
Constructive Final Semantics of Finite Bags
Philipp Joram #

Department of Software Science, Tallinn University of Technology, Estonia

Niccolò Veltri #

Department of Software Science, Tallinn University of Technology, Estonia

Abstract
Finitely-branching and unlabelled dynamical systems are typically modelled as coalgebras for the
finite powerset functor. If states are reachable in multiple ways, coalgebras for the finite bag
functor provide a more faithful representation. The final coalgebra of this functor is employed
as a denotational domain for the evaluation of such systems. Elements of the final coalgebra are
non-wellfounded trees with finite unordered branching, representing the evolution of systems starting
from a given initial state.

This paper is dedicated to the construction of the final coalgebra of the finite bag functor
in homotopy type theory (HoTT). We first compare various equivalent definitions of finite bags
employing higher inductive types, both as sets and as groupoids (in the sense of HoTT). We then
analyze a few well-known, classical set-theoretic constructions of final coalgebras in our constructive
setting. We show that, in the case of set-based definitions of finite bags, some constructions are
intrinsically classical, in the sense that they are equivalent to some weak form of excluded middle.
Nevertheless, a type satisfying the universal property of the final coalgebra can be constructed
in HoTT employing the groupoid-based definition of finite bags. We conclude by discussing
generalizations of our constructions to the wider class of analytic functors.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Constructive mathematics

Keywords and phrases finite bags, final coalgebra, homotopy type theory, Cubical Agda

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.20

Supplementary Material Software (Agda Code): github.com/phijor/agda-cubical-multiset
archived at swh:1:snp:3c33a341583333a888a148d4a91c08b94e404482

Funding This work was supported by the Estonian Research Council grant PSG749 and the ESF
funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

1 Introduction

Coalgebras are functions of the form c : S → FS, where S is a set of states and F is a functor
specifying a certain class of collections of states [23, 14]. For example, FS could be lists
over S, bags (i.e. multisubsets) or subsets of S (possibly with some cardinality restrictions),
wellfounded trees with leaves or nodes in S, or probability distributions over S. The coalgebra
c describes the dynamics of a transition system or an automaton: to each state s : S, the
function c associates the collection of states c s : FS that are reachable from s in one step.
The choice of collection functor F is dictated by the specific flavor of non-determinism that is
specified by the transition relation. Does the order or multiplicity of reachable states matter?
Is the choice of a new state probabilistic? Does the transition relation additionally depend
on a set of labels, weights or actions?

The denotational semantics of a transition system c : S → FS is typically given in terms
of the final coalgebra LF of the functor F , which consists of non-wellfounded trees with
branching specified by F . When F is the list functor, each tree has a finite and ordered
collection of subtrees. If F is the finite bag functor, the order of subtrees does not matter,

© Philipp Joram and Niccolò Veltri;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philipp@cs.ioc.ee
https://orcid.org/0000-0002-0448-7907
mailto:niccolo@cs.ioc.ee
https://orcid.org/0000-0002-7230-3436
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://github.com/phijor/agda-cubical-multiset
https://archive.softwareheritage.org/swh:1:snp:3c33a341583333a888a148d4a91c08b94e404482;origin=https://github.com/phijor/agda-cubical-multiset
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Constructive Final Semantics of Finite Bags

and if F is the finite powerset functor, multiplicity of subtrees does not matter either. The
interpretation of a state s : S in LF is the possibly-infinite tree obtained by “running” the
coalgebra c with s as initial state. As such, it gives a complete description of the evolution
of the system c starting from state s.

The theory of dynamical systems as coalgebras [23, 14], and in particular the formal
description of final coalgebras [4, 2, 32], with the associated notion of bisimilarity and
behavioural equivalence of states, is traditionally developed in a set-theoretic framework
with reasoning based on classical logic. In this work, we propose to study the theory of
coalgebras in a framework based on constructive logic, more specifically in homotopy type
theory (HoTT) [26]. The use of a constructive metatheory is beneficial for the development
of formal denotational semantics of dynamical systems and programming languages, often
centered on the notions of final coalgebra and bisimilarity [27], in proof assistants based on
variants of Martin-Löf type theory, such as Agda, Coq, Idris and Lean. The specific choice
of HoTT is motivated by its expressiveness and innovative features, higher inductive types
(HITs) and the univalence principle, which are crucial ingredients for faithfully representing
a variety of collection functors F and reasoning up to equivalent presentations of F .

Specific constructions of final coalgebras for a selection of functors, performed internally
in HoTT, already exist in the literature. Ahrens et al. [3] presented a construction of M-types,
i.e. final coalgebras of polynomial functors. They show that, for a polynomial functor F , the
traditional set-theoretic construction of its M-type as the ω-limit of the chain

1 !←− F1 F (!)←−− F 21 F 2(!)←−−− F 31 F 3(!)←−−− · · · (1)

(with 1 being the unit type and ! the unique map into 1) can be ported without major
complications to the setting of HoTT. Veltri [29] examined various constructions of the final
coalgebra of the finite powerset functor, which is known to not be definable as an ω-limit [2].
Worrell proposed a set-theoretic construction as a (ω + ω)-limit [32], but Veltri showed that
this cannot be ported to the constructive setting of HoTT: Worrell’s construction defines
the final coalgebra of the finite powerset functor if and only if the lesser limited principle of
omniscience (LLPO) holds, which is a constructive taboo [6].

We extend this line of work by studying the final coalgebra of the finite bag functor. This
is an intermediate situation between finitary polynomial functors, such as the one delivering
lists, and general finitary functors, such as the one delivering finite subsets. It also serves as
a representative starting point for a constructive analysis of Joyal’s analytic functors [15]
and their final semantics. In type theory, analytic functors arise from quotient containers [1]
and encompass many datatypes with symmetries, such as finite bags, unordered pairs and
cyclic lists [34, 33].

Following the recent work of Choudhury and Fiore [8], we define and compare various
implementations of the type of finite bags in HoTT. Choudhury and Fiore give two equivalent
presentations of finite bags as HITs: as free commutative monoids and as lists modulo
swapping of adjacent entries. We add an equivalent presentation of finite bags as an analytic
functor FMSet: an element of FMSet X is a pair of a natural number n (its size) and an
equivalence class of functions typed Fin n→ X picking an element of X for each k < n. Two
functions v, w : Fin n → X belong to the same equivalence class if there merely exists an
equivalence σ : Fin n→ Fin n such that v = w ◦ σ. The type FMSet X is always a set (in the
sense of HoTT, i.e. a type with at most one identification between any two terms), since it
employs set-quotienting. Similarly, the HITs of Choudhury and Fiore are sets. Following [16],
finite bags can alternatively be defined as a polynomial functor Bag returning a groupoid (in
the sense of HoTT, i.e. a type whose equality types are sets) instead of a set. In this case,

P. Joram and N. Veltri 20:3

an element of Bag X is a pair consisting of a (Bishop-)finite type Y and a function from Y

to X. The set-based and the groupoid-based definitions of bags are appropriately related by
the set-truncation construction: ∥Bag X∥2 ≃ FMSet X.

We investigate 3 constructions of the final coalgebra of the finite bag functor:
1. Working with the set-based functor FMSet, we try to replicate the classical set-theoretic

construction as an ω-limit of (1) in our constructive setting. We show that this cannot
be directly performed in HoTT without introducing some form of classical logic, an issue
already spotted in the case of the finite powerset functor [29]. Formally, we show that
FMSet weakly preserves the ω-limit of (1), but strong preservation of this limit implies
LLPO.

2. The list functor admits a final coalgebra LList in HoTT [3] and classically an appropriate
quotient of the latter, by a relation Bisim identifying non-wellfounded trees which differ
in the order of their subtrees, delivers the final coalgebra of the finite bag functor. This
construction is also inherently classical: attempting to define a FMSet-coalgebra structure
on LList /2 Bisim, i.e. a function of type LList /2 Bisim→ FMSet(LList /2 Bisim), by directly
lifting the List-coalgebra structure of LList, implies LLPO. We point out that this issue
already appears in the category of setoids [5], before effectively forming the set-quotient
LList /2 Bisim. We were able to prove that LList /2 Bisim is the final FMSet-coalgebra only
under the assumption of the axiom of choice.

3. The groupoid-based polynomial functor Bag admits a final coalgebra LBag as the ω-limit
of (1), a result arising directly from the work of Ahrens et al. [3]. LBag is a groupoid, not
a set. One might wonder if the set-truncation ∥LBag∥2 is a good candidate for the final
FMSet-coalgebra. We show that it is a fixpoint of FMSet, but we were able to prove that
it is the final coalgebra only under the assumption of two variants of the axiom of choice.

We do not yet know whether the uses of choice in the last two constructions are also necessary.
Nevertheless, the set-truncation ∥LBag∥2 can be practically employed as denotational domain
for transition systems with a (Bishop-)finite set of states: given a coalgebra c : S → FMSet S

where S is finite, there exists a unique coalgebra morphism from S to ∥LBag∥2, and no
additional choice principle needs to be assumed in this case.

We conclude by discussing generalizations of our constructions to other analytic functors.
The material presented in the paper (apart from Section 7) has been formalized in the

Cubical Agda proof assistant, building on top of the agda/cubical library [25]. The code is
freely available at https://github.com/phijor/agda-cubical-multiset. For any result
in the paper decorated with an Identifier, the repository contains instructions on how to
find the corresponding formalization.

2 Type Theory and Cubical Agda

We work in homotopy type theory [26] and practically our formalization takes place in
Cubical Agda [30]. We recall some basic notions that are employed in our development.

Given a type A and a type family B on A, the associated dependent function type
is (x : A) → B x, written also ∀x. B x when the type A is clear from context. Implicit
arguments of dependent functions are enclosed in curly brackets. Basic inductive types
include: unit 1, empty ⊥, naturals N, finite prefixes of naturals Fin n, lists List A, dependent
pair

∑
(x : A). B x, binary sum A + B. We use standard names for their constructors. The

unique function from a type A into the unit type is ! : A → 1. Given an inductive type
T , we write elimT and recT for its dependent and non-dependent elimination principles,
respectively (we employ the same notation also for higher inductive types). The action on

ITP 2023

https://github.com/phijor/agda-cubical-multiset
README.html#Identifier

20:4 Constructive Final Semantics of Finite Bags

maps of a functor F : Type→ Type is mapF ; to avoid ambiguities, we write mapF f over the
conventional F (f). Most of our constructions are universe-polymorphic, but for the sake of
readability in the paper we use only the two lowest universe of types, Type and Type1.

Given x, y : A, their definitional equality is denoted x =df y while propositional equality
is x = y. Following “cubical terminology”, the latter is called the path type between x and y.
In Cubical Agda, the path type x = y behaves similarly to a function type I → A, where
I is a primitive interval type with endpoints i0 and i1. An element p : x = y is eliminated
by application to an interval name r : I, returning p r : A. But unlike function types, this
application can compute even when p is unknown by using the endpoints x and y: p i0
reduces to x and p i1 reduces to y. Path introduction is lambda abstraction (λi : I. t) : x = y,
but it causes the extra requirement to match the endpoints: t[i0/i] is judgementally equal to
x and t[i1/i] is judgementally equal to y. We write refl x for the constant path (i.e. proof of
reflexivity) in x = x and (•) for sequential composition of paths.

A function f : A→ B is an equivalence if it has contractible fibers, i.e. if the preimage of
any element in B under f is a singleton type. Any function underlying a type isomorphism
defines an equivalence. Writing A ≃ B for the type of equivalences between A and B,
Voevodsky’s univalence principle states that the canonical function of type A = B → A ≃ B

is an equivalence. This is a theorem in Cubical Agda. In particular, there is a function
ua : A ≃ B → A = B turning equivalences into path equalities. Univalence implies function
extensionality: pointwise equal functions are equal. We recall the first instances of the
hierarchy of homotopy levels,1 and say that a type A is:

(n = 1) a proposition, if isProp A =df (a b : A)→ a = b is inhabited,
(n = 2) a set, if isSet A =df (a b : A)→ isProp (a = b) is inhabited,
(n = 3) a groupoid, if isGroupoid A =df (a b : A)→ isSet (a = b) is inhabited.

When mentioning “sets” or “groupoids”, we always refer to the definitions above.
A higher inductive type (HIT) is like an inductive type, but its constructors can build

both its elements and its (higher) paths. HITs are primitively supported in Cubical Agda.
We recall the definition of three basic HITs: propositional truncation, set-truncation and
set-quotient.

The propositional truncation ∥A∥1 is the proposition associated to the type A, i.e. it
identifies all the elements and (higher) paths of A. It is the HIT with constructors

a : A
|a|1 : ∥A∥1

x, y : ∥A∥1
squash1 x y : x = y

We define the existential quantifier ∃(x : A). B x =df ∥
∑

(x : A). B x∥1, which records the
mere existence of an element x satisfying B.

The set-truncation ∥A∥2 is the set associated to the type A, i.e. it identifies all (higher)
paths of A. It is the HIT with constructors

a : A
|a|2 : ∥A∥2

x, y : ∥A∥2 p, q : x = y

squash2 p q : p = q

The set-quotient A /2 R of a type A by a (possibly proof-relevant) relation R : A→ A→
Type is the HIT with constructors

a : A
[a]2 : A /2 R

a, b : A r : R a b

eq/2 r : [a]2 = [b]2
x, y : A /2 R p, q : x = y

squash/2 p q : p = q

1 To stay close to the formalization, we follow Voevodsky’s [31] 0-based numbering of h-levels.

P. Joram and N. Veltri 20:5

The term [a]2 is the R-equivalence class of a, while the path constructor eq/2 states that
R-related elements have path equal equivalence classes. The higher path constructor squash/2
forces A /2 R to be a set.

Other HITs are presented in the next section, where we also take a closer look at their
elimination principles.

3 The Finite Bag Functor in Sets

The action of the finite bag functor on a type X can be encoded as a higher inductive type in
various ways, three of which are presented here. The first is the algebraic presentation of the
free commutative monoid, the second as lists modulo permutations, the third as an analytic
functor. These are all set-based definitions, in the sense that the type of finite bags is a set.
In Section 3.4 we prove these are naturally equivalent as types, therefore being equivalent as
functors. Groupoid-based definitions are discussed in Section 5.

3.1 As the Free Commutative Monoid

Given a type X, the free commutative monoid on X [8] is the HIT induced by the following
rules:

ε : FCM X
x : X

η x : FCM X
xs, ys : FCM X

xs ⊕ ys : FCM X

xs : FCM X
unit : ε⊕ xs = xs

xs, ys, zs : FCM X

assoc : xs ⊕ (ys ⊕ zs) = (xs ⊕ ys)⊕ zs
xs, ys : FCM X

comm : xs ⊕ ys = ys ⊕ xs
xs, ys : FCM X p, q : xs = ys

squashFCM p q : p = q

The constructor η embeds X into FCM X, while ε and ⊕ are the unit and multiplication
of the monoid. The path constructors express unitality of ε with respect to ⊕, associativity
and commutativity of ⊕, and the final higher path constructor forces FCM X to be a set.

In Cubical Agda, functions out of HITs like FCM X can be defined directly by pattern
matching. But it is often useful to have elimination principles at hand that give more control
on the shape of the proof obligations. For example, the non-dependent elimination principle
of FCM X states that a function of type FCM X → A is definable, provided that A is a
commutative monoid and there exists a function η∗ : X → A.

recFCM X : {A : Type} → isSet A

→ (ε∗ : A) (η∗ : X → A) ((+) : A→ A→ A)
→ (∀a. ε∗ + a = a)
→ (∀a b c. a + (b + c) = (a + b) + c)
→ (∀a b. a + b = b + a)
→ FCM X → A

FCM is a functor, with action on maps given by

mapFCM : (f : X → Y)→ FCM X → FCM Y

mapFCM f =df recFCM X squashFCM ε (η ◦ f) (⊕) unit assoc comm

ITP 2023

20:6 Constructive Final Semantics of Finite Bags

3.2 As a Quotient of Lists
Another standard definition of the type of finite bags is as lists modulo permutations. The
relation specifying the existence of a permutation between two lists can be given in multiple
ways, here we mention two possibilities.

Given xs, ys : List X, the relation Perm xs ys is generated by the rules:

Perm xs xs
Perm (xs ++ x :: y :: ys) zs
Perm (xs ++ y :: x :: ys) zs

In other words, Perm is the reflexive-transitive closure of the relation generated by pairs of
lists of the form xs ++ x :: y :: ys and xs ++ y :: x :: ys. This is a very “intensional” way of
representing permutations of lists: a proof of Perm xs ys not only records where each entry
in xs is moved to in ys, but also how it is moved there. As such, Perm xs ys is generally not
a proposition.

Another way of specifying permutations is via a relation lifting, often called a relator [19].
Given a relation R on a type X, we inductively define a relation DRelator R on List X, which
intuitively states that each occurrence of an element x in the first list is R-related to the
occurrence of an element y in the second list. The type of occurrences x ∈ xs is generated by

x : X xs : List X
x ∈ x :: xs

x y : X xs : List X m : x ∈ xs
x ∈ y :: xs

Removal xs \m : List X of an occurrence m : x ∈ xs is defined by induction on m. The
directed relation lifting of R is the relation generated by rules

DRelator R [] ys
∃(y : Y).

∑
(m : y ∈ ys). R x y × DRelator R xs (ys \m)

DRelator R (x :: xs) ys

and we take the relation lifting of R to be the symmetrization of the relation DRelator R,
i.e. Relator R xs ys =df DRelator R xs ys × DRelator R ys xs. Because of the presence of a
propositional truncation in the premise of the 2nd rule, both DRelator R and Relator R are
propositionally-valued. If R is reflexive and transitive, then Relator R is an equivalence
relation.

When R is path equality on X, the type Relator (=) xs ys expresses the mere existence
of a permutation connecting xs and ys. In fact, ∥Perm xs ys∥1 and Relator (=) xs ys are
equivalent types.

3.3 As an Analytic Functor
We additionally introduce the type of finite bags over X as an analytic functor (in the
formulation of Hasegawa [12]). For any type X, we define a type of finite multisets [20, 8]

FMSet X =df
∑

(n : N). (Fin n → X) /2 SymAct n

where SymAct n is the propositionally-valued relation

SymAct n v w =df ∃(σ : Fin n≃ Fin n). v = w ◦ σ

In other words, an element of FMSet X is a pair of a natural number n (the size of the
set) and an equivalence class of functions v : Fin n → X picking an element in X for each
index k < n. The relation SymAct n is the action of the symmetric group Fin n ≃ Fin n

on n-tuples of elements of X. We write SymAct∞ n for the non-propositionally-truncated
variant of SymAct n. We write v ∼ w instead of SymAct n v w when n is clear from context,
and analogously (Fin n→ X) /2 ∼ in place of (Fin n → X) /2 SymAct n.

P. Joram and N. Veltri 20:7

The proof of Theorem 23 employs the fact that FMSet is invariant under set-truncation.
The latter fact factors through the following lemma, stating that set-truncation distributes
over finite families of types.

▶ Lemma 1 (finChoiceEquiv). For any n : N and type family Y : Fin n→ Type, there is
an equivalence box : ((k : Fin n)→ ∥Y k∥2)≃ ∥(k : Fin n)→ Y k∥2.

Proof. We sketch a proof for a constant type family Y = (λ_. X). The dependent case
is analogous. The function underlying the equivalence is defined by induction on n. For
n = 0 we have Fin 0 ≃ ⊥, so box =df(λ_. |elim⊥|2). In the inductive step, we lift the
derivable “cons” operation (::) : X → (Fin n → X) → (Fin (1 + n) → X) to the set-
truncation. A two-sided inverse unbox : ∥Fin n→ X∥2 → Fin n → ∥X∥2 of box is given by
unbox v̄ k =df map∥_∥2

(λv. v k) v̄. ◀

The equivalence of Lemma 1 allows to define a variant of the elimination principle elim∥X∥2

taking Fin n → ∥X∥2 as input instead of ∥X∥2 (a sort of “finite choice” principle for set-
truncation):

elim∥X∥2fin : {n : N} {B : (Fin n→ ∥X∥2)→ Type}{sB : ∀v. isSet(B v)}
→ (c : (w : Fin n→ X)→ B (|_|2 ◦ w))
→ (v : Fin n→ ∥X∥2)→ B v

(2)

This comes with a (propositional) computation rule elimβ
∥X∥2fin : elim∥X∥2fin c (|_|2 ◦ v) = c v.

▶ Theorem 2 (FMSetTruncInvariance). FMSet is invariant under set-truncation: for any
type X, there is an equivalence FMSet ∥X∥2 ≃ FMSet X.

Proof. The equivalence is obtained from an isomorphism. The right-to-left function is
mapFMSet |_|2. For the left-to-right direction, we use elim∥X∥2fin in (2) to define a function
typed (Fin n → ∥X∥2) → (Fin n → X) /2 ∼ that turns set-truncation into a set-quotient,
which is enough to obtain a function typed FMSet ∥X∥2 → FMSet X. That these maps are
mutual inverses follows from elimβ

∥X∥2fin. ◀

3.4 Equivalence of Presentations
All encodings of finite multisets used in the preceding section induce equivalent functors:

▶ Proposition 3 (FMSetEquivs). For any type X, there is a sequence of equivalences

FCM X
α≃ List X /2 Perm

β
≃ List X /2 Relator (=)

γ
≃ FMSet X,

which are natural in X: for any f : X → Y , α ◦mapFCM f = mapList X /2 Relator (=) f ◦ α, and
similarly for β and γ.

Proof. Equivalence α is obtained by observing that both types form a free commutative
monoid on X, with addition (⊕) and (++) respectively. For β, note that Relator (=) is a
propositionally-valued relation, while Perm is generally not. Yet it is enough to provide
a bi-implication between the relations to conclude that the set-quotients they define are
equivalent, as mentioned in Section 3.2. Equivalence γ is obtained similarly, this time proving
that the encodings of permutations (“intensionally” via the relator and “extensional” in
terms of equivalence of types) are logically equivalent. Naturality is established directly. ◀

In the formalization, we make use of slight variations of the above types where convenient.
These mostly concern presentation of lists (e.g. bundling lengths via List A≃

∑
n:N Vec A n),

and are easily seen to be naturally equivalent.

ITP 2023

README.html#FiniteChoice.finChoiceEquiv
README.html#FMSetTruncInvariance
README.html#FMSetEquivs

20:8 Constructive Final Semantics of Finite Bags

3.5 Definable Quotients and Sorting
In the absence of the axiom of choice, it is not generally possible to define a section of the
equivalence class constructor [_]2 : A → A /2 R. A set-quotient A /2 R for which such a
section exists is called definable [20]. Spelled out, there is a representative-picking function
rep : A /2 R → A such that [rep x]2 = x for all x : A /2 R.

In the proof of Theorem 11 we employ the fact that the type of finite bags FMSet X, for
some specific choice of X, is linearly-ordered and (Fin n→ X) /2 ∼ is a definable set-quotient.
A relation (<) is a linear order when it is asymmetric, transitive, propositionally-valued
and total, in the sense that the trichotomy (x < y) + (x = y) + (y < x) holds for all
x, y : X. If X is a set with linear order (<), then lists over X can be sorted with respect
to (<) via a function sort : List X → List X essentially implementing the insertion-sort
algorithm, which allows the construction of a permutation typed Perm xs (sort xs). Sorting is
independent of the positions of each entry in the input list, therefore via recList X /2 Perm we
obtain a function sortPerm : List X /2 Perm→ List X. It is not hard to show that sortPerm is
a section of the equivalence class constructor, so List X /2 Perm is a definable quotient. Since
List X /2 Perm ≃ FMSet X, we obtain the following result.

▶ Proposition 4 (SymActDefinable). If X is a linearly-ordered set, then (Fin n→ X) /2 ∼
is a definable quotient for all n : N.

In the presence of a linear order (<) on X, we can extract from any proof that two lists
are merely related by a permutation an actual permutation witnessing this:

▶ Proposition 5 (SymActUntruncate). If X is a linearly-ordered set, then for all n : N and
v, w : Fin n → X there exists a function typed SymAct n v w → SymAct∞ n v w, i.e. the
propositional truncation in SymAct n v w can be removed.

Proof. Since FMSet X ≃ List X /2 Perm, it is enough to define for all xs ys : List X a func-
tion ∥Perm xs ys∥1 → Perm xs ys. To escape the truncation, we first implement a function
canonPerm : Perm xs ys → Perm xs ys returning a “canonical” way of permuting xs into ys.
Given σ : Perm xs ys, sorting yields a path pσ : sort xs = sort ys. Composing (along pσ) the
permutations obtained from sorting xs and (un-)sorting ys gives the desired term canonPerm σ.
Since X is a set, pσ lands in a proposition. Thus, canonPerm is weakly constant and lifts to
a function from the truncation [7, Corollary 2]. ◀

To illustrate the computational behavior of canonPerm, see BraidExample in the code.
The order (<) can be extended to a linear order on List X via the lexicographic order

Lex (<) [] (y :: ys)
x < y

Lex (<) (x :: xs) (y :: ys)
x = y Lex (<) xs ys
Lex (<) (x :: xs) (y :: ys)

and further to List X /2 Perm by defining LexPerm (<) x y=dfLex (<) (sortPerm x) (sortPerm y).

▶ Proposition 6 (linLexFMSet). If X is a linearly-ordered set, then (Fin n → X) /2 ∼ is
linearly-ordered for all n : N.

4 The Final Coalgebra in Sets

We now turn to constructing the final coalgebra of the finite bag functor, given by one of the
equivalent definitions in Section 3.

README.html#LexFMSet.SymActDefinable
README.html#LexFMSet.SymActUntruncate
README.html#LexFMSet.canonPerm
README.html#LexFMSet.BraidExample
README.html#LexFMSet.linLexFMSet

P. Joram and N. Veltri 20:9

Given a functor F : Type → Type, the types of coalgebras and coalgebra morphisms
between two coalgebras (A, a) and (B, b) are

Coalg F =df
∑

(A : Type). A→ FA

CoalgMor F (A, a) (B, b) =df
∑

(f : A→ B). b ◦ f = (mapF f) ◦ a

Coalgebras can be used to represent transition systems. For example, the coalgebra on the
right encodes the small transition system on the left:

0 **44 1

��

dd

2

c : Fin 3→ FCM(Fin 3)
c 0 =df η 1⊕ η 1
c 1 =df η 1⊕ η 2
c 2 =df ε

A coalgebra is final if there exists a unique coalgebra morphism from any other coalgebra.
This can be formalized by saying that there is a coalgebra C : Coalg F such that the type
CoalgMor F D C is contractible for any other coalgebra D. These definitions are the same of
Ahrens et al. [3], which they only consider in the case of F being a polynomial functor.

We analyze two constructions of the final coalgebra for the finite bag functor: as an
ω-limit and as a set-quotient of the final coalgebra of the List functor.

4.1 As an ω-Limit
Consider the chain in (1), for some F : Type→ Type. We formally define F n1 by recursion
on n: F 01 =df 1 and F 1+n1 =df F (F n1). Similarly we can define the iteration mapn

F !, which
we denote !nF . In HoTT, the (homotopy) limit of the chain is definable as

lim
n

(F n1) =df
∑

(x : (n : N)→ F n1). ∀n. !nF (x (1 + n)) = x n

Write LF =df limn(F n1). An element of the limit consists of an element x n : F n1, for all n : N,
and a proof that restricting x (1 + n) to F n1 via !nF is equal to x n. Writing ℓn : LF → F n1
for the n-th projection from the limit, we obtain the usual diagram:

LF

1 F1 F 21 F 31 . . .

ℓ0 ℓ1 ℓ2 ℓ3 . . .

!0
F !1

F !2
F

(3)

The limit is invariant with respect to shifting the chain by one position, i.e. there is an
equivalence shift : LF ≃ Lsh

F , where Lsh
F =df limn(F 1+n1). We use ℓn : Lsh

F → F 1+n1 also for
the n-th projection from the shifted limit. If F is set-valued, the limit LF is also a set. Notice
that for naturally equivalent and set-valued F and G, we have LF ≃ LG, since naturally
equivalent chains have equivalent limits; see chainEquivToLimitEquiv in the formalization
for details. This implies that, when proving properties of this limit for finite bags, we can
use any of the equivalent presentations in Proposition 3 as convenient.

In classical set theory, LFMSet can be proved to be the final coalgebra of FMSet. The proof
proceeds by first constructing a function presFMSet : FMSet LFMSet → Lsh

FMSet via the universal
property of the limit: take ℓn (presFMSet s) as mapFMSet ℓn s. The function presFMSet is then
proved to be an equivalence, showing that FMSet preserves the ω-limit. The composition of
shift with the inverse pres−1

FMSet provides a coalgebra structure for LFMSet. This can be proved
to be final, again using the universal property of the limit.

ITP 2023

README.html#IterLimit.chainEquivToLimitEquiv

20:10 Constructive Final Semantics of Finite Bags

Constructively, there are issues in proving that presFMSet is an equivalence. Its injectivity
is equivalent to the lesser limited principle of omniscience (LLPO) [6, Ch. 1]. The latter is
a weak version of the law of the excluded middle, and it is not provable from intuitionistic
axioms alone. It states that, given an infinite stream of Boolean values that yields true in
at most one position, one can decide whether all even or all odd positions are false. Both
injectivity of presFMSet and LLPO are propositions, so to establish an equivalence, it is
sufficient to find a bi-implication between them.

▶ Theorem 7 (InjectiveFMSetPresToLLPO). If presFMSet is injective, then LLPO holds.

Proof. In this proof we use FCM instead of FMSet. The statement of the theorem holds
since FCM X is naturally equivalent to FMSet X. It is sufficient to show that the injectivity
of presFCM implies that the following type is inhabited:

(x, y1, y2 : LFCM)→ (ys : N→ LFCM)
→ (split : ∀n. ys n = y1 + ys n = y2) (diag : ∀n. ℓn x = ℓn (ys n))
→ ∥x = y1 + x = y2∥1

(4)

This is a form of completeness of two-element subsets of the ω-limit: every converging
sequence ys consisting of elements from the subset {y1, y2} has its limit x also belonging to
the subset {y1, y2}. Mandelkern [21] has proved the equivalence of LLPO with completeness
of two-element subsets of real numbers. We adapt their proof, for details refer to either [29,
Theorem 7] or the formalization (CompleteToLLPO).

To prove completeness, assume x, y1, y2, ys, split and diag as in (4). Using split, define the
complement of ys as ys n =df y2 if ys n = y1 and ys n =df y1 if ys n = y2. The diagonal of ys
also has the limit-property, i.e.

∀n. !nFCM(ℓ1+n (ys (1 + n))) = ℓn (ys n) (5)

For this, fix n and check the four cases generated by inspecting split n and split (1+n). In one
case, (5) reduces to the limit-property of y1, in another to that of y2 and in the remaining
cases to Lemma 8 below. Call x : LFCM the element of the limit such that ℓn x =df ℓn (ys n).

Write {x, y}=df η x⊕ η y for the two-element bag comprising of x and y. For all n, we
know that {ys n, ys n} = {y1, y2} either by refl or ⊕comm, depending on split n. Using the
latter equality, the definition of presFCM and the assumption diag, we can form the following
sequence of equalities:

ℓn (presFCM{x, x}) = {ℓn x, ℓn x} = {ℓn (ys n), ℓn (ys n)}
= ℓn (presFCM{ys n, ys n}) = ℓn (presFCM{y1, y2})

which implies presFCM{x, x} = presFCM{y1, y2}. From the injectivity of presFCM it follows that
{x, x} = {y1, y2}, which also implies that (merely) x = y1 or x = y2. ◀

The above depends on a property of sequences in LF that are “approximated” by some x : LF :

▶ Lemma 8 (LimitAlternationLemma). For any functor F where x : LF and ys : N→ LF

such that P : ∀n. ℓn x = ℓn ysn, we have ∀n. !nF (ℓn+1 ysn) = ℓn ysn+1.

Proof. By alternating application of the limit property and assumption P , we obtain

!nF (ℓn+1 ysn) = ℓn ysn
Pn= ℓn x = !nF (ℓn+1 x) Pn+1= !nF (ℓn+1 ysn+1) = ℓn ysn+1 ◀

README.html#InjectiveFMSetPresToLLPO
README.html#CompleteToLLPO
README.html#LimitAlternationLemma

P. Joram and N. Veltri 20:11

▶ Theorem 9 (LLPOToInjectiveFMSetPres). LLPO implies the injectivity of presFMSet.

For the proof of Theorem 9, which employs the functor List(−) /2 Relator (=) instead of
FMSet, we refer the reader to our Agda formalization. The proof is similar to the one of a
related result [29, Theorem 9]: the injectivity of presPfin : Pfin LPfin → Lsh

Pfin, where Pfin is the
finite powerset functor, is derivable from LLPO and the axiom of countable choice. It turns
out that countable choice is not needed, neither in Theorem 9 nor in Theorem 9 of [29].

Nevertheless, we are able to salvage the fact that presFMSet has a section/right-inverse
which targets the shifted limit. This implies that FMSet weakly preserves the ω-limit LFMSet,
but strong limit-preservation is equivalent to LLPO.

▶ Lemma 10 (linLexIterFMSet). For all n, FMSetn 1 is linearly-ordered.

Proof. Define (<n) : FMSetn 1 → FMSetn 1 → Type by induction on n: (<0) is the empty
relation and x <1+n y =df LexPerm (<n) x y. Since the empty relation is linear, Proposition 6
implies that the order (<n) is linear for all n : N. ◀

▶ Theorem 11 (FMSetPresSection). The function presFMSet has a section.

Proof. Let s : Lsh
FMSet, we build an element t : FMSet LFMSet in the fiber of presFMSet over s.

The size (i.e. the 1st projection) of the bags ℓn s is the same for all n, call it n∗. We set the
size of t to be n∗. Given an index k : Fin n∗, we now search for an element u k : LFMSet for
defining t =df (n∗, u).

For each d : N, we know that ℓd+1 s is path equal to a pair of the form (n∗, vd). In order
to construct u we need access to a representative of the equivalence class vd : (Fin n∗ →
FMSetd 1) /2 ∼ for each d. We know that this can be done using Lemma 10 and Proposition 4.
Let wd : Fin n∗ → FMSetd 1 be the canonical representative of vd. The limit-property of
s can be translated to the mere existence of a permutation σd : Fin n∗ ≃ Fin n∗ such that
p : !dFMSet(w1+d k) = wd (σd k), for all d : N and k : Fin n∗. The construction of u also requires
access to each permutation σd, which sits inside a propositional truncation for each d. We
can access all these permutations by invoking Lemma 10 and Proposition 5.

We now have all the ingredients for building u. Define a permutation σ∗
d : Fin n∗ ≃ Fin n∗

by induction on d: σ∗
0 =df id, σ∗

1+d=df σ
−1
d ◦σ∗

d. Then take u such that ℓd (u k)=df wd (σ∗
d k). One

can show that u k : LFMSet for all k : Fin n∗ since !dFMSet(wd+1(σ∗
d+1 k)) p= wd(σd(σ∗

d+1 k)) =
wd(σd(σ−1

d (σ∗
d k))) = wd(σ∗

d k), and that t is indeed in the fiber of presFMSet over s. ◀

By Lambek’s theorem, every final coalgebra is necessarily an equivalence. Assuming LLPO
we have FMSet LFMSet ≃ LFMSet, and proving that the coalgebra underlying this equivalence
is final in the category of sets is straightforward using the universal property of the limit.

4.2 As a Quotient of the Final List-Coalgebra

Instead of considering a type of unordered trees quotiented at each step of the construction,
we investigate whether it is possible to define a final FMSet-coalgebra by quotienting the type
of ordered trees by some suitable relation. It is known that the limit LList =df limn(Listn 1) is
the final coalgebra of the list functor in HoTT [3]. The limit LList is a type of non-wellfounded
ordered trees, and we denote by coalgList its coalgebra structure. By choosing a suitable
relation R, one can hope to obtain a type of unordered trees LList /2 R endowed with a FMSet-
coalgebra structure. We choose R to be a notion of bisimilarity Bisim, obtained iteratively

ITP 2023

README.html#LLPOToInjectiveFMSetPres
README.html#linLexIterFMSet
README.html#FMSetPresSection

20:12 Constructive Final Semantics of Finite Bags

from the relation lifting Relator applied to finite approximations of trees in LList [13]:

Approxn : Listn 1→ Listn 1→ Type
Approx0 x y =df 1
Approx1+n x y =df Relator (Approxn) x y.

From the fact that (∀x, y. R x y → S x y) implies ∀xs, ys. Relator R xs ys → Relator S xs ys,
we obtain, for s, t : LList, a chain of propositions

Approx0(ℓ0 s) (ℓ0 t)←− Approx1(ℓ1 s) (ℓ1 t)←− Approx2(ℓ2 s) (ℓ2 t)←− · · · (6)

The desired relation Bisim s t is the limit of the chain in (6).
To find a coalgebra structure on LList /2 Bisim, we investigate whether coalgList lifts to a

coalgebra of setoids (LList, Bisim)→ (List LList, Relator Bisim) and if so, whether this induces a
(final) coalgebra on the quotient. For this, one needs to show that it is a setoid-morphism,
i.e. for s, t : LList, if Bisim s t then Relator Bisim (coalgList s) (coalgList t). Once again, the same
issue we found when trying to prove the injectivity of presFMSet in Section 4.1 arises:

▶ Theorem 12 (isSetoidMorphismCoalgListToLLPO). If coalgList is a setoid-morphism,
then LLPO holds.

The proof is similar to that of Theorem 7. Similarly to Theorem 9, the converse is also
true. Nevertheless, the inverse of coalgList is always a setoid-morphism. Therefore coalgList
is an equivalence of setoids whenever it is a setoid-morphism, i.e. LLPO holds. Under this
assumption alone it is the final coalgebra of an endofunctor in the category of setoids:

▶ Theorem 13 (finalFMSetoidCoalgebra). Assuming coalgList is a setoid-morphism, the
setoid (LList, Bisim) has a coalgebra structure for the functor (X, R) 7→ (List X, Relator R),
which is final in the category of setoids.

Promisingly, we can show that the resulting quotient is a fixpoint for FMSet, and in
particular a coalgebra (of sets):

▶ Theorem 14 (FMSetFixpointTree/Bisim). If coalgList is a setoid-morphism, it lifts to an
equivalence coalgFMSet : LList /2 Bisim ≃−→ FMSet(LList /2 Bisim).

Proof. For the proof, we employ the equivalent functor List(−) /2 Relator (=) instead of FMSet.
The assumption implies that coalgList lifts to a function LList /2 Bisim→ FMSet(LList /2 Bisim),
definable by recursion on the set-quotient. An inverse FMSet(LList /2 Bisim)→ LList /2 Bisim
is definable since coalg−1

List is always a setoid-morphism and List X /2 Relator R is an effective
quotient for any setoid (X, R). ◀

However, like in case of the finite powerset, this fixpoint is not obviously the final
FMSet-coalgebra. We were able to prove this assuming the axiom of choice:

▶ Theorem 15 (FinalFMSetCoalgebra). Assuming the axiom of choice, the fixpoint of
Theorem 14 is the final FMSet-coalgebra in the category of sets.

Proof. Define abbreviations U =df LList /2 Bisim and R=df Relator (=), and use the presentation
of FMSet used in the proof of Theorem 14. To build a coalgebra morphism uc : C → U from
a given coalgebra c : C → FMSet C to coalgFMSet : U → FMSet U , one defines a function
u′ : (C → List C) /2 R∗ → (C → U). Here, R∗ is the pointwise lifting of R, and u′ is obtained
by recursion from the unique List-coalgebra morphism typed C → LList. The axiom of choice
implies that the canonical map (C → List /2 R) → (C → List C) /2 R∗ has a section θ for
arbitrary C. This is sufficient to prove that uc =df u′(θ(c)) is the unique FMSet-coalgebra
morphism from (C, c) to (LList /2 Bisim, coalgFMSet). ◀

README.html#Setoid.isSetoidMorphismCoalgListToLLPO
README.html#Setoid.finalFMSetoidCoalgebra
README.html#Setoid.FMSetFixpointTree/Bisim
README.html#Setoid.FinalFMSetCoalgebra

P. Joram and N. Veltri 20:13

5 The Finite Bag Functor in Groupoids

The results of Section 4 are evidence that the set-based definitions of finite bags from Section 3
are not fit for a fully constructive construction of the final coalgebra. In this section we study
a groupoid-based definition and, following the ideas of Kock [16] and Finster et al. [10], argue
that the correct perspective on finite bags in HoTT is to define them as groupoids instead
of sets, particularly for the goal of final semantics. The rationale is that identifications of
bags are permutations, and these should inherently be treated as data. Instead of viewing
bags as quotients of lists, thereby “forgetting” about the permutations, we define a type
of lists with “more identifications”. Since all constructions based on this type have to be
homotopy coherent, they will automatically respect the extra data, making them invariant
under permutation for free. We define two equivalent type families Tote and Bag of finite bags
valued in groupoids, and substantiate the previous claims by showing that the set-truncation
of the former is equivalent to FMSet (Theorem 17), and constructing the final coalgebra of
the latter in a straightforward way (Theorem 21 and Corollary 22).

First, recall one way of defining finite sets in HoTT [11]. A type B is called (Bishop-)finite
if isFinSet B =df

∑
(n : N). ∥B ≃ Fin n∥1 holds, and we denote the collection of such types by

FinSet =df
∑

(B : Type). isFinSet B. The underlying type of a FinSet is accessed via the first
projection ⟨−⟩ : FinSet→ Type.

The type isFinSet B is a proposition and any type B satisfying the predicate is a set. It
follows that FinSet forms a groupoid. Note that FinSet is a large type, i.e. FinSet : Type1.
From this, we can define a “tote” (in the sense of a “large bag”) Tote : Type→ Type1 as

Tote X =df
∑

(B : FinSet). ⟨B⟩ → X,

Elements of Tote X are pairs consisting of a finite set B and a function from (the type
underlying) B to X which picks the elements in the tote. Univalence implies that the path
type (B, v) = (C, w) in Tote X is equivalent to the type of dependent pairs consisting of an
equivalence σ : ⟨B⟩ ≃ ⟨C⟩ and a path v = w ◦ σ. This indicates that Tote X is not a set, in
general it is at least a groupoid.

▶ Proposition 16 (isGroupoidTote). If X is a groupoid, then Tote X is a groupoid.

Proof. Since X is a groupoid, the function type ⟨B⟩ → X is a groupoid for any B : FinSet.
The type FinSet is also a groupoid, so the entire Σ-type is a groupoid. ◀

Similar to how FMSet X is the free commutative monoid on X, Tote X can be proved
equivalent to the free symmetric monoidal groupoid on X [22, Corollary 5.103], which serves
as an alternative proof of MacLane’s coherence for symmetric monoidal categories. It differs
from FMSet X in that path equality in the former records the permutations between the
(finite sets representing) sizes of the bags, while the second only cares about the mere
existence of a permutation. Nonetheless, the two definitions become equivalent when we
set-truncate the type of totes.

▶ Theorem 17 (FMSetToteTruncEquiv, isNatural-FMSetToteTruncEquiv). For any type
X, ∥Tote X∥2 ≃ FMSet X. The equivalence is natural in X.

Proof. The proof proceeds by constructing an isomorphism FMSet X ∼= ∥Tote X∥2.
A function toTote : FMSet X → ∥Tote X∥2 is defined by first giving a function f :

∀{n}. (Fin n → X) → ∥Tote X∥2 and then showing that it respects (∼). Take f(v) =df
|(Fin n, v)|2, since Fin n is a finite set. To prove that v ∼ w implies f(v) = f(w), note that

ITP 2023

README.html#isGroupoidTote
README.html#FMSetToteTruncEquiv
README.html#isNatural-FMSetToteTruncEquiv

20:14 Constructive Final Semantics of Finite Bags

the conclusion is a proposition, thus by invoking the recursion principle of propositional
truncation we can assume given a permutation σ such that r : v = w ◦ σ. By univalence,
ua σ : Fin n = Fin n, and transporting r along this path yields p : (Fin n, v) = (Fin n, w). Then
cong |_|2 p : f(v) = f(w) as desired.

A function toFMSet : ∥Tote X∥2 → FMSet X is defined via rec∥Tote X∥2
, so it is enough to

provide g : Tote X → FMSet X. Assume given a finite set B of size n with e : ∥B ≃ Fin n∥1
and v : B → X. We would like to return something in (Fin n → X) /2∼ by recursion
on e, but this cannot work since the return type is a set. We can however employ a
different recursion principle of propositional truncation [7, Corollary 2], which allows to
define a function into a set provided that it is (weakly) constant (in the sense of [17]).
Define g′ : (B ≃ Fin n) → (Fin n → X) /2∼ as g′ α =df [v ◦ α]2, which can be proved to be
constant and therefore well-defined. We can then take g ((B, n, e), v) =df (n, g′ e). Proving
toFMSet ◦ toTote = id is straightforward. Proving toTote ◦ toFMSet = id reduces to showing
that v ◦ α ∼ v for any v : B → X and α : Fin n≃B, which is also direct. ◀

Before studying LTote, notice that the iteration Toten 1 is not well-typed as Tote targets a
large universe. We could in principle define Tote′ : Type1 → Type1 which does not raise the
universe level by first lifting the unit type 1 to the universe Type1. The resulting limit would
be a large groupoid in LTote′ : Type1. Instead, we define an equivalent small variant of Tote
with the help of HITs.

Following [10], we first introduce an equivalent but small definition Bij of the type of
finite sets FinSet. This is equivalent to the groupoid-quotient [24, 28] of the (categorical)
groupoid with objects given by natural numbers and morphisms between n and m given by
equivalences in Fin m≃ Fin n. It is possible to prove that hom also preserves identities and
inverses.

n : N
obj n : Bij

m, n : N α : Fin m≃ Fin n

hom α : obj m = obj n

m, n, o : N α : Fin m≃ Fin n β : Fin n≃ Fin o

hom (β ◦ α) = hom α • hom β isGroupoid Bij

▶ Proposition 18 (BinFinSetEquiv). There is an equivalence Bij ≃ FinSet. In particular,
one can extract a type ⟨x⟩ : Type from each x : Bij.

A small type of finite bags is defined by replacing FinSet with Bij.

Bag X =df
∑

(x : Bij). ⟨x⟩ → X

▶ Proposition 19 (BagToteEquiv). For any type X, the equivalence of Proposition 18 extends
to an equivalence Bag X ≃ Tote X natural in X.

Combining the above with Theorem 17 yields the follows convenient characterization:

▶ Corollary 20 (TruncBagFMSetEquiv). For any X, ∥Bag X∥2 ≃ FMSet X naturally in X.

6 The Final Coalgebra in Groupoids

When defined this way, it is immediate that Bag is the polynomial functor associated to
the container (Bij, ⟨_⟩) in the sense of [3, Definition 2]. Crucially, [3, Theorem 7] proves
that for such functors, the ω-limit is the carrier of the final coalgebra; independently of the
homotopy level of the container it is associated to. Therefore LBag carries the structure of a
final Bag-coalgebra, even though Bij is not a set:

README.html#BinFinSetEquiv
README.html#BagToteEquiv
README.html#TruncBagFMSetEquiv

P. Joram and N. Veltri 20:15

▶ Theorem 21 (isLimitPreservingBag). The map presBag : Bag LBag → Lsh
Bag is an equiva-

lence of groupoids.

▶ Corollary 22 ([3, Theorem 7]). pres−1
Bag ◦ shift : LBag → Bag LBag is the final Bag-coalgebra.

We refer to the formalization of [3] for a proof of Corollary 22.
Iterated application of Corollary 20 and Theorem 2 shows that ∥Bagn 1∥2 is equivalent

to FMSetn 1 for all n (IterTruncBagFMSetEquiv). One might wonder whether similarly the
set-truncation of LBag delivers the final coalgebra of FMSet. We are able to show that ∥LBag∥2
is a fixpoint of FMSet. But to prove finality, we require the additional assumption of the
axiom of choice and a “higher” version AC3,2 of the axiom of choice [26, Exercise 7.8],2 which
states that for a set X and a groupoid-valued type family Y on X, the following type is
inhabited: ((x : X)→ ∥Y x∥2)→ ∥(x : X)→ Y x∥2.

▶ Theorem 23 (FMSetFixpointTruncBagLim). The set-truncation of LBag is a fixpoint of
FMSet, i.e. there is an equivalence FMSet ∥LBag∥2 ≃ ∥LBag∥2.

Proof. The equivalence is obtained from the composition

FMSet ∥LBag∥2
α≃ FMSet LBag

β
≃ ∥Bag LBag∥2

γ
≃ ∥LBag∥2

where α is invariance of FMSet under set-truncation (Theorem 2), β follows from Corollary 20,
and γ follows from Theorem 21. ◀

Let coalgFMSet be the coalgebra underlying the equivalence of Theorem 23.

▶ Theorem 24 (FMSetFinalCoalgebra). Assuming axiom of choice and AC3,2, ∥LBag∥2 is
the final coalgebra of FMSet in the category of sets.

Proof. Let c : X → FMSet X be a coalgebra, which by Corollary 20 is equivalent to
having a function c′ : X → ∥Bag X∥2. Applying AC3,2 on c′ gives c′′ : ∥X → Bag X∥2.
Invoking rec∥X→Bag X∥2

on c′′, we receive g : X → Bag X. From the finality of LBag in
Corollary 22, there exists a unique Bag-coalgebra morphism f∗ : X → LBag and we define
f x =df |f∗ x|2. The function f is the desired unique FMSet-coalgebra morphism between
(X, c) and (∥LBag∥2, coalgFMSet). The proof of uniqueness uses an application of the axiom of
choice. We refer to the formalization for details. ◀

In the absence of the axiom of choice and AC3,2, the type ∥LBag∥2 can still be used to give
semantics to transition systems with finite set of states.

▶ Proposition 25 (uniqueCoalgMorphismFinCarrier). Given any n : N and a coalge-
bra c : Fin n→ FMSet(Fin n), there exists a unique coalgebra morphism from (Fin n, c) to
(∥LBag∥2, coalgFMSet).

This is true since AC3,2 holds when X is equivalent to Fin n, it follows from the “finite choice”
principle in Lemma 1. The particular instance of the axiom of choice used in the proof of
Theorem 24 also holds when X ≃ Fin n.

2 We use 0-based indexing of h-levels, while [26] uses −2-based indexing, so our AC3,2 is their AC1,0.

ITP 2023

README.html#isLimitPreservingBag
README.html#IterTruncBagFMSetEquiv
README.html#FMSetFixpointTruncBagLim
README.html#FMSetFinalCoalgebra
README.html#uniqueCoalgMorphismFinCarrier

20:16 Constructive Final Semantics of Finite Bags

7 Other Analytic Functors

The formulation FMSet of the finite bag functor exposes this as an analytic functor [15, 12],
which differs from a polynomial functor in that the type of tuples Fin n→ X is quotiented by
the relation induced by the action of the symmetric group on Fin n. Other analytic functors
arise by choosing a different subgroup of the symmetric group. For example, picking the
subgroup of cyclic permutations delivers the functor of cyclic lists, while taking the trivial
subgroup allows us to recover the list functor.

In type theory analytic functors can be seen as instances of the functors associated to the
quotient containers of Abbott et al. [1]. A quotient container is a triple consisting of a type
A, a family B : A→ Type and a propositionally-valued family P : ∀{a}. B a ≃ B a→ Type
closed under identity, inverses and composition of equivalences. The associated functor is:

FA,B,P X =df
∑

(a : A). (B a→ X) /2 Act P a

where the relation Act P a is

Act P a v w =df ∃(σ : B a≃B a). P σ × (v = w ◦ σ)

The type FA,B,P X is a set whenever the type of shapes A is a set. The functor FMSet
corresponds to the instance where A =df N, B =df Fin and P σ =df 1.

We know that the construction of the final coalgebra as an ω-limit in the category of
sets for a general analytic functor FA,B,P is constructively problematic, since it is already
problematic for FMSet. Nevertheless, one can ask if a result like Theorem 11 is valid for
any FA,B,P . We do not know how to generally define a section for the function presF :
FA,B,P (limn(Fn

A,B,P 1)) → limn(F1+n
A,B,P 1). But we believe the surjectivity of presF to be

provable under the assumption of the axiom of countable choice. The proof of Theorem 11
relies on Propositions 4 and 5, which are very specific properties of the finite bag functor.
The employment of these propositions can be seen as the invocation of two specific instances
of the axiom of countable choice, which happen to hold in the case of FMSet.

Each quotient container (A, B, P) also specifies a polynomial functor GA,B,P valued in
groupoids, akin to the functor Bag. First, the small HIT construction of the groupoid of
finite types Bij can be generalized:

a : A
obj a : UA,B,P

a : A α : Ba≃Ba p : P α

hom α p : obj a = obj a

a : N α, β : B a≃B a p : P α q : P β

hom (β ◦ α) (Pcomp p q) = hom α p • hom β q isGroupoid UA,B,P

Above Pcomp is the closure of P with respect to composition of equivalences. It is possible
to prove that hom also preserves identities and inverses. When B is valued in sets, there is a
function ⟨−⟩ : UA,B,P → Type extracting a set, so that ⟨obj a⟩=df B a. The functor GA,B,P is

GA,B,P X =df
∑

(x : UA,B,P). ⟨x⟩ → X

Since GA,B,P is a polynomial functor, its final coalgebra can be constructed as an ω-limit,
as in Theorem 21 and Corollary 22. We conjecture that the latter can be related to
FA,B,P similarly to how Bag and FMSet are related via Corollary 20: if B is injective, then
∥GA,B,P X∥2 ≃ FA,B,P X. Notice that Fin is an injective type family, which the proof of
Bij ≃ FinSet (Proposition 18) crucially depends on.

P. Joram and N. Veltri 20:17

8 Conclusions

We looked at various definitions of the finite bag functor, valued in sets and in groupoids,
and constructions of their final coalgebras. When working with set-based definitions, the
set-theoretic constructions as ω-limit of the terminal chain in (3) and as quotient of the final
List-coalgebra are not directly replicable in HoTT, since they imply the validity of classical
principles like LLPO. We are at least able to salvage the weak preservation of the ω-limit.
The situation is brighter when working with the groupoid-based definition. The latter is a
polynomial functor, thus has the final coalgebra given by the ω-limit of the terminal chain.

Our conclusion is in line with the one of Kock [16] and Finster et al. [10]: the bag functor
is better behaved when valued in groupoids instead of sets, especially from the perspective of
final semantics. This seems to indicate that the denotational semantics of “resource-sensitive”
computations is better performed using groupoids instead of sets (switching from categorical
to bicategorical semantics). In particular, the syntax of process calculi such as CCS, or term
calculi for linear logic, could be defined directly as a groupoid, i.e. structural congruences
could be treated as data instead of property. We plan to properly investigate this connection
to programming language semantics in future work, along the lines of [9]. For this endeavor,
it will also be necessary to study the final coalgebra of combinations of the bag functor with
other functors e.g. formalizing the presence of labels or actions in the transition relation.

Cubical Agda allows the definition of coinductive types with HITs appearing in the
codomain of destructors. For example, it is possible to define the following coinductive
record:

record cLim -FCM : Type where
coinductive
field

unfold : FCM cLim -FCM

It is moreover possible to prove that this type is the final coalgebra of the set-based finite bag
functor. The proof is similar to the one given for the finite powerset functor [29, Theorem
2]. Definitions such as cLim-FCM are an experimental feature of Cubical Agda, since the
interaction of coinductive types and HITs has not yet been investigated (only for some M-
types [30], which are definable internally in HoTT anyway). We believe that such definitions
could be motivated by looking at recent work by Kristensen et al. [18], which seems to
indicate that the final coalgebra of functors with action on objects given as a HIT, such as
FCM, should be definable as the strict ω-limit of the chain in (3) in the cubical set model.
Strictness means that the limit-property holds on the nose, not only up-to path equality.

References

1 Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Constructing poly-
morphic programs with quotient types. In Dexter Kozen and Carron Shankland, editors, Proc.
of 7th Int. Conf. on Mathematics of Program Construction, MPC’04, volume 3125 of LNCS,
pages 2–15. Springer, 2004. doi:10.1007/978-3-540-27764-4_2.

2 Jirí Adámek and Václav Koubek. On the greatest fixed point of a set functor. Theoretical
Computer Science, 150(1):57–75, 1995. doi:10.1016/0304-3975(95)00011-K.

3 Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in Homotopy
Type Theory. In Thorsten Altenkirch, editor, Proc. of 13th Int. Conf. on Typed Lambda
Calculi and Applications, TLCA’15, volume 38 of LIPIcs, pages 17–30. Schloss Dagstuhl, 2015.
doi:10.4230/LIPICS.TLCA.2015.17.

ITP 2023

https://doi.org/10.1007/978-3-540-27764-4_2
https://doi.org/10.1016/0304-3975(95)00011-K
https://doi.org/10.4230/LIPICS.TLCA.2015.17

20:18 Constructive Final Semantics of Finite Bags

4 Michael Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science,
114(2):299–315, 1993. doi:10.1016/0304-3975(93)90076-6.

5 Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory. Journal of
Functional Programming, 13(2):261–293, 2003. doi:10.1017/S0956796802004501.

6 Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. Cambridge
University Press, 1987. doi:10.1017/cbo9780511565663.

7 Paolo Capriotti, Nicolai Kraus, and Andrea Vezzosi. Functions out of higher truncations.
In Stephan Kreutzer, editor, Proc. of 24th EACSL Ann. Conf. on Computer Science Logic,
CSL’15, volume 41 of Leibniz International Proceedings in Informatics, pages 359–373. Schloss
Dagstuhl, 2015. doi:10.4230/LIPICS.CSL.2015.359.

8 Vikraman Choudhury and Marcelo Fiore. Free commutative monoids in homotopy type
theory. In Proc. of 38th Conf. on Mathematical Foundations of Programming Semantics
(MFPS XXXVIII), volume 1. Centre pour la Communication Scientifique Directe (CCSD),
2023. doi:10.46298/entics.10492.

9 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. Symmetries in reversible program-
ming: from symmetric rig groupoids to reversible programming languages. Proc. of the ACM
on Programming Languages, 6(POPL):1–32, 2022. doi:10.1145/3498667.

10 Eric Finster, Samuel Mimram, Maxime Lucas, and Thomas Seiller. A cartesian bicategory of
polynomial functors in homotopy type theory. In Ana Sokolova, editor, Proc. of 37th Conf.
on Mathematical Foundations of Programming Semantics, MFPS’21, volume 351 of EPTCS,
pages 67–83, 2021. doi:10.4204/EPTCS.351.5.

11 Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide. Finite sets in
homotopy type theory. In June Andronick and Amy P. Felty, editors, Proc. of 7th ACM
SIGPLAN Int. Conf. on Certified Programs and Proofs, CPP’18, pages 201–214. ACM, 2018.
doi:10.1145/3167085.

12 Ryu Hasegawa. Two applications of analytic functors. Theoretical Computer Science, 272(1-
2):113–175, 2002. doi:10.1016/S0304-3975(00)00349-2.

13 Ichiro Hasuo, Kenta Cho, Toshiki Kataoka, and Bart Jacobs. Coinductive predicates and final
sequences in a fibration. In Dexter Kozen and Michael W. Mislove, editors, Proc. of the 29th
Conf. on the Mathematical Foundations of Programming Semantics, MFPS’13, volume 298 of
ENTCS, pages 197–214. Elsevier, 2013. doi:10.1016/j.entcs.2013.09.014.

14 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016. doi:10.1017/CBO9781316823187.

15 André Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative,
pages 126–159. Springer Berlin Heidelberg, 1986. doi:10.1007/bfb0072514.

16 Joachim Kock. Data Types with Symmetries and Polynomial Functors over Groupoids. In
Ulrich Berger and Michael Mislove, editors, Proc. of 28th Conf. on Mathematical Foundations
of Programming Semantics, MFPS’12, volume 286 of ENTCS, pages 351–365. Elsevier, 2012.
doi:10.1016/j.entcs.2013.01.001.

17 Nicolai Kraus, Martín Escardó, Thierry Coquand, and Thorsten Altenkirch. Notions of
Anonymous Existence in Martin-Löf Type Theory. Logical Methods in Computer Science,
13(1), 2017. doi:10.23638/LMCS-13(1:15)2017.

18 Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. Greatest
HITs: Higher inductive types in coinductive definitions via induction under clocks. In Christel
Baier and Dana Fisman, editors, Proc. of 37th Ann. ACM/IEEE Symp. on Logic in Computer
Science, LICS’22, pages 42:1–42:13. ACM, 2022. doi:10.1145/3531130.3533359.

19 Paul Blain Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor, Proc. of
14th Int. Conf on Foundations of Software Science and Computational Structures, FoSSaCS’11,
volume 6604 of LNCS, pages 27–41. Springer, 2011. doi:10.1007/978-3-642-19805-2_3.

20 Nuo Li. Quotient types in type theory. PhD thesis, University of Nottingham, UK, 2015. URL:
http://eprints.nottingham.ac.uk/28941/.

https://doi.org/10.1016/0304-3975(93)90076-6
https://doi.org/10.1017/S0956796802004501
https://doi.org/10.1017/cbo9780511565663
https://doi.org/10.4230/LIPICS.CSL.2015.359
https://doi.org/10.46298/entics.10492
https://doi.org/10.1145/3498667
https://doi.org/10.4204/EPTCS.351.5
https://doi.org/10.1145/3167085
https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1016/j.entcs.2013.09.014
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1007/bfb0072514
https://doi.org/10.1016/j.entcs.2013.01.001
https://doi.org/10.23638/LMCS-13(1:15)2017
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1007/978-3-642-19805-2_3
http://eprints.nottingham.ac.uk/28941/

P. Joram and N. Veltri 20:19

21 Mark Mandelkern. Constructively complete finite sets. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 34(2):97–103, 1988. doi:10.1002/malq.19880340202.

22 Stefano Piceghello. Coherence for Monoidal and Symmetric Monoidal Groupoids in Homotopy
Type Theory. PhD thesis, University of Bergen, Norway, 2021. URL: https://hdl.handle.
net/11250/2830640.

23 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

24 Kristina Sojakova. Higher Inductive Types as Homotopy-Initial Algebras. PhD thesis, Carnegie
Mellon University, USA, 2016. URL: http://reports-archive.adm.cs.cmu.edu/anon/anon/
usr0/ftp/home/ftp/2016/CMU-CS-16-125.pdf.

25 The agda/cubical development team. The agda/cubical library, 2018. URL: https://
github.com/agda/cubical/.

26 The Univalent Foundations Program. Homotopy type theory: Univalent foundations of
mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

27 Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In
Proc. of 12th Ann. IEEE Symp. on Logic in Computer Science, LICS’97, pages 280–291. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614955.

28 Niccolò Veltri and Niels van der Weide. Constructing higher inductive types as groupoid
quotients. Logical Methods in Computer Science, 17(2), 2021. doi:10.23638/LMCS-17(2:
8)2021.

29 Niccolò Veltri. Type-theoretic constructions of the final coalgebra of the finite powerset functor.
In Naoki Kobayashi, editor, Proc. of 6th Int. Conf. on Formal Structures for Computation
and Deduction, FSCD’21, volume 195 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl, 2021.
doi:10.4230/LIPICS.FSCD.2021.22.

30 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed
programming language with univalence and higher inductive types. Proc. of the ACM on
Programming Languages, 3(ICFP):1–29, 2019. doi:10.1145/3341691.

31 Vladimir Voevodsky. An experimental library of formalized mathematics based on the
univalent foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.
doi:10.1017/s0960129514000577.

32 James Worrell. On the final sequence of a finitary set functor. Theoretical Computer Science,
338(1-3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009.

33 Brent Yorgey. Combinatorial Species and Labelled Structures. PhD thesis, University of
Pennsylvania, 2014. URL: http://ozark.hendrix.edu/~yorgey/pub/thesis.pdf.

34 Brent A. Yorgey. Species and functors and types, oh my! In Jeremy Gibbons, editor, Proc. of
3rd ACM Symp. on Haskell, Haskell’10, pages 147–158. ACM, 2010. doi:10.1145/1863523.
1863542.

ITP 2023

https://doi.org/10.1002/malq.19880340202
https://hdl.handle.net/11250/2830640
https://hdl.handle.net/11250/2830640
https://doi.org/10.1016/S0304-3975(00)00056-6
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/home/ftp/2016/CMU-CS-16-125.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/home/ftp/2016/CMU-CS-16-125.pdf
https://github.com/agda/cubical/
https://github.com/agda/cubical/
https://homotopytypetheory.org/book
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.23638/LMCS-17(2:8)2021
https://doi.org/10.23638/LMCS-17(2:8)2021
https://doi.org/10.4230/LIPICS.FSCD.2021.22
https://doi.org/10.1145/3341691
https://doi.org/10.1017/s0960129514000577
https://doi.org/10.1016/j.tcs.2004.12.009
http://ozark.hendrix.edu/~yorgey/pub/thesis.pdf
https://doi.org/10.1145/1863523.1863542
https://doi.org/10.1145/1863523.1863542

	1 Introduction
	2 Type Theory and Cubical Agda
	3 The Finite Bag Functor in Sets
	3.1 As the Free Commutative Monoid
	3.2 As a Quotient of Lists
	3.3 As an Analytic Functor
	3.4 Equivalence of Presentations
	3.5 Definable Quotients and Sorting

	4 The Final Coalgebra in Sets
	4.1 As an ω-Limit
	4.2 As a Quotient of the Final List-Coalgebra

	5 The Finite Bag Functor in Groupoids
	6 The Final Coalgebra in Groupoids
	7 Other Analytic Functors
	8 Conclusions

