negative real numbers by IR≥0, the discrete space on natural numbers by IN, and the
discrete space on boolean by IB.

A function f from space M to space N is called measurable if f −1 A ∩ space M ∈ sets M
for all A ∈ sets N. The set of measurable functions from M to N is denoted by M →M N.
For a measurable function f ∈ M →M IR, the Lebesgue integral of f w.r.t. M is denoted by2∫

x. f x ∂M. The Lebesgue integral on a restricted set A is denoted by
∫

x∈A. f x ∂M.
For a measure M, the predicate subprob-space M means that M is a sub-probability

space, that is, M (space M) ≤ 1. The predicate finite-measure M means that M is a finite
measure, that is, M (space M) < ∞. The predicate sigma-finite-measure M means that M
is a σ-finite measure, that is, there exists a countable disjoint measurable sets ∀ i::nat. A i ∈
sets M such that (

⋃
i. A i) = space M and ∀ i. M (A i) < ∞.

Throughout this paper, we use the following constructions.

The Lebesgue Measure3 sets lborel = σ[{U . open U}]
emeasure lborel (a, b] = b - a

Product Measure sets (M ⊗M N) = σ[{A × B. A ∈ sets M ∧ B ∈ sets N}]
emeasure (M ⊗M N) (A × B) = emeasure M A ∗ emeasure N B
where sigma-finite-measure N, A ∈ sets M, and B ∈ sets N.

Image Measure sets (distr M N f ) = sets N
emeasure (distr M N f ) A = emeasure (f −1 A ∩ space M)
where f ∈ M →M N and A ∈ sets N.

2 In the library, the real-valued integral and the extended non-negative real-valued integral are defined
separately. Although we do not distinguish them for simplicity in this paper.

3 Strictly speaking, completion lborel is the Lebesgue measure.
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2.2 S-Finite Kernel
Staton introduced a semantic model of first-order probabilistic programs with conditioning
using s-finite kernels [24]. S-finite kernels are suitable for program semantics: they support
a bind-like operation satisfying desired equations, which are a basis of the s-finite measure
monad on quasi-Borel spaces. We formalize s-finite kernels and related notions. For the
terminology of s-finite measures/kernels, we refer to the work by Staton [24].

S-finite Measures. A measure M is called a s-finite measure if M is represented as a
countable sum of finite measures. All σ-finite measures, such as the Lebesgue measure,
are also s-finite measures. We formalize s-finite measures with the locale command which
introduces a context.

locale s-finite-measure =
fixes M :: ′a measure
assumes ∃Mi :: nat ⇒ ′a measure.

(∀ i. sets (Mi i) = sets M) ∧ (∀ i. finite-measure (Mi i))
∧ (∀A∈sets M . M A = (

∑
i. Mi i A))

sublocale sigma-finite-measure ⊆ s-finite-measure

The symbol
∑

i. sums over all natural numbers (i.e.
∑∞

i=0 in usual mathematics). We
remark that s-finite measures may not be σ-finite in general. For instance, the measure
M {0} = ∞ on the singleton space {0} is not σ-finite but s-finite, because it is equal to the
countable infinite sum of the Dirac measure δ0.

We have formalized basic lemmas related to s-finite measures. One of the important
lemma is a restricted Fubini-Tonelli theorem for reordering iterated integrations. The general
Fubini-Tonelli theorem does not hold for s-finite measures because product measures are not
determined uniquely. However, the (binary) product measures in Isabelle/HOL work well
with the Fubini-Tonelli theorem. In mathematics, the product measure is usually defined
as the unique measure satisfying (M ⊗M N) (A × B) = M A ∗ N B, while Isabelle/HOL’s
library defines the product measure as (M

⊗
M N) A = (

∫
x. (

∫
y. indicator A (x,y) ∂N)

∂M). Using Isabelle/HOL’s definition, we can prove Fubini-Tonelli theorem by almost similar
ways as the proofs for σ-finite measures.

S-finite Kernels. Roughly speaking, s-finite kernels are generalization of probabilistic
processes that return s-finite measures. They are defined as countable sums of finite kernels.
In general, classes of kernels are not closed under compositions, but it is convenient that
s-finite kernels are so. We first formalize measure kernels with the locale command.

locale measure-kernel =
fixes M :: ′a measure
and N :: ′b measure
and κ :: ′a ⇒ ′b measure

assumes
∧

x. x ∈ space M =⇒ sets (κ x) = sets N
and

∧
B. B ∈ sets N=⇒(λx. κ x B) ∈ M →M IR≥0

and space M ̸= ∅ =⇒ space N ̸= ∅

The third assumption space M ̸= ∅ =⇒ space N ̸= ∅ in measure-kernel is required in
order to define the operator >>=k in a convenient way, later. We formalize finite kernels,
sub-probability kernels, and s-finite kernels as sublocales of measure kernels.

locale finite-kernel = measure-kernel +
assumes ∃ r<∞. ∀ x∈ space M . κ x (space N) < r
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locale subprob-kernel = measure-kernel +
assumes

∧
x. x ∈ space M =⇒ subprob-space (κ x)

locale s-finite-kernel = measure-kernel +
assumes ∃ ki. (∀ i. finite-kernel M N (ki i) ∧ (∀ x∈space M . ∀A∈sets N . κ x A = (

∑
i. ki i x A)))

We define the operation M >>=k κ for an s-finite measure M and measure-kernel M N κ,
which satisfies the following properties when M is not an empty space.

sets (M >>=k κ) = sets N, (M >>=k κ) B = (
∫

x. (κ x B) ∂M)

If M is an empty space, we cannot obtain the measurable structure of N from M and κ (recall
the definition of measure-kernel). Hence, M >>=k κ is set to return the discrete empty space
as a default value. Due to this definition, we need the assumption space M ̸= ∅ =⇒ space N
̸= ∅ in measure-kernel. Without this assumption, we will get stuck to prove compositionality
of s-finite kernels later.

The operation bind, which has been already defined in the Isabelle/HOL’s library,
satisfies the same equations as the above equation for >>=k when κ is a sub-probability kernel.
Unfortunately, bind is defined through the join operator of the Giry monad and thus we do
not have the above equations for general measure kernels. Hence we need to introduce the
operator >>=k and prove lemmas similar to ones of bind.

The following are important properties for constructing the s-finite measure monad in
Section 3.3 (called compositionality, associativity, and commutativity, respectively).

lemma
assumes s-finite-kernel M N κ and s-finite-kernel (M ⊗M N) L (λ(x, y). κ ′ x y)
shows s-finite-kernel M L (λx. κ x >>=k κ ′ x)

lemma
assumes sets µ = sets M

and s-finite-kernel M N κ and s-finite-kernel N L κ ′

shows µ >>=k (λx. κ x >>=k κ ′) = µ >>=k κ >>=k κ ′

lemma
assumes sets µ = sets M and sets ν = sets N

and s-finite-measure µ and s-finite-measure ν and s-finite-kernel (M
⊗

M N) L (λ(x,y). f x y)
shows µ >>=k (λx. ν >>=k (λy. f x y)) = ν >>=k (λy. µ >>=k (λx. f x y))

The Dirac measure on M is denoted by return M in Isabelle/HOL. It forms a unit of >>=k.
lemma

assumes sets M = sets N
shows M >>=k return N = M

lemma
assumes measure-kernel M N κ

and x ∈ space M
shows return M x >>=k κ = κ x

2.3 The Borel Isomorphism Theorem
We prove the Borel isomorphism theorem. The theorem is a key to construct the s-finite
measure monad and represent s-finite measures as measures on quasi-Borel spaces in Section 3.

A separable complete metrizable topological space is called a Polish space. A measurable
space generated from a Polish space is called a standard Borel space. For example, IN and IR
are standard Borel spaces. We have the following theorems related to standard Borel spaces.

ITP 2023
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▶ Theorem 1 (The Borel isomorphism theorem). A standard Borel space is either countable
discrete space or isomorphic to IR.

▶ Corollary 2. For a non-empty standard Borel space M, the following statement holds.
(⋆) There exist measurable functions to-realM and from-realM such that

to-realM ∈ M →M IR , from-realM ∈ IR →M M ,

∀ x∈space M . from-realM (to-realM x) = x .

We have proved the Borel isomorphism (Theorem 1) mainly referring to the textbook by
Srivastava [23] and the lecture note by Biskup [6], which was available online. Corollary 2
follows immediately from the Borel isomorphism theorem4. We will use measurable functions
in (⋆) in two situations. One is when we construct the s-finite measure monad on quasi-Borel
spaces. The other is when we represent s-finite measures as measures on quasi-Borel spaces.
In our previous work [11], we defined the standard Borel spaces as measurable spaces which
satisfy the condition (⋆). An advantage of our new formalization is that we can obtain many
instances easily with the type classes using the following lemma.
lemma standard-borel (borel :: ( ′a :: polish-space) measure)

Here, standard-borel M means that M is a standard Borel space. A binary or countable
product space of standard Borel spaces is again a standard Borel space.
lemma

assumes standard-borel M and standard-borel N
shows standard-borel (M ⊗M N)

lemma
assumes countable I and

∧
i. i ∈ I =⇒ standard-borel (M i)

shows standard-borel (ΠM i∈I . M i)

In the proof of the Borel isomorphism theorem we use metric spaces and topological spaces.
The Isabelle/HOL’s libraries include formalization of metric spaces by type classes, and
topological spaces by type classes and abstract data types. Type class based formalization is
not suitable in our situation because we want to change their metrics or topologies during
the proof and work with sub-spaces. Thus we have formalized set-based metric spaces
and used the existing library of abstract topology with some extensions. Recent work on
types-to-sets [15, 17, 19] might be used to simplify our formalization.

3 Quasi-Borel Spaces

The theory of quasi-Borel spaces is introduced by Heunen et al. [10] to give a semantic
model of programming language supporting both continuous random samplings and higher-
order functions. The theory provides a suitable semantics of higher-order probabilistic
programs because quasi-Borel spaces always have function spaces with desired properties
while measurable spaces do not in general. Furthermore, s-finite measures on standard Borel
spaces are represented as measures on quasi-Borel spaces and integration is also performed
in quasi-Borel theory.

We formalized the quasi-Borel spaces and the probability monad in our previous work [11].
In this section, we first review our previous formalization, then discuss our extensions: proof
automation for quasi-Borel spaces and formalization of the s-finite measure monad.

4 In fact, the converse also holds: a measurable space satisfying (⋆) is a standard Borel space. Hence the
condition (⋆) is another characterization of standard Borel spaces. This fact is called as Kuratowski’s
theorem by Heunen et al. [10]. We have not proved it yet.
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3.1 Quasi-Borel Spaces in Isabelle/HOL

The type ′a quasi-borel denotes quasi-Borel spaces on the type ′a. A quasi-Borel space X ::
′a quasi-borel has two components:

qbs-space X :: ′a set, qbs-Mx X :: (real ⇒ ′a) set.

They satisfy the following four conditions.
If α ∈ qbs-Mx X and r is a real number, then α r ∈ qbs-space X.
If α ∈ qbs-Mx X and f ∈ IR →M IR, then α ◦ f ∈ qbs-Mx X.
If x ∈ qbs-space X, then (λr. x) ∈ qbs-Mx X.
If (∀ i. α i ∈ qbs-Mx X) and P ∈ IR →M IN, then (λr. α (P r) r) ∈ qbs-Mx X.

Intuitively, an element of qbs-Mx X is a random variable whose sample space is the set of
real numbers. We sometimes write x ∈ X instead of x ∈ qbs-space X by declaring a coercion.

The set of morphisms (structure-preserving functions) from X :: ′a quasi-borel to Y :: ′b
quasi-borel is defined as follows.

X →Q Y :: ( ′a ⇒ ′b) set
X →Q Y = {f . ∀α ∈ qbs-Mx X. f ◦ α ∈ qbs-Mx Y}

Quasi-Borel spaces and morphisms form a Cartesian closed category with countable cop-
roducts. Hence, there always exist product spaces X ⊗Q Y, list spaces list-qbs X5, and
function spaces X ⇒Q Y such that qbs-space (X ⇒Q Y ) = X →Q Y. Throughout this
paper, we assume that all functions are morphisms. In our extension of quasi-Borel theory
library, we define the set of morphisms X →Q Y as an abbreviation of qbs-space (X ⇒Q Y )
for the proof automation presented in Section 3.2.

Connection between Measurable Spaces and Quasi-Borel Spaces

There are conversions between measurable spaces and quasi-Borel spaces. Using the conver-
sions, we can easily derive from theorems in the measure theory library that basic functions,
such as + and −, are morphisms. The conversions L and R return the following structures.

L :: ′a quasi-borel ⇒ ′a measure
space (L X) = qbs-space X

sets (L X) = {U ∩ qbs-space X |U .

∀α∈qbs-Mx X. α −‘ U ∈ sets IR}

R :: ′a measure ⇒ ′a quasi-borel
qbs-space (R M) = space M

qbs-Mx (R M) = IR →M M

We use a measurable space M as a quasi-Borel space R M. For instance, the quasi-Borel
space IR has the following structure: qbs-space IR = UNIV (the universal set of real numbers)
and qbs-Mx IR = IR →M IR.

The conversions have the following properties.

▶ Theorem 3 (cf. [10, Propositions 15]). (i) X →Q R M = L X →M M.
(ii) If M is a standard borel space, then sets (L (R M)) = sets M

Theorem 3 (i) implies that R and L forms an adjunction between the category of measurable
spaces and the category of quasi-Borel spaces, and (ii) implies that the adjunction can be
restricted to an adjoint equivalence on standard Borel spaces.

5 The space of lists on X is defined using the isomorphism List[X] ∼=
∐

n∈N

∏
0≤i<n

X.

ITP 2023
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3.2 Proof Automation
The Isabelle/HOL’s measure theory library provides the automated measurability prover.
In the context of measure theory, one often needs to show measurability: A ∈ sets M or f
∈ M →M N. In pen and paper mathematics, measurability proofs are often omitted since
they are trivial, while one needs to show measurability each time in the formal proof. The
measurability prover automates such proofs of measurability and greatly reduces the cost of
proofs. Similar to measure theory, we often need to prove that some function is a morphism,
f ∈ X →Q Y, in the context of quasi-Borel theory. We have implemented automated qbs
prover. Unlike measurable spaces, quasi-Borel spaces have function spaces, hence our qbs
prover is similar to type checking of a simply-typed functional programming language.

We construct the qbs prover which tries to prove x ∈ qbs-space X automatically. The
qbs prover can also be used to solve morphism statements f ∈ X →Q Y and α ∈ qbs-Mx X
because we have X →Q Y = qbs-space (X ⇒Q Y ) and qbs-Mx X = IR →Q X.

We regard (λx. e) ∈ X ⇒Q Y as the typing judgment x : X ⊢ e : Y, and e ∈ qbs-space X
as ⊢ e : X. Then solving x ∈ qbs-space X is equivalent to solving the corresponding typing
judgment. The qbs prover tries to solve typing judgments with the following method:

Algorithm. We prepare two sets of introduction rules: Rule1 and Rule2. Then repeat the
following steps.

Try to apply a rule in Rule1.
If none of the rules in Rule1 is applied, then try to apply a rule in Rule2.

Rule1 and Rule2 consist of (at least) the following inference rules.
Rule1

x : X ⊢ x : X
ID

⊢ e : Y
x : X ⊢ e : Y

CONST (x does not occur free in e)

After e ∈ qbs-space X is proved, it may be added as an axiom of Rule1.

⊢ e : X
AXIOMS

Rule2
⊢ f : X ⇒Q Y ⊢ x : X

⊢ f x : Y
APP1

x : X ⊢ e1 : Y ⇒Q Z x : X ⊢ e2 : Y
x : X ⊢ e1 e2 : Z

APP2

z : X ⊗Q Y ⊢ f [fst z/x, snd z/y] : Z
x : X ⊢ (λy. f ) : Y ⇒Q Z

CURRY

For CURRY, we need to have fst ∈ X ⊗Q Y ⇒Q X and snd ∈ X ⊗Q Y ⇒Q Y as axioms
of Rule1. There are mainly two reasons why we divide the rules. First, the rule CONST
might overlap with APP2 or CURRY. Because the rule CONST should be applied first, we
add CONST to Rule1. The other reason is that to prevent terms from being split in certain
situation. We sometimes add rules for composition of terms, for example emeasure M A ∈
IR≥0, to Rule1. If we apply a rule in Rule2 first, then the composed term will be split by the
rule APP1 or APP2, that is not what we want the prover to do.

The following code is an example usage of the qbs prover.
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lemma
assumes [qbs]: f ∈ IR ⇒Q IR
shows (λx. 1 + f x) ∈ IR ⇒Q IR
by qbs

In the above code, we add f ∈ IR ⇒Q IR to the axioms of Rule1 using the attribute [qbs].
Rule1 is configured by our library so that the axioms contain r ∈ IR and (+) ∈ IR ⇒Q IR
⇒Q IR . Then we call the qbs prover by the tactic qbs which immediately solves the goal.

However, it cannot handle assumptions on typing of lambda abstraction well. It fails for
the following example.
lemma

assumes [qbs]: (λx. f x c) ∈ X ⇒Q Y
shows (λx z. f x c) ∈ X ⇒Q Z ⇒Q Y

Implementation Note. We have implemented the qbs prover using raw ML code. There
are some points to be noted.

The following theorem corresponds to the rule APP2 in Isabelle/HOL.
lemma

assumes f ∈ X ⇒Q Y ⇒Q Z and g ∈ X ⇒Q Y
shows (λx. f x (g x)) ∈ X ⇒Q Z

When applying the rule APP2, we need to instantiate f and g in the lemma so that
higher-order unification achieves an intended unification.
When applying the rule CURRY, we should check by pattern matching that the goal
is a lambda abstraction. Otherwise, it may overlap with APP2 by eta-expanding e1 e2
when the term has a function type.

We expect that this typing algorithm works in a similar situation where we want to restrict
function spaces and constants in Isabelle/HOL. In our situation, function spaces are restricted
to the set of morphisms.

3.3 The s-Finite Measure Monad
The s-finite measure monad on quasi-Borel spaces was introduced by Ścibior et al. [22] as the
σ-finite measure monad. Then, it was reformulated as a submonad of the continuation monad
[0, ∞][0,∞](−) by Vákár et al. [27, 28]. The details of the definition vary among these previous
studies6, and we could not find detailed proofs of monad laws and commutativity in any of
them. We thus recover the detailed proofs first, and then we formalize them. We choose
the definition given in Yang’s lecture slide [30], because it is suitable for formalization in
Isabelle/HOL. Its definition is quite similar to the probability monad introduced by Heunen
et al. [10]. The probability monad is derived from the monad laws and the commutativity of
the Giry monad, while the s-finite measure monad is derived from the properties of s-finite
kernels and >>=k.

First, we define measures on quasi-Borel spaces to treat infinite measures such as the
Lebesgue measure. Intuitively, a measure is a pair consisting of an s-finite measure µ on
IR and a random variable α ∈ qbs-Mx X. We also introduce the equivalence relation ∼ of
measures on quasi-Borel spaces defined by relating pairs with equal image measures. In
our implementation, we use a triple (X,α,µ) rather than a pair (α,µ) because X cannot be
inferred from α in simple type system.

6 Thanks to the Borel-isomorphism theorem and the fact that s-finite measures can be rewritten as
pushforward of σ-finite measures, those definitions are essentially equivalent.
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▶ Definition 4. A measure on a quasi-Borel space X is an equivalence class [[X, α, µ]]sfin
where α ∈ qbs-Mx X, µ is a s-finite measure, and sets µ = sets IR. The equivalence relation
is defined by (X, α, µ) ∼ (Y , β, ν) ⇐⇒ X = Y ∧ distr (L X) µ α = distr (L Y ) ν β.

We call a measure on a quasi-Borel space a qbs-measure in order to distinguish it from
measures in measure theory. Using quotient-type command [14], we define the type ′a
qbs-measure which denotes the type of qbs-measures.

Any qbs-measure can be converted to an s-finite measure by the following function.

qbs-l :: ′a qbs-measure ⇒ ′a measure
qbs-l [[X, α, µ]]sfin = distr (L X) µ α

The function qbs-l is injective by its definition (recall the definition of qbs-measures).
Next, we construct the s-finite measure monad.

▶ Lemma 5. The quasi-Borel space of qbs-measures on X has the following structure.

monadM-qbs :: ′a quasi-borel ⇒ ′a qbs-measure quasi-borel
qbs-space (monadM-qbs X) = {s. s is a qbs-measure on X}

qbs-Mx (monadM-qbs X) = {λr. [[X, α, k r]]sfin |α k. α ∈ qbs-Mx X ∧ s-finite-kernel IR IR k}

Notice that we use the s-finite kernel in the equation of qbs-Mx (monadM-qbs X). The proof
of being quasi-Borel spaces is almost the same as the one of the probability monad. In the
proof, we use that IN ⊗M IR is standard Borel. It is shown by the facts that IN and IR are
standard Borel spaces, and the product measurable space of standard Borel spaces is again a
standard Borel space.

The return (unit) operator and bind operator are defined as follows.

returnQ :: ′a quasi-borel ⇒ ′a ⇒ ′a qbs-measure
returnQ X x = [[X, λr. x, ν]]sfin

>>= :: ′a qbs-measure ⇒ ( ′a ⇒ ′b qbs-measure)⇒ ′b qbs-measure
[[X, α, µ]]sfin >>= f = [[Y , β, µ >>=k k]]sfin

In the above definition,
ν is an arbitrary probability measure on IR,
β ∈ qbs-Mx Y and s-finite-kernel IR IR k,
f ◦ α = (λr. [[X, β, k r]]sfin).

Such β and k always exist since f ◦ α ∈ qbs-Mx (monadM-qbs X).
The return operator and bind operator are defined in Isabelle/HOL as follows.

definition returnQ :: ′a quasi-borel ⇒ ′a ⇒ ′a qbs-measure where
returnQ X x ≡ [[X, λr. x, SOME µ. real-distribution µ]]sfin

definition bind-qbs :: [ ′a qbs-measure, ′a ⇒ ′b qbs-measure] ⇒ ′b qbs-measure where
bind-qbs s f ≡ (let
(X, α, µ) = rep-qbs-measure s;
Y = qbs-space-of (f (α undefined));
(β, k) = (SOME (β, k). f ◦ α = (λr. [[Y , β, k r]]sf in) ∧ β ∈ qbs-Mx Y ∧ s-finite-kernel IR IR k)
in [[Y , β, µ >>=k k]]sfin)

Here, SOME x. P x denotes some x satisfying P (Hilbert’s ε), real-distribution µ means
that µ is a probability measure on IR, rep-qbs-measure s returns a representative of the
qbs-measure s, and qbs-space-of s returns the underlying space of s.
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▶ Theorem 6. The triple (monadM-qbs, returnQ, >>=) forms a commutative strong monad.

The monad inherits properties of s-finite kernels and >>=k which we have shown in Section 2.2.
Proof of the laws for commutative strong monad is similar to the one of the probability
monad. In the proof, we use that IR ⊗M IR is standard Borel.

The Probability Monad

We obtain the probability monad on quasi-Borel spaces by restricting monadM-qbs X as
follows.

definition monadP-qbs X ≡ sub-qbs (monadM-qbs X) {s. prob-space (qbs-l s)}

The sub-qbs X A returns the sub space of a quasi-Borel space.

qbs-space (sub-qbs X A) = qbs-space X ∩ A
qbs-Mx (sub-qbs X A) = {α. α ∈ qbs-Mx X ∧ (∀ r. α r ∈ A)}

The triple (monadP-qbs, returnQ, >>=) also forms a commutative strong monad. This monad
has the exactly same structure with the probability monad in our previous work.

Integration

Integration with qbs-measure is defined through the Lebesgue integration. For f ∈ X →Q IR
and s ∈ qbs-space (monadM-qbs X), the integration (

∫
Q x. f x ∂s) is defined by (

∫
Q x. f x

∂s) = (
∫

x. f x ∂(qbs-l s)). The notions of integrable and almost everywhere are defined in a
similar way.

For an s-finite measure M on a standard Borel space, integration w.r.t. M in measure
theory is represented as integration in quasi-Borel theory. We define the inverse function of
qbs-l, by qbs-l−1 M = [[M , from-realM , distr IR M to-realM ]]sfin. Using these conversions
qbs-l and qbs-l−1, we obtain (

∫
x. f x ∂M) = (

∫
Q x. f x ∂(qbs-l−1 M)). We thus may

regard an s-finite measure M on a standard Borel space as a qbs-measure qbs-l−1 M on R
M, and regard a qbs-measure s as an s-finite measure qbs-l s.

For instance, we can represent the Lebesgue measure as a qbs measure. Recall that the
Lebesgue measure is σ-finite, hence it is s-finite.

definition lborelQ ≡ qbs-l−1 lborel
lemma qbs-l lborelQ = lborel
corollary (

∫
Q x. f x ∂lborelQ) = (

∫
x. f x ∂lborel)

4 Probabilistic Programs

Let us implement a probabilistic programming language supporting higher-order functions,
sampling, and conditioning with quasi-Borel spaces and the s-finite measure monad. We
discuss three examples in this section.

4.1 The Language
We use Isabelle/HOL terms as probabilistic programs. The language design is inspired by
HPProg introduced by Sato et al. [21]. We first briefly review the type system and semantics
of HPProg. The language HPProg is a higher-order functional probabilistic programming
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language based on simply-typed lambda calculus along with the monadic type for distributions.
Types are defined inductively as follows.

T ::= nat | bool | real | preal | list[T ] | T × T | T ⇒ T | M [T ].

The type preal denotes the type of [0, ∞] and M [T ] denotes the type of distributions (measures)
on T . In the semantics, types are interpreted as quasi-Borel spaces.

JnatK = IN, JboolK = IB, JrealK = IR, JprealK = IR≥0, Jlist[T ]K = list-qbs JT K

JT1 × T2K = JT1K ⊗Q JT2K, JT1 ⇒ T2K = JT1K ⇒Q JT2K, JM [T ]K = monadM-qbs JT K.

A typing judgment Γ ⊢ t : T is interpreted as “JtK is a morphism from JΓK to JT K”. A typing
judgment ⊢ t : T is interpreted as “JtK ∈ JT K”.

According to this semantics, an Isabelle/HOL term is interpreted as a probabilistic
program. We say that an Isabelle/HOL term t is a program of type T if t ∈ qbs-space T.
Many standard constants in Isabelle/HOL are programs.

(+) ∈ IR ⇒Q IR ⇒Q IR , (−) ∈ IR ⇒Q IR ⇒Q IR , (∗) ∈ IR ⇒Q IR ⇒Q IR

[] ∈ list-qbs X , Cons ∈ X ⇒Q list-qbs X ⇒Q list-qbs X

rec-list ∈ Y ⇒Q (X ⇒Q list-qbs X ⇒Q Y ⇒Q Y ) ⇒Q list-qbs X ⇒Q Y

Operators for distributions are also programs.

returnQ X ∈ X ⇒Q monadM-qbs X

(>>=) ∈ monadM-qbs X ⇒Q (X ⇒Q monadM-qbs Y ) ⇒Q monadM-qbs Y

(⊗Qmes) ∈ monadM-qbs X ⇒Q monadM-qbs Y ⇒Q monadM-qbs (X ⊗Q Y )

Uniform ∈ IR ⇒Q IR ⇒Q monadM-qbs IR , Gauss ∈ IR ⇒Q IR ⇒Q monadM-qbs IR

The program (⊗Qmes) is defined for p ∈ monadM-qbs X and q ∈ monadM-qbs Y by

p ⊗Qmes q = p >>= (λx. q >>= (λy. returnQ (X ⊗Q Y ) (x,y)))

which denotes their product distribution7. The program Uniform a b denotes the continuous
uniform distribution between a and b. The program Gauss µ σ denotes the Gaussian
distribution with the average µ and the standard deviation σ.

Let us compare the language implementation with our previous work [11]. Our previous
language implementation lift Isabelle/HOL constants to constant functions in order to
accommodate contexts. For instance, a real number r is described as (λenv. r) ∈ Γ ⇒Q

IR. The variables are projections from contexts and thus programs are written in de Bruijn
index, that is, variables are identified by natural numbers. Although using de Bruijn index
makes it almost straightforward to write type checking proofs, it causes low readability and
cumbersome renaming of variables during proofs. By contrast, our new implementation uses
Isabelle/HOL terms directly. This approach is similar to CryptHOL by Basin et al. [5, 16],

7 Because the s-finite measure monad is commutative, we have

p ⊗Qmes q = q >>= (λy. p >>= (λx. returnQ (X ⊗Q Y ) (x,y))).
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where they have embedded a functional probabilistic programming language for discrete
distributions in order to verify cryptographic algorithms. The benefit is that it is much
more readable and easier to work with terms when writing programs and reasoning about
programs. Our qbs prover presented in Section 3.2 almost automates type checking even
though programs are written as Isabelle/HOL terms. As we will demonstrate in later sections,
program verification can be done directly in Isabelle/HOL.

The query Command

We define the query command which enables one to write conditional distributions. The
query has the following type:

query ∈ monadM-qbs X ⇒Q (X ⇒Q IR≥0) ⇒Q monadM-qbs X .

For a prior distribution s and a likelihood f, query s f returns the posterior distribution.
The query command is defined through two operators: densityQ (scale in HPProg) and
normalizeQ.

definition query ≡ (λs f . normalize-qbs (density-qbs s f ))

The operator densityQ takes a qbs-measure s and a non-negative function f and rescales s
with the density function f. The densityQ satisfies following properties.

densityQ ∈ monadM-qbs X ⇒Q (X ⇒Q IR≥0) ⇒Q monadM-qbs X

(
∫

Q x. g x ∂(densityQ s f )) = (
∫

Q x. f x ∗ g x ∂s)

The operator normalizeQ normalizes a qbs-measure s on X. If qbs-l s X = 0 or ∞, then
normalizeQ s returns the null-measure on X.

normalizeQ ∈ monadM-qbs X ⇒Q monadM-qbs X

The condition Command

We introduce the condition command, which produces a conditional distribution with a
predicate. The condition command has the following type and defined using the query
command and the indicator function as follows.

condition ∈ monadM-qbs X ⇒Q (X ⇒Q IB) ⇒Q monadM-qbs X

definition condition s P ≡ query s (λx. if P x then 1 else 0)

4.2 Example: What time is it?
We formalize the example from Staton [25, Section 2.2], which we have shown in introduction.
This example uses two language features: higher-order function and conditioning. Let us
consider the following situation.

We want to know what time it is.
We know the rate of bikes per hour, which depends on time.
We observed a 1 minute gap between two bikes.
What time is it?

We define the program whattime as follows.
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definition whattime :: (real ⇒ real) ⇒ real qbs-measure where
whattime ≡ (λf . do {

let T = Uniform 0 24 in
query T (λt. let r = f t in

exponential-density r (1 / 60))
})

The program whattime receives a function f which determines the rate of bikes per hour.
Then the program returns the posterior after observing a 1 minute gap between two bikes.
The return value f t denotes the rate of bikes per hour at the time t, and the time gap
between two bikes follows the exponential distribution Exp(f t). Thus, the likelihood is
calculated using the density function exponential-density of the exponential distribution. We
can prove whattime is a program just by unfolding the definition thanks to our qbs prover
presented in Section 3.2.

lemma whattime ∈ (IR ⇒Q IR) ⇒Q monadM-qbs IR
by(simp add: whattime-def )

As explained by Staton, the posterior is computed as follows.

lemma
assumes f ∈ IR ⇒Q IR and U ∈ sets IR and

∧
t. f t ≥ 0

defines N ≡ (
∫

t∈{0<..<24}. (f t ∗ exp (− 1/ 60 ∗ f t)) ∂lborel)
assumes N ̸= 0 and N ̸= ∞
shows P(t in whattime f . t ∈ U) = (

∫
t∈{0<..<24}∩U . (f t ∗ exp (− 1/ 60 ∗ f t)) ∂lborel) / N

4.3 Example: Two Dice
As a second example, we formalize the example from Sampson [20, Section 2.3]. This example
uses two language features: sampling and conditioning. We consider the following problem.

We role two dice.
We observe at least one die is 4.
What is the sum of the two dice?

We describe the distribution of the sum of the two dice as follows.

definition two-dice :: nat qbs-measure where
two-dice ≡ do {

let die1 = die;
let die2 = die;
let twodice = die1 ⊗Qmes die2;
(x,y) ← condition twodice (λ(x,y). x = 4 ∨ y = 4);
returnQ IN (x + y)
}

Here, die ∈ monadM-qbs IN denotes the distribution of rolling a fair die. The program picks
a sample from the conditional distribution, then returns the sum of dice. The program
two-dice has the following type.

lemma two-dice ∈ monadM-qbs IN
by(simp add: two-dice-def )

We show the probabilities where the program takes each possible value.

lemma
P(x in two-dice. x = 5) = 2 / 11 P(x in two-dice. x = 6) = 2 / 11
P(x in two-dice. x = 7) = 2 / 11 P(x in two-dice. x = 8) = 1 / 11
P(x in two-dice. x = 9) = 2 / 11 P(x in two-dice. x = 10) = 2 / 11
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4.4 Example: Gaussian Mean Learning
As a final example, let us formalize the example from Sato et. al. [21, Section 8.2]. We
implement the Gaussian Mean Learning algorithm and prove two properties: convergence and
stability under change of priors. In a common situation in statistical modeling or machine
learning, we try to infer unknown parameters from a sample list. For instance, let us consider
the following situation.

We want to know the mean of a Gaussian distribution with a known standard deviation.
We have a sample sequence from the Gaussian distribution.
What is the posterior of the mean?

The following algorithm does Bayesian learning of the mean of a Gaussian distribution with
a known standard deviation σ from a sample list.

primrec GaussLearn ′ :: [real, real qbs-measure, real list] ⇒ real qbs-measure where
GaussLearn ′ - p [] = p
| GaussLearn ′ σ p (y#ls) = query (GaussLearn ′ σ p ls) (normal-density y σ)

Here, normal-density y σ is the density function of the Gaussian distribution Gauss y σ with
mean y.

The program GaussLearn ′ receives a standard deviation σ, a prior p and a sample list
L. In each iteration, the program picks a sample from L, then updates the prior. Our qbs
prover can show that GaussLearn ′ is a program because GaussLearn ′ is a primitive recursive
function8.

lemma GaussLearn ′ ∈ IR ⇒Q monadM-qbs IR ⇒Q list-qbs IR ⇒Q monadM-qbs IR
by (simp add: GaussLearn ′-def )

From now on, we fix σ > 0 and abbreviate GaussLearn ′ σ as GaussLearn.
The first property, convergence, is described as follows.

lemma
assumes ξ > 0 and n = length L
shows GaussLearn (Gauss δ ξ) L =

Gauss ((Total L ∗ ξ2 + δ ∗ σ2) / (n ∗ ξ2 + σ2)) (sqrt ((ξ2 ∗ σ2) / (n ∗ ξ2 + σ2)))

Here, the program Total ∈ list-qbs IR ⇒Q IR sums up all elements of a list. The above
statement says that if the prior of the mean is Gauss δ ξ, then the posterior is also a Gaussian
distribution. Furthermore, its mean and standard deviation are close to the average of the
samples and 0, respectively, when n is sufficiently large.

Next, let us see the second property, stability under change of priors. We show that if
we run GaussLearn from two different priors and give a large sample list whose average is
bounded, then the resulting posteriors will be close. We measure the difference between
distributions by the Kullback-Leiber (KL) divergence. The KL divergence is provided as
KL-divergence in the standard Isabelle/HOL library. If p and q are probability distributions
on IR which have positive density functions f and g, respectively, then we have the following
well-known form of KL divergence:

KL-divergence (exp 1) p q = (
∫

x. g x ∗ ln (g x / f x) ∂lborel)

The second property is stated as follows.

8 Internally, the primrec command defines a primitive recursive function using recursors such as rec-nat
and rec-list.
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lemma GaussLearn-KL-divergence:
fixes a b c d ε K :: real
assumes ε > 0 and b > 0 and d > 0
shows ∃N . ∀L. length L > N −→ |Total L / length L| < K −→

KL-divergence (exp 1) (GaussLearn (Gauss a b) L) (GaussLearn (Gauss c d) L) < ε

Intuitively, the above property says that if we run GaussLearn with two different Gauss
distributions, then we can make the distance of posteriors as close as we want with a large
sample list whose average is bounded.

5 Conclusion

We have implemented s-finite kernels, the Borel isomorphism theorem, proof automation for
quasi-Borel spaces, and the s-finite measure monad. Using our formalization, we can directly
treat probabilistic programs presented in previous works and prove their properties. Our
work enables us to denote probabilistic programs supporting all of higher-order functions,
samplings, and conditioning, while our previous work [11] does not support conditioning and
the work by Affeldt et al. [1] does not support higher-order functions.

There are several researches related to probabilistic programs with proof assistants.
Eberl et al. have constructed an executable first-order functional probabilistic programming
language which computes density functions in Isabelle, and proved its correctness [7]. Basin
et al. have implemented CryptHOL for rigorous game-based proofs in Isabelle/HOL [5, 16].
They shallowly embedded a functional programming language, and verified cryptographic
algorithms. For machine learning verification, Bagnall and Stewart have embedded MLCERT
in Coq [4], and Tristan et al. have implemented a simplified measure-theoretic semantics of
probabilistic programs based on the reparameterizations to the uniform distibution on the
unit interval and partially automated verification in Lean [26]. Zhang and Amin formalized
a formal semantics for a core probabilistic programming language and proved that logical
relatedness implies contextual equivalence using axiomatized measure theory in Coq [31].

There are future extensions of our work. In our formalization, we have manually con-
structed quasi-Borel spaces on basic data types defined inductively, such as lists and options.
Then we show that constructors and recursors (primitive recursive function operator) are
morphisms. We expect that we can automate this process. Furthermore, we think that
it is also possible to show that general wellfounded recursive functions, which may not be
primitive recursive, are morphisms.
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