
Group Cohomology in the Lean Community Library
Amelia Livingston #

King’s College London, UK

Abstract
Group cohomology is a tool which has become indispensable in a wide range of modern mathematics,
like algebraic geometry and algebraic number theory, as well as group theory itself. For example,
it allows us to reformulate classical class field theory in cohomological terms; this formulation is
essential to landmarks of modern number theory, like Wiles’s proof of Fermat’s Last Theorem. We
explore the challenges of formalising group cohomology in the Lean theorem prover in a generality
suitable for inclusion in the community library mathlib.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Type theory

Keywords and phrases formal math, Lean, mathlib, group cohomology, homological algebra

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.22

Supplementary Material Software: https://github.com/101damnations/ITP2023SupplementaryM
aterial, archived at swh:1:dir:d647ad13fc6cc27a6fe9f3b49691d0e1716a532c

Funding This work was supported by the Engineering and Physical Sciences Research Council
[EP/S021590/1]. The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The
London School of Geometry and Number Theory), University College London

Acknowledgements I am very grateful to Kevin Buzzard for his ongoing mathematical and Lean-
related support and guidance. I am also indebted to Joël Riou for his explanation of the simplicial
interpretation of group cohomology and his thorough reviewing of and advice regarding my work,
and for his formalisation of some of the results I used. I also depended heavily on Scott Morrison’s
development of Lean’s representation theory library and the category theory library more generally.
Finally, thanks to anyone who answered my questions on the Xena Project Discord server and the
Lean Zulip.

1 Introduction

1.1 Motivating group cohomology
There are many cohomology theories in mathematics. They associate simpler, “linear”
invariants (vector spaces, or more generally modules, and linear maps between them) to
more complicated objects, and analysing these invariants can answer questions about the
complicated objects.

We want a cohomology theory for groups. They are ubiquitous in maths. Groups
themselves often appear as invariants of more complex objects: we can study a topological
space by studying its fundamental group, or field extensions by their Galois groups, or rings
by their K-groups in algebraic K-theory. But they are still more complicated than “linear”
invariants, and abstract group theory itself is not easy. The simpler invariants we obtain in
group cohomology come from asking how a group acts on other objects, rather than analysing
it internally.

This is the spirit of group cohomology – but there are multiple ways to actually define it.
This is often the case in maths, and different definitions lend themselves to different exploits.
There might be a particularly abstract formulation, expressing a concept as a special case of
some more general category-theoretic notion. This perspective tends to give us access to

© Amelia Livingston;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ucahali@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.ITP.2023.22
https://github.com/101damnations/ITP2023SupplementaryMaterial
https://github.com/101damnations/ITP2023SupplementaryMaterial
https://archive.softwareheritage.org/swh:1:dir:d647ad13fc6cc27a6fe9f3b49691d0e1716a532c;origin=https://github.com/101damnations/ITP2023SupplementaryMaterial;visit=swh:1:snp:d67f5e53e37ef06282c3c3f2d2aa2493eb9845ac;anchor=swh:1:rev:8bd396d88bc3e82f94243e1d9de2834887a5bdc7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Group Cohomology in the Lean Community Library

powerful techniques for developing theory. But because the tools come from a more general
setting, they are not specialised for the computation of examples, or for proving theorems
that depend on the specificities of our situation. For these, we need a different, more down
to earth approach, which will necessarily vary from setting to setting.

Because cohomology theories typically have a similar abstract foundation, there are many
cohomological examples of this abstraction versus practicality dichotomy. For example,
in algebraic topology, we find a variety of ways to compute singular cohomology, e.g. via
simplicial, cellular or de Rham cohomology. More generally, we can calculate sheaf cohomology
using Čech cohomology.

The situation is no different for group cohomology. Given a group G acting on an abelian
group M, group cohomology is a family of groups Hn(G, M) for n ∈ N. Mathematicians
have analysed the groups of low degree, i.e. for n ≤ 2, via explicit calculation since before
“group cohomology” was a term [14, p. 10]. For example, H1 appears in Hilbert’s Theorem
90, originally proved by Kummer in 1855 [8, p. 213]; among many other applications, this
result parametrises the solutions to certain Diophantine equations [7, p. 3]. Meanwhile, H2

classifies group extensions, as explained by Baer and others in the early 20th century [14, p.
10]. Given an abelian group A and another group G, this means classifying the groups E

having A as a normal subgroup and such that E/A ∼= G, revealing the ways in which bigger
groups can be built from smaller ones.

On the other hand, the abstract story, which was developed in the mid-20th century [14,
p. 11–12], gave us more tools to analyse Hn(G, M) for arbitrary n, and explore relationships
between these groups as n, G and M vary, via homological techniques. It also connects group
cohomology to topological cohomology. Thus we wish to formalise both the abstract and
concrete approaches, and prove their equivalence. This equivalence is the focus of the paper.

1.2 Lean and mathlib

Lean is an interactive theorem prover that uses dependent type theory; every “object” in
Lean is a term of a unique type. A Lean file mainly consists of definitions, lemmas and
theorems, which the user must prove with the assistance of tactics that provide some degree
of automation. We will meet some tactics and structural features of Lean during the paper,
but try to explain these with as little code as possible. When this is unreasonable, we provide
links to Lean files, indicated with the symbol �, which illustrate details in more depth. An
archive containing saved versions of the non-permanent links in the paper can be found at �.

Like maths, formalisation is a collaborative process. In order to make progress, we must
make use of work that has been done before; some of this work is collected in a library called
mathlib �. The library comprises folders for each mathematical subfield, and each file
consists of a collection of definitions and facts, which we call an API, relating to a particular
mathematical concept. But there are typically many ways to formalise the same object, and
it is not always obvious which ways are “right”: which implementation can feasibly be used
in the formalisation of further material. Lean cannot work this out for us; many factors
influence the extensibility of Lean code, and typically we must make an educated guess at
the correct formalisation and potentially refactor when a future user runs into difficulties.
This makes the task of writing mathlib-suitable code significantly harder than code which
just compiles, and the mathlib library has a rigorous community review process to try and
avoid having to refactor new work down the line. There is no algorithm for making sure the
growth of mathlib is sustainable; it seems to require human insight.

Often this is because the library needs to meet the needs of humans. On the one hand, it
should be organised coherently, so the user has some idea of where to find what they need.
On the other hand, APIs should be fleshed out enough that a user does not need to know

https://github.com/101damnations/ITP2023SupplementaryMaterial/tree/c5d659ff3425705c404a87687d4e8294d2941e44
https://github.com/leanprover-community/mathlib/tree/master/src

A. Livingston 22:3

the specific implementation the author chose – to an extent, there should be support for
any other user imagining a different implementation. It seems to the author that these aims
can conflict.

But not all challenges in mathlib design are due to the limitations of humans. One
reason for this is the complexity of the algebraic hierarchy (a portion of which can be seen
in [10, p. 4]). Everything in mathlib should be stated in the maximum possible generality
within this hierarchy, so that it can be used in any setting in which it applies. In simple
examples this is easy to ensure – it is not hard to check if a lemma about groups actually
applies to monoids too.

In more complicated settings, however, the pursuit of generality is less straightforward.
Firstly, it often means needing to create more new API than previously anticipated: it took a
surprisingly long time for real manifolds to enter mathlib, as contributors needed to develop
a wide variety of more general material, like the Bochner integral. But this is not the only
difficulty. In principle, abstraction should simplify code – but of course we will need to apply
the general material to more specific situations, and this is where complexity arises. For
instance, in our simple example, a lemma about groups becomes a lemma about monoids
which we are applying to a group, so we have to use something extra: the fact that a group
is a monoid. Obviously, this is fine. But the many iterations of this principle in complicated
settings has been a factor in most of the challenges in this project, as it can slow Lean down
and make errors more difficult to troubleshoot.

The project has taken a long time to develop considering its mathematical simplicity.
The author has now contributed two definitions of group cohomology to mathlib, as well as
proof of their equivalence. This required 10 sizeable pull requests, and often the material
had been rewritten to increasing degrees of abstraction. The paper will illustrate in detail
the development of this code.

Section 2 explains the essentials of the maths we wish to formalise, and explores some
fundamental design decisions and Lean principles. Section 3 describes our formal version of
a key object called the standard resolution, and Section 4 discusses how we use this object
to define group cohomology in Lean. In Section 5 we conclude and detail the future of the
project: the author is currently using the definitions explained to create further API and
prove various group cohomological results, although the code is not yet prepared enough for
presentation.

2 Preliminaries

2.1 Mathematical background
▶ Definition 1. Given an abelian category C (for example, the category of abelian groups, or
the category of modules over a ring) a cochain complex X in C indexed by N is a sequence

0 → X0
d0−→ X1

d1−→ . . .
dn−1−−−→ Xn

dn−→ . . .

of objects Xn ∈ C and morphisms dn : Xn → Xn+1, n ∈ N, satisfying dn+1 ◦ dn = 0 for all n.

We call the morphisms differentials. The condition dn+1 ◦ dn = 0 means the image of dn is
contained in the kernel of dn+1, allowing us to define

▶ Definition 2. The nth cohomology of X, Hn(X), is Ker(dn)/Im(dn−1).

A chain complex is the same, but with the morphisms in the other direction: dn is a
morphism Xn+1 → Xn, and the analogous invariant is called homology, denoted Hn(X).

ITP 2023

22:4 Group Cohomology in the Lean Community Library

With this, we can explain the abstract and concrete perspectives on group cohomology,
starting with the latter. The material can be found here [2, Chapter 4].

Given a group G, we call an additive commutative group M a G-module if it has a
map · : G × M → M satisfying gh · m = g · h · m for g, h ∈ G, m ∈ M and which also
distributes over addition, i.e. g · (m + n) = g · m + g · n for g ∈ G, m, n ∈ M.

▶ Definition 3. The nth group cohomology of G and M, denoted Hn(G, M), is the nth
cohomology of the cochain complex

0 → M → Fun(G, M) → Fun(G2, M) → Fun(G3, M) → . . . (1)

where Fun(Gn, M) is the set of functions from Gn to M, and the differential dn maps
f : Gn → M to the function sending (g0, . . . , gn) to

g0 · f(g1, . . . , gn) +
n−1∑
i=0

(−1)i+1f(g0, . . . , gigi+1, . . . , gn) + (−1)n+1f(g0, . . . , gn−1)

(and d0(m) = (g 7→ g · m − m)).

The differential is slightly messy, but this is the formulation that in some sense “shows up in
nature”; for example, it makes clearer the correspondence between H2(G, M) and certain
equivalence classes of group extensions. We call the Fun(Gn, M) inhomogeneous cochains.

The abstract perspective, meanwhile, is often introduced in a category of modules over a
ring, rather than in the category of G-modules (where morphisms are group homomorphisms
satisfying f(g · x) = g · f(x) for all g ∈ G). Like mathlib , the average undergraduate student
contains a far larger API for modules than for other concrete abelian categories, so when
explaining group cohomology it is natural to exploit the equivalence between the category of
G-modules and the category of modules over the following ring:

▶ Definition 4. The group ring Z[G] is the free abelian group on G (functions G → Z
which are nonzero at finitely many elements of G), with multiplication induced by that of G.

We denote its elements as sums
∑

nigi for ni ∈ Z, gi ∈ G. We can inject G into Z[G] by
sending g to the function which is 1 at g and 0 everywhere else; we will often abuse notation
and just denote this function by g.

Given this category equivalence G-Mod ∼= Z[G]-Mod, we can express group cohomology
as objects called Ext groups. Ext is an example of a derived functor; these are abstract
objects equipped with high-powered theory and are useful in many algebraic fields of maths.
We summarise their definition; the material can be found in [13, Chapters 1, 2].

▶ Definition 5. A morphism of chain complexes f : X → Y is a family of morphisms
fn : Xn → Yn making the resulting diagram commute – that is, dY

n ◦ fn+1 = fn ◦ dX
n for each

n.

A chain complex morphism induces maps on each homology group H(fn) : Hn(X) → Hn(Y);
we call f a quasi-isomorphism if each H(fn) is an isomorphism. Analogous definitions can
be made for morphisms of cochain complexes and cohomology.

To analyse an object X in an appropriate category C, we can sometimes associate to it a
chain complex of simpler objects, called a “resolution” of X, and study that instead. More
precisely:

▶ Definition 6. A projective resolution of X is a chain complex P and a
quasi-isomorphism of chain complexes f : P → X[0] such that each Pn is projective (a
certain “nice” property).

A. Livingston 22:5

By X[0] we mean the complex whose 0th object is X, with every other object 0. All the fn

for n > 0 are necessarily 0. The requirement that f is a quasi-isomorphism means Hn(P)
must be trivial for all n > 0; we say P is exact except at the right.

When we analyse what certain “nice” functors F do to X, we can learn more by applying
them to all of P, and then taking the (co)homology of the resulting complex, which in general
will no longer be trivial. However, due to the conditions in the definition of a projective
resolution, H0(F (P)) will always be isomorphic to F (X), so we do not lose information.
The Hn(F (P)) are independent of the projective resolution chosen, and can be extended to
functors; we call them the derived functors of F.

Given an object Y, one such F is Hom(−, Y). This functor is contravariant, meaning it flips
the directions of maps: a map ϕ : X1 → X2 is sent to the map Hom(X2, Y) → Hom(X1, Y)
given by precomposition with ϕ. Because of this contravariance, the functor sends a chain
complex to a cochain complex, giving us

0 → Hom(P0, Y) − ◦ d0−−−−→ Hom(P1, Y) − ◦ d1−−−−→ Hom(P2, Y) → . . .

▶ Definition 7. For P a projective resolution of X, the nth cohomology of the above complex
is called Extn(X, Y). It is independent of the resolution chosen.

Now, returning to group cohomology, we can appeal to the undergraduate’s module API to
observe that

Fun(Gn, M) ∼= HomZ(Z[Gn], M)
∼= HomZ[G](Z[G], HomZ(Z[Gn], M)) ∼= HomZ[G](Z[G] ⊗Z Z[Gn], M) (2)

Here HomR denotes morphisms in the category of R-modules, and the Z[G]-module structure
on Z[G] ⊗Z Z[Gn] is given by x · (y ⊗ z) = xy ⊗ z.

This isomorphism suggests that our concrete group cohomology groups are actually Ext
groups of some sort. Indeed, the modules Z[G] ⊗Z Z[Gn] are not just projective, but free, a
stronger property. A free module is a module with a basis; for example, a vector space is a
module over a field, and since all vector spaces have a basis, every module over a field is free.
Since the Z[Gn] are free Z-modules, the Z[G] ⊗Z Z[Gn] are free Z[G]-modules, and hence
projective. We will also apply an isomorphism Z[G] ⊗Z Z[Gn] ∼= Z[Gn+1]; for our concrete
group cohomology to agree with certain Ext groups, we then seek a projective resolution
whose nth object is Z[Gn+1]. Indeed:

▶ Definition 8. The standard resolution is the chain complex

. . .
d2−→ Z[G3] d1−→ Z[G2] d0−→ Z[G] → 0 (3)

with differential sending g = (g0, . . . , gn) ∈ Gn+1 to

n+1∑
j=0

(−1)j(g0, . . . , gj−1, gj+1, . . . , gn).

The cokernel of d0, i.e. Z[G]/Im(d0), is Z. Indeed, this is a projective resolution of Z
considered as a trivial Z[G]-module – that is, g · m = m for each g ∈ Z[G], m ∈ Z. We will
use this resolution to show that the nth group cohomology of M is in fact Extn

Z[G](Z, M),
and thus connect the concrete and abstract interpretations of group cohomology.

ITP 2023

22:6 Group Cohomology in the Lean Community Library

2.2 Initial formalisation considerations
There are many respects in which our formalisation is not a direct translation of the maths
just outlined. To start explaining the code, we must address the more fundamental of these,
which appear at every point in the project.

2.2.1 Complexes in Lean
We first explain the mathlib definition of complexes, which is a little counterintuitive, and
which illustrates one of the Lean community’s adaptations to the quirks of dependent type
theory.

We first note that complexes in Lean have always permitted a more general indexing
type than N, and although the issues we will detail can also arise for N, the most natural
examples are for Z.

If we followed our nose, our definition of a cochain complex in Lean would involve a
function X: Z → C and a function d sending n ∈ Z to a morphism X(n) → X(n + 1). This
is essentially how complexes were originally formalised, and is fine in set theory, but not
when we translate to dependent type theory. For example, when C is the category of abelian
groups, we might want to know whether a term x : X(n) is in the image of the differential.
But the type of this differential, according to our setup, is d: X(n - 1) → X(n - 1 + 1).
Of course, n − 1 + 1 is equal to n, but the problem is that type theory has multiple notions
of equality.

The simplest one is syntactic equality: two objects are syntactically equal if they are “the
same characters in the same order”. A = A is a syntactic equality. Next we have definitional
equality – when, after unfolding definitions, two objects reduce to being syntactically equal:

def X : N := 5
def Y : N := 5
example : X = Y := rfl

where rfl proves the statement by unfolding the definitions of X and Y and applying
reflexivity of equality. We note that not all tactics unfold terms like rfl. Given an equality
or an iff statement whose lefthand side is syntactically equal to something in the goal, the
rewrite and simp tactics can replace that expression in the goal with the righthand side of
the equality/iff statement. The “simplifier” tactic simp is an example of Lean’s automation:
it searches through all lemmas tagged @[simp], looking for statements whose lefthand side
is syntactically equal to something in the goal, and then rewrites those lemmas. If it were to
unfold terms as well as search its library, it would perhaps be rendered uselessly slow.

Finally, we have propositional equality: when two objects can be proved to be equal. For
example:

example (a : N) : a + 0 = a := rfl -- succeeds
example (a : N) : 0 + a = a := rfl -- fails

since N is an inductive type, and addition is defined by induction on the second variable,
not the first; we can prove the second statement by inducting on a, at which point we can
appeal to definitional equalities. Hence the first statement is a definitional equality, and the
second only a propositional equality.

Thus our issue is that n − 1 + 1 is not definitionally equal to n; its proof is the lemma
int.sub_add_cancel. And in dependent type theory, everything is a term of a unique type;
d(y) cannot have type X(n - 1 + 1) and type X(n) simultaneously. If n − 1 + 1 had been

A. Livingston 22:7

definitionally equal to n, Lean could unify X(n - 1 + 1) and X(n) by unfolding definitions,
but since these expressions are only propositionally equal, the statement d(y) = x will not
typecheck.

We can, of course, compose with an isomorphism X(n - 1 + 1) ∼= X(n); this is the
approach taken in Domínguez and Rubio’s formalisation of chain complexes in Coq [4, p.
6]. The UniMath library also uses the intuitive definition of chain complexes �, since the
univalence axiom means that such an isomorphism is equivalent to an equality. We note that
in simple type theory, meanwhile, one must take a different approach: Isabelle/HOL defines
exact sequences inductively as a certain kind of set of pairs of objects and functions �.

However, carrying around these extra isomorphisms is unwieldy (in Lean, at least), and
to deduce things about the resulting maps the user must prove heterogeneous equalities:
equalities between terms of different types, denoted == .

Discussion here � concerns similar issues raised by commutative differential graded
algebras. Over a commutative ring R, these are families of R-modules An indexed by N
with, among other things, a family of R-bilinear “multiplication” maps Ai × Aj → Ai+j for
i, j ∈ N satisfying certain axioms. But the natural statement of associativity, for example,
does not typecheck.

Ultimately, for complexes, the Lean community settled on a different implementation:
define cochain complexes (and chain complexes) to have a differential between every pair of
indices i, j, and require a proof that these are equal to 0 unless i + 1 = j, as well as a proof
that any two differentials compose to give zero. This was first suggested by Johan Commelin
here � on March 9th, 2021. Whilst this definition seems strange, it means we only have
to identify non-definitionally equal types or check i + 1 = j during proofs, and not when
defining data. This is much easier to work with, as demonstrated here �: we can use the
cases tactic on hypotheses like i + 1 = j and replace the lefthand side with the right in the
types involved in the goal. The definition of complexes was refactored to use this approach
in 2021, by Scott Morrison, in this pull request �.

2.2.2 The right generality
Secondly, when we apply the mathlib tenet of maximum generality, we notice something:
our exposition of group cohomology all works if we replace Z by an arbitrary commutative
ring k, and ask that M is a k[G]-module, where k[G] is defined analogously to Z[G]; the rest
of this paper will always use general k. We made a choice here – the alternative would be to
continue developing the theory over Z, and then just tensor with k when we want a more
general result [12, Tag 0DVD]. Likewise, we could define additive commutative groups as
the special case of k-modules when k = Z. The “hierarchy of generality” seems to contain
cycles. In this latter case it is easier to define additive commutative groups on their own,
as the definition of module naturally extends the definition of additive commutative group.
However, in our case the other approach is preferable, as it is simpler to replace Z with k

than to have to involve tensor products.

2.2.3 Exploiting typeclass inference
Thus we are now concerned with the group k-algebra k[G] and k[G]-modules; this raises
further choices. In maths we denote any “scalar-like” action by ·. We can emulate this in Lean
using typeclasses – a strategy also used in other theorem provers, like Agda, Coq and Isabelle
[1, p. 1]. Maths is built from complex hierarchies of structures; typeclasses make it easier to
formalise these hierarchies in an efficient and usable way. They enable us to reuse API for

ITP 2023

https://github.com/UniMath/UniMath/blob/a463f7e0f6ce5fe4422e2a530d73540e5c8baad4/UniMath/HomologicalAlgebra/Complexes.v#L88-L90
https://isabelle.in.tum.de/library/HOL/HOL-Algebra/Exact_Sequence.html
https://leanprover-community.github.io/archive/stream/116395-maths/topic/CDGAs.html
https://leanprover-community.github.io/archive/stream/267928-condensed-mathematics/topic/complexes.2C.20d.2C.20dtt.html
https://github.com/leanprover-community/mathlib/blob/2683beaf0bfcafeeafc1a18548ae21884dcaed51/src/representation_theory/MWEs/cochain_complexes.lean
https://github.com/leanprover-community/mathlib/pull/7473

22:8 Group Cohomology in the Lean Community Library

simple structures when reasoning about more complicated superstructures; for example, we
can use the notation + when dealing with any structure inheriting a has_add instance. Often,
a structure can inherit an instance via multiple different paths, called diamond inheritance.
This is fine when the inherited instances are definitionally equal. For instance, the semiring
instance on a commutative ring coming from the inherited ring instance is definitionally equal
to the one coming from the inherited commutative semiring instance, so it does not matter
which path typeclass inference uses. But in practice, different inheritance paths will not
always lead to definitionally equal instances, and this is problematic. Moreover, whilst concise
notation is an advantage of typeclasses, it can make it harder to see when Lean’s behaviour
is not what we want. In practice we often want to consider multiple different k[G]-actions
on the same object. Here � is an example of two different instances clashing; the action of
k[k×] on itself naturally extending the action of k× on coefficients is not the same as the
action of k[k×] on itself by multiplication. But even two equal instances can conflict. Lean
cannot unify instances that are only propositionally equal: the point of typeclass inference
is to reduce the need to supply arguments explicitly, so we cannot provide a proof to the
inference system of such an equality.

If we have a non-definitionally equal diamond and still wish to exploit typeclass inference,
a possible solution is type aliases: a nickname for a type.

variables (R : Type*) [ring R]
def copy := R -- ‘copy’ is a nickname for ‘R’

If we declare an instance on the type alias, it will not pollute the underlying type. For
example, we can try defining 0 in copy R to be the 1 of the underlying ring:

instance : has_zero (copy R) := ⟨(1 : R)⟩
example : (0 : copy R) = 1 := rfl -- succeeds
example : (0 : R) = 1 := rfl -- fails

Conversely, Lean will not apply instances on the underlying type to the type alias, unless
asked to:

instance : ring (copy R) := infer_instance -- fails
instance : ring (copy R) := by unfold copy; apply_instance -- succeeds

We can also use type aliases to organise API. For any type X and any type k with a 0,
finsupp X k is the type of finitely supported functions X → k. When G is a monoid and k is
a commutative ring, finsupp G k is the k-algebra k[G], with multiplication induced by that
of G – but instead of creating this instance, mathlib defines a type alias monoid_algebra k
G for finsupp G k, on which the k-algebra instance is defined. Hence results and instances
relying on multiplication in G can be organised into the monoid_algebra k G API.

Thus, if we have a k[G]-action on a type M which could create diamonds if we declared it
as an instance, we can instead make a type alias for M, and limit the scope of the instance.

In mathlib’s category theory library, we do something essentially equivalent to using
type aliases constantly, but working in Lean’s category Module (monoid_algebra k G) (i.e.
k[G]-Mod) for our purposes is still tricky. Outside this library, an R-module is 3 different
variables: a term M of type Type*, an additive commutative group instance
[add_comm_group M], and an R-module instance [module R M]. But when we work category-
theoretically, an R-module is one variable: a term M of type Module R, which is a structure
with 3 fields:

https://github.com/leanprover-community/mathlib/blob/2683beaf0bfcafeeafc1a18548ae21884dcaed51/src/representation_theory/MWEs/smul.lean

A. Livingston 22:9

structure Module :=
(carrier : Type v)
[is_add_comm_group : add_comm_group carrier]
[is_module : module R carrier]

meaning the R-module structure on a term M : Module R is built into its type and is
unambiguous. This achieves the same thing as declaring an alias for M, and then only
defining the specific R-module structure we want on the alias.

But for us, even this will not suffice. If we package a G-module M with a compatible
k-module structure as an object in k[G]-Mod, we still want to be able to talk about the
underlying k-module structure, and the natural k-module structure on terms of type
Module (monoid_algebra k G) is not definitionally equal to the k-module structure we
started with, as proved here �.

Instead, we use a further alternative. We bundle our actions of k and G as k-linear
representations of G: a k-module M equipped with a monoid homomorphism M.ρ of
type G → Endk(M), where Endk(M) is the ring of k-linear maps from M to itself. When
developing representation theory, mathlib contributors were unsure whether to define repres-
entations this way, or as objects with a separate k-action and G-action, or as k[G]-modules,
and Antoine Labelle and Eric Wieser vouch for the first definition here � on April 19th,
2022. It is similar to the definition chosen in Coq’s Mathematical Components library �.
This way we only deal with one k-module instance, and the G-action on M is unambiguous.
However, since the action has become an explicit homomorphism M.ρ we cannot use typeclass
inference or the notation ·. This does not even increase the number of arguments we need
to give Lean, though; functions that would otherwise require the arguments k, G, M now
only require M, since M.ρ contains the information of k, G and M in its type. We call the
category Rep k G:

structure Rep (k G : Type u) [comm_ring k] [group G] :=
(V : Module k)
(ρ : G →* End (Module k))

which we will subsequently denote G-Repk. Since this category is equivalent to k[G]-Mod,
it has “enough” projective objects for us to talk about the derived functor Ext. We state
everything in terms of representations.

3 Formalising the standard resolution

Now we are ready to discuss the content of the project. We started by constructing the
standard projective resolution of the trivial k-module k, which we will denote P from now on.
For each n, its nth object is the k-module k[Gn+1] equipped with the representation induced
by the diagonal action of G on Gn+1. The differentials, meanwhile, are easy to define, but
we have to prove that dn ◦ dn+1 = 0 for all n. There is a sense in which this was already in
mathlib; if we can build our resolution abstractly enough to use the mathlib proof, we will
avoid some code duplication. We summarise what this entails.

3.1 Simplicial objects

Our resolution will come from something called a simplicial object, which we now define.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/2683beaf0bfcafeeafc1a18548ae21884dcaed51/src/representation_theory/MWEs/Module.lean
https://leanprover-community.github.io/archive/stream/116395-maths/topic/Representation.20Theory.html
https://math-comp.github.io/htmldoc/mathcomp.character.mxrepresentation.html

22:10 Group Cohomology in the Lean Community Library

▶ Definition 9. The simplex category is the category whose objects are the totally ordered
sets [n] := {0, 1, . . . , n} for n ∈ N, and whose morphisms are the order-preserving functions.

In mathlib we just represent the objects as individual natural numbers; simplex_category
is a type alias for N. The category is generated by the maps δn(i), σn(i), where δn(i) is the
unique order preserving injection [n] → [n + 1] which misses i, and σn(i) is the unique order
preserving surjection [n + 1] → [n] which hits i twice.

▶ Definition 10. A simplicial object in C is a contravariant functor from the simplex
category ∆ to C.

If we apply a simplicial object X to δn(i), we get a map X([n + 1]) → X([n]), which we
call the face maps of X. When C is abelian we can then define the alternating face map
complex associated to X [11, Def 2.6]: a chain complex whose nth object is X([n]) and
whose differential is given by the alternating sum of the face maps

n+1∑
i=0

(−1)i · X(δn(i))

which looks like the differential in our resolution, and also like the boundary maps of a
topological simplicial complex. We then have the proof that this squares to zero � formalised
by Joël Riou, which uses the fact that δn+1(i) ◦ δn(j + 1) = δn+1(j) ◦ δn(i). But why are we
using the term “face”?

This is because any simplicial set X (i.e. simplicial object in Set; we can also view
any of the simplicial objects we will be concerned with as simplicial sets) has a “geometric
realisation” |X| : there is a functor from simplicial sets to the category of compactly-
generated Hausdorff topological spaces. Essentially, we replace the elements of each X([n])
with standard topological n-simplices ∆n, and how they glue together depends on how X

acts on morphisms [5, Section I.2]. This is where the topological interpretation of group
cohomology comes from. We have

Hn(BG,Z) ∼= Hn(G,Z),

[13, Thm 6.10.5], where the lefthand side is the topological cohomology of BG, which is the
classifying space of G: the fundamental group of BG is G and its higher homotopy groups
are trivial. The classifying space BG is the quotient of a contractible space EG by an action
of G, and EG is determined by the structure of G; it is the universal cover of BG.

3.2 Constructing the resolution using EG

Using the comparisons described above between certain topological spaces, simplicial objects
and chain complexes, we can ultimately derive our projective resolution (3) from EG, as
suggested by Joël Riou here �, June 3rd 2022. The author formalised his suggestion; this
approach to the standard resolution ultimately involved more lines of code, but the resulting
formalisation was more suited to mathlib in its abstraction, motivated the creation of more
API for objects like the Čech nerve, and taught the author material. We sketch the maths
involved. Most of the code is here �; anything else is here � or here �. We also provide
links to any key result formalised by someone else (i.e. Joël Riou).

As an overview of the strategy, we will define a simplicial object EG in the category
G-Set (types with an action of G which respects multiplication in G). As a simplicial set, its
geometric realization is the universal cover of BG. We can later “linearise”: compose EG

https://github.com/leanprover-community/mathlib/blob/bd9851ca476957ea4549eb19b40e7b5ade9428cc/src/algebraic_topology/alternating_face_map_complex.lean#L67-L121
https://leanprover-community.github.io/archive/stream/116395-maths/topic/Group.20cohomology.html
https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/representation_theory/group_cohomology_resolution.lean#L238-L467
https://github.com/leanprover-community/mathlib/pull/16258/files
https://github.com/leanprover-community/mathlib/pull/17005/files

A. Livingston 22:11

with the free k-module functor from G-Set to G-Repk. Then, since G-Repk is an abelian
category, we can take the alternating face map complex associated to the resulting simplicial
k-linear G-representation, which will be the standard resolution we seek. As hoped, defining
the resolution using this EG gives us a proof that composition of the differentials equals zero
for free. Moreover, we will show that our resolution is homotopy equivalent to k[0] (the chain
complex with k at 0 and 0 everywhere else) – this will define a quasi-isomorphism – and
again, the simplicial approach gives us a more general proof of this than if we were to prove
it directly. The homotopy equivalence’s topological analogue is the contractibility of |EG|.

With this overview in mind, we explain the process in more detail. Given an appropriate
morphism f in a category, we can define a certain simplicial object C(f) called a Čech nerve.
We first show that for a G-Set X, the Čech nerve of the unique morphism X → ⊤ to the
terminal object (in G-Set, this is the type with 1 term) sends [n] to Xn+1. Now, considering
G as a G-set, acting on itself by left multiplication, EG is the Čech nerve of G → ⊤.

Now, recall that we are not only eventually defining a complex P, but also a morphism
to k[0] which we want to show is a homotopy equivalence. Note that since k[0] is only
nontrivial in degree 0, such a morphism is determined by a map f0 : P0 → k and a proof
that f0 ◦ d0 = 0, where d0 is the last differential in P. Call the data of a chain complex and a
morphism to a complex concentrated in degree 0 an “augmented chain complex”; analogously,
an augmented simplicial object is a simplicial object X plus a morphism from X([0]) to
some object Y satisfying a similar property. In a “nice” enough category, there is a natural
augmentation of any simplicial object through which all other augmentations factor, which
in the case of EG is given by the map G → ⊤.

We have said that P being homotopy equivalent to k[0] corresponds to |EG| being
contractible in the topological world; the analogue of contractibility for a simplicial object
is that its natural augmentation has an extra degeneracy. Given a simplicial object X

augmented by f0 : X([0]) → Y, an extra degeneracy is a family of maps s : Y → X([0]) and
sn : X([n]) → X([n + 1]) for n ≥ 0 satisfying certain properties, listed in [5, p. 200].

Now, it is a fact that the natural augmentation of the Čech nerve of a split epimorphism
has an extra degeneracy �, as formalised by Joël Riou. For our map of interest, G → ⊤,

to be a split epimorphism, there must be a morphism τ : ⊤ → G such that τ ◦ ϵ = id. But
no such map of G-sets exists; unless G is trivial, any function ⊤ → G does not respect the
action of G. So we will have to compose EG with the forgetful functor to Set (it simply
forgets the G-action), thus giving us an extra degeneracy for EG as an augmented simplicial
set. But this is still sufficient for our purposes.

Indeed, when we forget the G-action, the resulting simplicial set is still a Čech nerve,
so has an extra degeneracy. Then, when we compose with the free k-module functor, the
resulting simplicial k-module is no longer a Čech nerve. Thus discarding the k-action initially
was necessary for the proof strategy, and not just for the sake of generality. But it still has
an extra degeneracy, as these are preserved by any functor.

Now that we are in an abelian category, we can take the alternating face map complex.
The result is our standard resolution P as a complex of k-modules – we have forgotten the
representation structure. Given an augmented simplicial object with an extra degeneracy, the
natural augmentation of the resulting alternating face map complex is a homotopy equivalence,
as formalised here �, by Joël Riou. Applying this gives us a homotopy equivalence, and
hence a quasi-isomorphism, of complexes of k-modules between P and k[0]. We need to
upgrade this to a quasi-isomorphism of complexes of representations. But this amounts
to showing our map of k-modules P0 → k comes from a map of representations, and then
checking properties determined on the level of sets – hence since they hold on the level of
k-modules, due to our quasi-isomorphism, they also hold in G-Repk, and we are fine.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/algebraic_topology/extra_degeneracy.lean#L272
https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/algebraic_topology/extra_degeneracy.lean#L353

22:12 Group Cohomology in the Lean Community Library

With all this in place, we can define the chain complex group_cohomology.resolution
and its quasi-isomorphism. We define the complex to be the alternating face map complex of
EG composed with the “linearisation functor” from G-Set to G-Repk, which is induced by
the free k-module functor on Set.

def group_cohomology.resolution :=
(algebraic_topology.alternating_face_map_complex (Rep k G)).obj

(classifying_space_universal_cover G ≫ (Rep.linearization k G).1.1)

Given this definition, the objects in the complex are definitionally isomorphic to k[Gn+1],
and simp proves that the differential agrees with (3).

We note that up to here we have only required G to be a monoid.

3.3 Freeness of k[Gn+1]
The main remaining task is to show the objects in the resolution are projective, and for this
we shall need G to be a group. Since they are not only projective, but in fact free, we show
this instead. This is the only place we will use the category of k[G]-modules, for its free
object API. We do this by first constructing the isomorphism

k[G] ⊗k k[Gn] ∼= k[Gn+1] (4)

as representations, where the representations on k[Gn+1] and k[G] are induced by left
multiplication of G, whilst k[Gn] has the trivial representation. Then, passing to the k[G]-
module category, we can send the natural k-basis of k[Gn] to a k[G]-basis of k[G] ⊗k k[Gn],
and transport this across the isomorphism. The author constructed (4) twice; first at the very
start of the project, and secondly whilst writing this paper. We will review each formalisation,
and compare them. The crux of the original formalisation is here �, with the rest here �

and here �. The new formalisation is here �.
Originally, we defined a map Gn → Gn+1 which sends

(g1, . . . , gn) 7→ (1, g1, g1g2, . . . , g1 . . . gn),

and extended this to a k-linear map k[G] ⊗k k[Gn] → k[Gn+1] that sends g ⊗ (g1, . . . , gn) to
g · (1, g1, g1g2, . . . , g1 . . . gn), in of_tensor_aux.

The type of a morphism in G-Repk is a structure with two fields: a k-module morphism,
and a proof it is compatible with the representations. If we put of_tensor_aux in the first
field and then try to prove the statement in the second field, we get timeouts when using
common tactics like dsimp (performs some definitional reduction, typically making the goal
easier to read) and simp. Thus we prove the required compatibility result in a separate
lemma. This difficulty surprised the author, as the objects involved seemed relatively low
level. However, we are marrying some category-theoretic material (the definition of G-Repk

morphisms) and some non-category-theoretic material (everything else) – a task which has
seemed to cause basic tactics to time out at other points in the project too. Meanwhile, we
can state the separate lemma without category-theoretic terms, so we can prove it with our
usual tactics.

Similarly, we define the inverse map to_tensor, which sends

(g0, g1, . . . , gn) 7→ g0 ⊗ (g−1
0 g1, . . . , g−1

0 gn),

and again factor out the proof of compatibility. We must also prove the two maps are left
and right inverse to one another, facts we cannot leave to automation but which are not too
troublesome to prove. The only other awkwardness in this formalisation was organisation:

https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/representation_theory/group_cohomology_resolution.lean#L81-L232
https://github.com/leanprover-community/mathlib/pull/14308/files
https://github.com/leanprover-community/mathlib/pull/15501/files
https://github.com/leanprover-community/mathlib/pull/18271/files

A. Livingston 22:13

having to name the underlying k-linear maps separately (suffixed with aux) and deciding
when to add API for the auxiliary k-linear maps or for the G-Repk morphisms of_tensor,
to_tensor.

In the refactor, we instead define an isomorphism of G-sets G×Gn ∼= Gn+1, with G acting
by left multiplication on Gn+1 and G but trivially on Gn. We then apply the linearisation
functor G-Set → G-Repk. But G-Set and G-Repk are monoidal categories – they have
a binary operation ⊗ on objects satisfying certain properties. In G-Set, ⊗ is induced by
× on the underlying sets, and in G-Repk, ⊗ is induced by the usual tensor product ⊗k.

The linearisation functor is monoidal, meaning it commutes with ⊗, so we end up with
k[G] ⊗k k[Gn] ∼= k[Gn+1] as before. This approach uses more abstract tools already in
mathlib than the first, and means we no longer have to prove that the resulting maps
define morphisms in G-Repk. Moreover, the construction itself is more general: we define it
in the simpler category G-Set, and instead of using the somewhat messy functions of the
previous formalisation, we assemble it inductively from some more general building blocks.
For example, for a G-set X, we define G × X ∼= G × X where G acts on the first X by the
G-action X.ρ but on the second X trivially: the map sends (g, x) 7→ (g, ρ(g−1)(x)).

However, the work left for us to do has changed: now we need to prove that the resulting
isomorphism agrees with those messy maps from before. The proofs are not painless: we are
proving something non-category-theoretic about objects constructed with heavy dependence
on the category theory library, and as in the first version, this means avoiding dsimp. However,
simp was useful when used appropriately. Additionally, these lemmas are not being factored
out of some structure field or proved about some auxiliary function, so we avoid the ugly
duplication of the first approach. Finally, the refactor improves performance. In the original
formalisation, the representation morphism k[Gn+1] → k[G] ⊗k k[Gn] takes 27 seconds to
compile on the author’s machine. Similarly, Lean is slow to elaborate the lemmas describing
how the isormorphism acts on simple elements, despite the proofs being one line (simply
using the corresponding lemmas about the underlying k-linear maps). Naïvely applying said
corresponding lemmas takes about a minute to compile (on the author’s machine). However,
we can speed up the lemmas (though not the morphism’s definition) by prefixing their proofs
with by apply. Writing by apply foo achieves the same thing as writing (foo : _); it
makes Lean elaborate foo without an expected type. Otherwise, when compiling the old
lemmas, it seems Lean spends too much time struggling with unification.

In the new formalisation, meanwhile, the isomorphism compiles in 5 seconds, and the
lemmas describing its action on simple elements take less than 5 seconds, despite the proofs
being more involved.

Regardless of its construction, given this isomorphism, we can now pass to the category of
k[G]-modules, to transport a k[G]-basis of k[G]⊗k k[Gn] across to k[Gn+1]. This requires some
care, though; the category equivalence sends a G-Repk M to a type alias M.ρ.as_module,
equipped with the k[G]-module instance defined

∑
nigi · v :=

∑
ni · ρ(gi)(v). But taking

as_module of the lefthand side of the isomorphism gives a k[G]-module structure which is
only propositionally equal to the one we want in order to use the relevant k[G]-module API.
Instead, since there is a k-module isomorphism underlying (4), we use this to define the
functions in our k[G]-module isomorphism, and then prove that this commutes with the
k[G]-action we actually want. This allows us to define the k[G]-basis as desired.

We have a few loose ends (a collection � of various category-theoretic details) to tie up
before we can assemble our results into a term of type ProjectiveResolution k. These
concern how certain functors interact with projectiveness and quasi-isomorphisms, and were
not much trouble to formalise. Bringing together everything we have done so far allows us to
define group_cohomology.ProjectiveResolution as hoped.

ITP 2023

https://github.com/leanprover-community/mathlib/pull/17443/files

22:14 Group Cohomology in the Lean Community Library

def group_cohomology.ProjectiveResolution :
ProjectiveResolution (Rep.trivial k G k) :=

(ε_to_single0 k G).to_single0_ProjectiveResolution (X_projective k G)

4 Defining group cohomology

We can immediately give one definition of group cohomology. The isomorphism
functor.left_derived_obj_iso shows that applying Hom(−, M) to our resolution and
taking cohomology calculates ExtG-Repk

(k, M). However, before we can finish the definition,
Lean times out:

def group_cohomology.Ext_iso (M : Rep k G) (n : N) :
((Ext k (Rep k G) n).obj ...).obj M ∼= ... := sorry

(where we omit opaque code, and the tactic sorry allows us to leave a declaration unfinished
without (typically) giving an error). This is strange; when we replace the sorry with the
correct isomorphism, Lean no longer times out. Meanwhile, replacing def with lemma also
stops the timeout. This is what is known as the def/lemma issue: Lean will try and work
out whether a definition is computable, even if we mark it as noncomputable, as we have
done here. It is this computability check which is timing out. On the other hand, since Lean
is proof irrelevant, it does not check lemmas are computable, so temporarily making the
definition a lemma fixes the issue. There is now a less ad-hoc solution to this problem, due to
Gabriel Ebner: prefixing a definition with noncomputable! will force it to be noncomputable
before we have filled in the sorry; see [3, p. 16] for details.

But the isomorphism we really want is between cohomology of the complex in (1) and
the Ext groups. First, we need an isomorphism of the objects in each complex; recall
that this will come from (2). We have already defined the other isomorphism needed,
k[G] ⊗k k[Gn] ∼= k[Gn+1], when constructing a basis. Meanwhile, (2) relies on an adjunction
of functors. There is some module API which would be useful for defining the adjunction,
but (despite the author’s, at this point, misguided efforts), this is still an inappropriate place
to be working in k[G]-Mod, for the reasons discussed earlier �. We should instead generalise,
and work with the notion of a monoidal closed category.

We omit the mathematical details involved; the code can be found here �. Concisely,
by defining a monoidal closed instance on G-Repk, we get the desired adjunction – but
then we must prove it behaves as it should. This means showing that when we evaluate on
elements, the abstract, category-theoretic maps in our adjunction agree with the maps in
the tensor-hom adjunction for k-modules, which are simpler and not defined with category
theory. As in the refactor of the isomorphism k[G] ⊗k k[Gn] ∼= k[Gn+1], we are relating a
structure many layers deep in the category theory library with much simpler objects. In
similar situations prior, the author had accepted slow compilation times as an inevitable part
of life, without learning the “art” of using the category theory library. By this point such
an approach no longer worked: dsimp and simp would often time out, or were otherwise
unusably slow, and the lemmas could not be stated without use of category theory, unlike
when originally defining the morphisms in (4). Moreover, the goals were too complicated to
sanely close without any automation. As far as the author could tell, the user must restrict
their range of proof techniques and appeal only to syntactic equalities: this means adding
rfl-lemmas (lemmas which are true by definition, i.e. whose proof is rfl) to the library and
rewriting these, outsourcing the work of dsimp to simp and to the user themselves. On the

https://github.com/leanprover-community/mathlib/blob/itp_mwes/src/representation_theory/MWEs/Module.lean
https://github.com/leanprover-community/mathlib/pull/18148/files

A. Livingston 22:15

occasions dsimp does work, it would help to be able to ask which definitional equalities it
applied, so the user can replace its use (since it was slowing down proofs so badly) with the
corresponding rfl-lemmas. The tactic squeeze_simp tells us this regarding simp, and is
very useful; the corresponding tactic squeeze_dsimp almost never works. Nonetheless, the
desired results were provable and didactic for developing an instinct on how to work with
category theory in Lean.

Given this, we define the complex of inhomogeneous cochains in the simplest way – by
essentially translating (1) directly into Lean (with k instead of Z). However, we also prove
that each differential Fun(Gn, M) → Fun(Gn+1, M) agrees with

Fun(Gn, M) ∼−→ HomG-Repk
(k[Gn+1], M) −◦dn−−−→ HomG-Repk

(k[Gn+2], M) ∼−→ Fun(Gn+1, M)

where dn is the differential in the standard resolution. This gives us for free the proof that
the composition of two differentials is zero, which to do directly is somewhat onerous, as
seen in work of Shenyang Wu �.

With this done, there is one more obstacle to defining the isomorphism between “concrete
group cohomology” and the Ext groups. On one side we have cohomology of a complex with
objects in k-Mod, and on the other we have homology of a chain complex with objects in
the opposite category k-Modop – an instance of something we do not think about in real
life but which takes a non-trivial amount of code � to formalise. However, the process was
straightforward, and allows us to define group cohomology, here �.

def group_cohomology [group G] (A : Rep k G) (n : N) :=
(inhomogeneous_cochains A).homology n

5 Conclusion and future work

In real life, keeping exposition of a mathematical concept self-contained is a good thing, and
group cohomology is quite amenable to this. But the trajectory of our project demonstrates
just how irrelevant this quality is as an aim when contributing to mathlib. Indeed, the need
to prioritise generality, to keep the growth of a library sustainable, means recognising and
exploiting as many connections between different mathematical objects as possible, in search
of concepts’ common principles and structural “ancestors”.

But the quest for abstraction has to stop somewhere. All of this material has been merged
with mathlib : we conclude it is possible to honour the maxims of mathlib design to a
considerable extent, and still connect the resulting convoluted, abstract definition of group
cohomology with the down to earth definition used for computation. The power afforded by
results in the category theory library can, in practice, interact with mathlib’s lower-level
objects.

However, we have illustrated this statement’s caveats. Currently, it seems to the author
that there is an “art” to using the category theory library, meaning it can be frustrating to
work with for the naïve user. Of course, exactly the same could be said of Lean in general; a
learning curve is unavoidable. But as more people apply category theory to simpler structures
in the library, documentation of this “art” will increase.

Alternatively, the new version of Lean, Lean 4, promises many advances in performance,
and this could make it easier to use automation with category theory. This project was done
in Lean 3, which has been the most current version for most of Lean’s history. But this is
changing – mathlib is currently being ported from Lean 3 to Lean 4: a huge undertaking.
When our project eventually transitions to Lean 4, we suspect it may look very different,
with the obstacles outlined in this paper perhaps diminished.

ITP 2023

https://github.com/Shenyang1995/M4R/blob/1b29c546315fbdf03301f99e09cf66ae59ba66c5/src/cochain.lean
https://github.com/leanprover-community/mathlib/pull/18144/files
https://github.com/leanprover-community/mathlib/blob/98803db53e37073ecb3aefc1b13407c05db56905/src/representation_theory/group_cohomology/basic.lean#L158

22:16 Group Cohomology in the Lean Community Library

In the meantime, there is considerably more to be added before mathlib has the facts
about group cohomology taught in a typical introductory course. Most of these are proved
using the concrete formulation, and the author has a repository containing work in this
direction. Because there is not much structure involved, the high-powered tools of category
theory are irrelevant, making the results simple to formalise. Thus, although this code has
not been tidied up with mathlib in mind, the author is fairly confident it will not go through
as many reformulations as the rest of the material so far.

We have written an API for cohomology in degree n ≤ 2, and will open a pull request
for this soon. We have also shown that given a group homomorphism f : G → H, a
G-representation A, an H-representation B and a k-linear map ϕ : B → A such that
ϕ(ρB(f(g))(x)) = ρA(g)(ϕ(x)) for all g ∈ G, x ∈ B, then we get an induced k-linear map of
cohomology groups Hn(H, B) → Hn(G, A) for all n. We used this to formalise the “inflation-
restriction” exact sequence, and have also formalised Hilbert’s theorem 90, along with the
fact that H1(G, A) ∼= Hom(G, A) when the G-action on A is trivial, and about half of the
work in using H2 to classify group extensions. The code is fast enough and readable; the only
disappointment is that in real life we can view a group’s operation as either multiplicative
or additive when convenient, and this is messier in Lean. A representation A is an additive
group with an action of a multiplicative group, so to describe the set of group morphisms
Hom(G, A) we must write G →* multiplicative A, for example.

Similarly, we have done some non-mathlib-style work on Galois cohomology. Many nice
group cohomology facts assume G is finite; Galois groups are profinite, meaning they are
limits of families of finite groups. Proving that the group cohomology of a profinite group is
a limit of the cohomology of the constituent finite groups lets us extend results to Galois
groups, and this is used everywhere in algebraic number theory. To formalise this, the
author has proved some of the requisite topological group facts; similar to the concrete group
cohomology API, the code was enjoyable to write. Instead of complicated definitions, it
involves complicated proofs, which can be preferable in Lean.

A different story is the remaining abstract material, like universal delta functors and
spectral sequences. Spectral sequences [9, Chapter 20, Section 9] will require considerable
work to define at all, let alone in a mathlib-compatible way. These are necessary to compare
cohomology as we vary the group G via the Lyndon-Hochschild-Serre spectral sequence [6,
p. 8] – an extension of the “inflation-restriction” exact sequence. We need delta functors,
meanwhile, to finish setting up Galois cohomology [12, Tag 0DVG]. They are also needed to
show that group cohomology agrees with Ext as functors, and not just in their action on
objects [9, Chapter 20, Section 8]. Happily, though, the requisite delta functor material is
done, in the Liquid Tensor Experiment �; it has just not been readied for mathlib, and
given its abstract nature this process may be non-trivial.

All of the abstract material, and essentially any group cohomological results concerning
Hn(G, M) for general n, rely on long exact sequences. These, too, are defined in the Liquid
Tensor Experiment, and should be usable in our work after proving a couple of easy, concrete
lemmas. But even preparing these for mathlib raises challenges – when using them in real
life we rely on drawing diagrams, and the clarity this affords is lost when translated into
Lean. This file � gives some demonstration of what “diagram chasing” can look like in
Lean 3. However, Wojciech Nawrocki is working on a widget � for Lean 4 which displays
commutative diagrams in the goal state; maybe this will help us chase diagrams in the future.

https://github.com/leanprover-community/lean-liquid/blob/95fada774903d2d6759eac5af8b749e14e04fe80/src/for_mathlib/universal_delta_functor/basic.lean
https://github.com/leanprover-community/lean-liquid/blob/d795aadc76d8037e488b0d8a004d41805a5b71fa/src/for_mathlib/snake_lemma.lean
https://github.com/leanprover-community/mathlib4/pull/3583

A. Livingston 22:17

References
1 Anne Baanen. Use and Abuse of Instance Parameters in the Lean Mathematical Library. In

June Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive
Theorem Proving (ITP 2022), volume 237 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 4:1–4:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITP.2022.4.

2 John W. S. Cassels and Albrecht Fröhlich. Algebraic Number Theory. London Mathematical
Society, London, 2010.

3 María Inés de Frutos-Fernández. Formalizing the Ring of Adèles of a Global Field. In 13th
International Conference on Interactive Theorem Proving (ITP 2022), volume 237, pages
14:1–14:18, 2022. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16723/pdf/LI
PIcs-ITP-2022-14.pdf.

4 César Domínguez and Julio Rubio. Computing in coq with infinite algebraic data structures.
In Proceedings of the 10th ASIC and 9th MKM International Conference, and 17th Calculemus
Conference on Intelligent Computer Mathematics, volume 6167, April 2010. doi:10.1007/97
8-3-642-14128-7_18.

5 Paul G. Goerss and John F. Jardine. Simplicial Homotopy Theory. Springer Science & Business
Media, 2009. doi:10.1007/978-3-0346-0189-4.

6 Gerhard Hochschild and Jean-Pierre Serre. Cohomology of group extensions. Transactions of
the American Mathematical Society, 74(1):110–134, 1953. doi:10.1090/S0002-9947-1953-0
052438-8.

7 Shin-ichi Katayama. Diophantine Equations and Hilbert’s Theorem 90. Journal of mathematics,
the University of Tokushima, 48:35–40, 2014. URL: https://cir.nii.ac.jp/crid/1574231
877578024320.

8 Ernst E. Kummer. Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke.
Journal für die reine und angewandte Mathematik, 1855(50):212–232, 1855. doi:10.1515/cr
ll.1855.50.212.

9 Serge Lang. Algebra, volume 211. Springer Science & Business Media, 2012. doi:10.1007/97
8-1-4613-0041-0.

10 The mathlib Community. The Lean Mathematical Library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pages
367–381, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/33
72885.3373824.

11 nLab authors. Moore complex. https://ncatlab.org/nlab/show/Moore+complex, February
2023. Revision 59.

12 The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2023.
13 Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced

Mathematics. Cambridge University Press, 1994. doi:10.1017/CBO9781139644136.
14 Charles A. Weibel. History of Homological Algebra. In Ioan M. James, editor, History of

Topology, chapter 28, pages 797–836. North Holland, 1999.

ITP 2023

https://doi.org/10.4230/LIPIcs.ITP.2022.4
https://drops.dagstuhl.de/opus/volltexte/2022/16723/pdf/LIPIcs-ITP-2022-14.pdf
https://drops.dagstuhl.de/opus/volltexte/2022/16723/pdf/LIPIcs-ITP-2022-14.pdf
https://doi.org/10.1007/978-3-642-14128-7_18
https://doi.org/10.1007/978-3-642-14128-7_18
https://doi.org/10.1007/978-3-0346-0189-4
https://doi.org/10.1090/S0002-9947-1953-0052438-8
https://doi.org/10.1090/S0002-9947-1953-0052438-8
https://cir.nii.ac.jp/crid/1574231877578024320
https://cir.nii.ac.jp/crid/1574231877578024320
https://doi.org/10.1515/crll.1855.50.212
https://doi.org/10.1515/crll.1855.50.212
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://ncatlab.org/nlab/show/Moore+complex
https://ncatlab.org/nlab/revision/Moore+complex/59
https://stacks.math.columbia.edu
https://doi.org/10.1017/CBO9781139644136

	1 Introduction
	1.1 Motivating group cohomology
	1.2 Lean and mathlib

	2 Preliminaries
	2.1 Mathematical background
	2.2 Initial formalisation considerations
	2.2.1 Complexes in Lean
	2.2.2 The right generality
	2.2.3 Exploiting typeclass inference

	3 Formalising the standard resolution
	3.1 Simplicial objects
	3.2 Constructing the resolution using EG
	3.3 Freeness of k[G^{n + 1}]

	4 Defining group cohomology
	5 Conclusion and future work

