
An Extensible User Interface for Lean 4
Wojciech Nawrocki #

Carnegie Mellon University, Pittsburgh, PA, USA

Edward W. Ayers #

Carnegie Mellon University, Pittsburgh, PA, USA

Gabriel Ebner #

Microsoft Research, Redmond, WA, USA

Abstract

Contemporary proof assistants rely on complex automation and process libraries with millions of
lines of code. At these scales, understanding the emergent interactions between components can be a
serious challenge. One way of managing complexity, long established in informal practice, is through
varying external representations. For instance, algebraic notation facilitates term-based reasoning
whereas geometric diagrams invoke spatial intuition. Objects viewed one way become much simpler
than when viewed differently. In contrast, modern general-purpose ITP systems usually only support
limited, textual representations. Treating this as a problem of human-computer interaction, we
aim to demonstrate that presentations – UI elements that store references to the objects they are
displaying – are a fruitful way of thinking about ITP interface design. They allow us to make
headway on two fronts – introspection of prover internals and support for diagrammatic reasoning.
To this end we have built an extensible user interface for the Lean 4 prover with an associated
ProofWidgets 4 library of presentation-based UI components. We demonstrate the system with
several examples including type information popups, structured traces, contextual suggestions, a
display for algebraic reasoning, and visualizations of red-black trees. Our interface is already part of
the core Lean distribution.

2012 ACM Subject Classification Human-centered computing → Visualization systems and tools;
Software and its engineering → Functional languages

Keywords and phrases user interfaces, human-computer interaction, Lean

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.24

Supplementary Material Software (User interface): https://github.com/leanprover/vscode-
lean4/tree/v0.0.102, archived at swh:1:rev:232b31446d71a697ef66cc3f9cdd671e52631317
Software (ProofWidgets 4): https://github.com/EdAyers/ProofWidgets4/tree/itp23

archived at swh:1:dir:2c87d19df4c75dccfab1949cf370d3ca92a37be0

Funding Wojciech Nawrocki: Hoskinson Center for Formal Mathematics.
Edward W. Ayers: Hoskinson Center for Formal Mathematics.

Acknowledgements The Lean team at MSR and KIT: Leonardo de Moura and Sebastian Ullrich for
extensive discussions, code review, and improvements to the system, Daniel Selsam for suggesting
traces, and Daniel Fabian for input on RPC design. The Penrose team: Wode Ni and Sam Estep for
considerable help and implementing several features which made our use possible. Jeremy Avigad
and Patrick Massot for suggestions, advice, and feedback on a draft of the paper. Tomáš Skřivan,
Joachim Breitner, and Sina Hazratpour for trying our systems and suggesting improvements. Chris
Lovett and Mariana Alanis for working on vscode-lean4. The Lean Zulip community for technical
help and ideas.

© Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wjnawrocki@cmu.edu
https://orcid.org/0000-0002-8839-0618
mailto:contact@edayers.com
https://orcid.org/0000-0003-1846-1473
mailto:gebner@gebner.org
https://orcid.org/0000-0003-4057-9574
https://doi.org/10.4230/LIPIcs.ITP.2023.24
https://github.com/leanprover/vscode-lean4/tree/v0.0.102
https://github.com/leanprover/vscode-lean4/tree/v0.0.102
https://archive.softwareheritage.org/swh:1:rev:232b31446d71a697ef66cc3f9cdd671e52631317;origin=https://github.com/leanprover/vscode-lean4;visit=swh:1:snp:015dfc80f88f9b3dbd25fe6c0dea2ff503a58977
https://github.com/EdAyers/ProofWidgets4/tree/itp23
https://archive.softwareheritage.org/swh:1:dir:2c87d19df4c75dccfab1949cf370d3ca92a37be0;origin=https://github.com/EdAyers/ProofWidgets4;visit=swh:1:snp:1ac3e2931ffc5e4e83809f5b8c177eba41c229dd;anchor=swh:1:rev:5339cebdca87d132e1ebc1dcc72bf588c2f71ae1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 An Extensible User Interface for Lean 4

1 Introduction

Interactive theorem proving (ITP) distinguishes itself from other approaches to formal
methods by structuring proof construction as a feedback loop between a human and a
machine. Whether by filling typed holes in a partial term (Agda, Idris) or by issuing
meta-level instructions in a tactic-based framework (HOL, Isabelle, Coq), users tend to
develop proofs incrementally. At each step, the system displays the goals which remain to
be proven and the user responds with a further refinement of their proof until there are no
more goals left. This loop can be viewed as a dialogue between the user and the ITP system.
Yet compared to human-to-human communication, modes of human-computer interaction
available in today’s general-purpose theorem provers are limited in form and in referentiality.

They are limited in form by being exclusively text-based. Text serves its purpose
well: it is simple to process, supported in every system configuration, and universally
understandable. Nevertheless, textual representations are only one way of displaying formal
processes, statements, and their proofs. Cognitive science researchers have long suspected
that external representations of concepts and objects outside the mind (for example a drawing
on a piece of paper, or the physical disks in a Tower of Hanoi puzzle), complementing internal
representations within the mind, are not merely an aid but rather an integral component
of cognition [49]. Restricting the external representations available in ITP systems to
only be text is thus a restriction on the way we think [45]. For instance, diagrammatic
representations group related information together in ways that sequences of words simply
cannot [29]. Since mathematicians and computer scientists rely on graphical calculi and
processes such as diagram chases [20], computer mathematics should naturally support
graphical representations.

Interactions are furthermore limited in referentiality in that we cannot refer to the
objects that a displayed representation signifies by interacting with it directly. This is
because the representations do not “remember” what they are representations of. Suppose
for example that Alice and Bob are collaborating on a proof, using natural language and a
blackboard. Suppose Bob attempts to commute x past y in the ring R but Alice notes that
this cannot be done because R is not known to be commutative and one may not assume
that x · y = y · x. At this point, Bob may respond by referring directly to R or to the term
x · y and asking Alice for further facts about these objects in order to understand the issue
and make progress on the proof. This illustrates that in dialogue, it is natural to request
actions on an object under consideration by referring to it; dialogue is referential.

But replace Alice with an ITP system and suppose the corresponding message from
Alice to Bob is that an instance of the CommRing typeclass couldn’t be synthesized for the
type R. To obtain detail on why this failed, the best Bob can generally do is copy-paste the
offending type into a separate command, either to re-run the failing operation with more
verbose output settings, or to print some extra information about it. Such interruptions are
a source of friction which obstructs reasoning about the mathematical objects in question.
Copy-pasting is only necessary because the displayed typeclass synthesis error is inert text
which has “forgotten” details of the failure. The ITP feedback loop is thus not so much a
dialogue as it is a sequence of disjoint request-response pairs. Had the system stored an
association between the displayed error and input data involved in the failure instead, Bob
would be able to inspect this data by interacting with the error message directly.

Failure of referentiality extends beyond the proof refinement loop, generally limiting the
amount of information carried by messages originating in all components including parsing,
type inference, proof search, decision procedures, and so on. Since in contemporary proof

W. Nawrocki, E. W. Ayers, and G. Ebner 24:3

assistants these components assemble into deep and interconnected stacks, understanding
the behaviour of any single component (not to mention emergent phenomena arising from
multiple components in combination) can be a serious challenge.

We will show that simply keeping better track of references can improve the state of
things. Following Ciccarelli [17, 16], we call reference-preserving UI elements presentations.
A presentation is a visual or textual display D of an object X with a link back from D to X.
Thanks to the link, the presented object X can be acted upon in various ways by interacting
with D. In our example, Bob could interact with a presentation of the typeclass inference
error (by clicking on it or using another input device) in order to obtain more information
about R or CommRing, to jump to their definitions, or to carry out other operations on them.
Failure of referentiality can be restated as noting that some UI element is not a presentation.

1.1 Contributions
We report on the design and implementation of a user interface (UI) for the Lean 4 theorem
prover [19], of an associated ProofWidgets 4 library of UI components1, as well as of
supporting features in the metaprogramming framework and in the prover itself. Our system
aims to enable more natural and efficient interactions with the prover by combining the
following features:

Displays of arbitrary form. We build on HTML5 and the web platform as the
underlying technology to make visualization easier. Packages from the rich JavaScript
ecosystem may be imported and used in the UI. For instance, in Section 3.1 the Penrose
[47] library is used to visualize mathematical objects.
Referential presentations. UI components keep track of, and may act on, the objects
they signify. For example, expressions displayed in the UI can be hovered over to see
their types and explicit forms (Section 2.1); and goal states can be interacted with in
order to make progress on proofs (Section 3.3).
User-extensibility with reusable components. The interface can be modified and
extended by users, in Lean itself and in JavaScript. Builtin and user-defined components
may be composed in arbitrary ways.
Live, interactive displays. UI components can be used immediately, in the same Lean
file they are defined in, with changes reflected in the UI in real-time.
On-demand computation. Our presentations are reactive in that they compute lazily,
in reaction to requests from the user. We can explore large objects such as computation
traces (Section 2.1) by displaying only the relevant parts without processing the rest.
General-purpose design. Like Lean itself, the UI and ProofWidgets are not tailored
for any specific domain. They enable a variety of applications besides logical reasoning
such as plotting, 3D visualisation, and interactive simulations.

While interfaces supporting subsets of the above have been developed, our system appears
to be the first to support all of them in a cohesive way. We give a detailed comparison
to other systems in Section 5. The UI is part of the core Lean distribution and has been
deployed widely to hundreds of active users, whereas the ProofWidgets package can be
imported for additional functionality. The UI has been integrated in the VS Code extension
vscode-lean42 as well as in the Lean 4 Web3 online editor.

1 https://github.com/EdAyers/ProofWidgets4/tree/itp23
2 https://github.com/leanprover/vscode-lean4/
3 https://lean.math.hhu.de/

ITP 2023

https://github.com/EdAyers/ProofWidgets4/tree/itp23
https://github.com/leanprover/vscode-lean4/
https://lean.math.hhu.de/

24:4 An Extensible User Interface for Lean 4

Outline. In Section 2, we introduce the user interface and its interactive features. In
Section 3, we demonstrate how to extend the interface by means of several examples. In
Section 4, internals of the system and aspects of implementation are discussed. We cover
related work in Section 5 and conclude in Section 6.

2 The user interface

The layout of the Lean 4 user interface does not diverge from the two-pane view of the world
popularized by ProofGeneral [4]. In this layout, the first pane in the prover UI is a text editor
with the proof script, whereas the second infoview pane displays additional information.
This includes the current goal state, errors, and messages for the open buffer. All the UI
components and extensions which we will discuss are displayed within the infoview. An
example infoview state is shown in Figure 1.

Figure 1 The Lean infoview embedded in vscode-lean4. Two tactic-mode goals (Tactic state)
at the text cursor are shown (1). Differences in the goals’ types and local contexts with respect to
the previous state are highlighted (2). A second location containing a term goal (Expected type) is
pinned (3).

While the layout is as in ProofGeneral, we do not follow its waterfall style of proof
script management. In the waterfall style, there is a checkpoint to separate the part of the
document which had been checked by the prover from that which had not. The checkpoint
is advanced manually as an intentional action by the user. It recedes when changes are
made to the checked part. Instead, similarly to Isabelle/PIDE [46], Lean adopts a “stateless”
approach that checks the entire buffer in real-time. Under the hood, the system keeps track
of immutable snapshots of past and present versions of the document, with new snapshots
generated whenever the user edits the script. Contents of the infoview are determined by the
latest snapshot and the current text cursor position.

When the cursor is inside a tactic-mode proof, the goal state at that position is displayed.
In tactic proofs, differences between subsequent goal states are highlighted in green or red
depending on whether a subexpression was just added or is about to be removed, respectively.
This can be useful to see at a glance how a step has impacted, or will impact, the proof state.
For instance when proving ∀ (n : Nat), 0 + n = n by induction on n, in the base case n
becomes Nat.zero and this change is highlighted as in Figure 1. The diff is computed using a
heuristic algorithm operating on kernel-level expression trees. Furthermore when the cursor
is over a typed hole (or a finished term), the term goal is also displayed. The term goal is
the expected (or actual) type and local context of the typed hole (or term).

W. Nawrocki, E. W. Ayers, and G. Ebner 24:5

One advantage of the waterfall approach is that the checkpoint can be used as an
additional cursor which displays the goal state in one part of the file while we go on to work
on another part. We generalize this by allowing one or more text locations to be pinned in
the infoview. Information about pinned locations is displayed alongside information about
the text cursor location. Pinned displays update in real-time which is especially useful to see
how changes at one point in the file affect a proof state or evaluation further down.

2.1 Expression and trace presentations
The infoview’s design aims to support pervasive interactivity by displaying most objects
as presentations. For instance, every displayed expression, and each of its subexpressions,
stores a reference to the type-theoretic term it corresponds to. This can be used to learn
additional facts about an expression appearing anywhere in the infoview (in a goal state or
an error message or a custom component) by clicking on it or hovering over it as in Figure 2.
Users can learn expressions’ types, see the values inferred at implicit arguments, and jump to
symbols’ definitions. In this way presentations increase information locality by making
it retrievable alongside a display of the relevant object. No extra data is computed eagerly;
pretty-printing the type of every subexpression, for example, would not be cheap in any
sizable goal state. Instead, the link from presentation to underlying object is a memory
reference which enables the UI to fetch information from the language server lazily when the
user requests it (see Section 4).

One way to frame the addition of presentations is as a kind of refinement process. We
imagine starting from a non-referential user interface appearing in a particular scenario. We
then ask:

Which objects are signified by which parts of the UI?
Given that UI D signifies object X, which actions applicable to X could we carry out
using D?

Figure 2 The numeral notation 0 : Nat is resolved via typeclass search. A structured trace
(1) of the search is explored. A presentation of a pretty-printed typeclass instance is clicked on to
display its type (2). Subexpressions within an expression can be selected following its tree structure.

Guided by the answers, we can enrich interfaces for programming and proving with new
interaction points. Consider messages produced by the prover: in Lean, structured traces are
a feature of the metaprogramming API which collates messages produced during program
execution into a tree-shaped record, with edges corresponding to user-defined execution

ITP 2023

24:6 An Extensible User Interface for Lean 4

boundaries. For example, the backtracking Prolog-like typeclass search procedure [43] of
Lean 4 can be traced, with branches representing attempted and abandoned instances. Many
search-based tactics produce traces. Traces of expensive procedures can have thousands of
nodes, making them unreadable and slow to pretty-print if displayed in full. Similarly to
inferring expression types in the UI, we solve this problem by expanding and pretty-printing
subtraces lazily, in reaction to user requests. This means we can explore branches through
large trace trees limited only by the memory needed to store the trace data rather than the
CPU time needed to pretty-print it all. In Figure 2, an example trace of typeclass instance
search is shown. Presentations compose so that the structured trace may contain interactive
expressions and other interactive components. In the future we hope to also provide a method
of filtering and searching through the trace tree.

Presentations interact well with other language features including syntax extensions. In
Figure 3, an embedded domain-specific language (EDSL) is used to write down an HTML
tree. The tree has an underlying expression of type Html which is presented in the infoview
using the same EDSL.

Figure 3 A JSX-like syntax for writing HTML trees inline is used to write down a term of type
Html in the editor. The #check command is used to inspect it in the infoview (1). The type Html
has an associated pretty-printer which emits the same custom syntax. The pretty-printer sub-output
Lean! is a presentation of the subterm Html.element "b" #[] #["Lean!"] which can be
inspected by hovering over it with the mouse (2).

Since presentations are the default, producing them requires no extra effort from the
tactic writer. For example, the following snippet defines and then uses a custom command
with interactive output. It does this by first using elab, a meta-level command that defines
new commands with a given syntax, in this case #check_nat t where t can be any term. The
new command is immediately available for use and is invoked with 37 as input.
import Lean.Elab.Command
open Lean Elab Command

elab cmd:"#check_nat " t:term : command => liftTermElabM do
let e : Expr ← Term.elabTerm t (mkConst ‘‘Nat)
-- The string-like literal m!".." directly embeds expressions {..}.
logInfoAt cmd m!"{e} has type {mkConst ‘‘Nat}"

#check_nat 37

The implementation of #check_nat parses and typechecks the term, expecting its type to be
Nat, and then emits a message. It does this using logInfoAt which associates a message with
a syntactic span, in this case the span of the #check_nat keyword. Just like standard errors
and warnings associated with a syntactic range, the message is displayed in the infoview
whenever the text cursor is on this span. Since the message directly stores kernel-level
expressions (of type Expr), they are automatically displayed as interactive presentations.

W. Nawrocki, E. W. Ayers, and G. Ebner 24:7

3 ProofWidgets 4: programmable, referential interfaces

While the builtin presentations of expressions, goals and messages provide a common interface
for all uses, the design’s main strength is its extensibility and composability. Users can build
domain-specific interfaces dubbed user widgets. A user widget is a ReactJS UI component
capable of invoking Lean metaprograms and editing the proof script. User widgets can
implement new presentations and new ways of interacting with the prover. User widgets
are usually displayed by related tactics or commands – for example the HTML display in
Figure 5 is stored by the #html command. Storing a widget is analogous to how messages
are emitted with logInfoAt: informally, instead of stating “there is an error or warning at
this syntactic span”, we state “there is a user widget at this syntactic span”. Both the user
interface and the associated tactic code can be developed in tandem alongside each other,
allowing for quick development cycles.

In this section we will consider user widgets that extend the goal display in various ways.
Here referentiality – the idea that displays should store references to objects they signify – is
also core to our approach. Recall that the object displayed by an expression presentation
(Section 2.1) is an expression together with its local context (approximately corresponding
to a judgment Γ ⊢ t : T of the type theory). Executing with access to that allows us to,
for example, infer its type and display it to the user. Similarly, widgets extending the goal
display can reference the current goal state.

3.1 Diagrams for algebra
In Figure 4 the goal is an implication between statements in the language of category theory.
We choose to display it as commutative diagrams connected by implication arrows. Here our
support for importing JavaScript libraries shines – while it may seem like a trivial engineering
choice, the ability to build on the immense NPM software ecosystem dramatically cuts
down development time. One such library, Penrose [47], expresses general mathematical
diagramming as an optimization problem. The user writes a specification describing which
shapes the diagram should include (in dsl and sub files) as well as which constraints on their
layout will make the diagram sound and beautiful (in a sty file). An energy minimization
solver then runs and an SVG image is generated. The ProofWidgets component wrapping
Penrose is composable in that it may include further components (in Figure 4 labels on
objects and morphisms are interactive expression components) and dually may become part
of a larger display. We hope it will prove useful to working algebraists. While the display
demonstrated here does not act on the goal, proof methods such as diagram chases could
also be implemented with ProofWidgets. We expand on this in Section 3.3.

From the user’s perspective, implementing a display such as this one proceeds in two
steps. First, we wrap Penrose into a reusable ProofWidgets component. The Lean definition
of the PenroseDiagram component is as follows4:
structure PenroseDiagramProps where

embeds : Array (String × EncodableHtml)
dsl : String
sty : String
sub : String
deriving RpcEncoding

4 Details are highly likely to change as the library evolves.

ITP 2023

24:8 An Extensible User Interface for Lean 4

Figure 4 A target type in the language of category theory is selected. The statement is displayed
as a sequence of commutative diagrams connected by implication arrows.

@[widget_module]
def PenroseDiagram : Component PenroseDiagramProps where

javascript := . . . -- Details omitted

Values of type Component Props serve to encapsulate JavaScript user widget implemen-
tations as Lean definitions. The index type Props specifies a Lean encoding of the type of
data expected by the component. In this case Props = PenroseDiagramProps contains fields
describing a specific diagram (dsl/sty/sub) as well as other widgets to nest within it (embeds).
To give another example, one variant of the interactive expression component has type
Component ExprWithCtx where ExprWithCtx is an expression together with its local context.

The field javascript contains a JavaScript implementation of the component. To a first
approximation, it could be viewed as having dynamic type Props → HTML. It may be written
inline but it is preferrable to point at a file on disk. In the latter case one may use tooling
we have developed to integrate building TypeScript files into the build of a Lean package
using the Lake (Lean Make) build system. Communication with the infoview is set up using
the @[widget_module] attribute and the deriving RpcEncoding annotation. @[widget_module]
saves the JavaScript code in a global storage from which it can be retrieved for execution
in the infoview, whereas deriving RpcEncoding generates code to serialize and deserialize
values of a type, in this case PenroseDiagramProps. This is necessary to support distributed
computation (see Section 4).

More complex visualizations are enabled by building on further JavaScript libraries as in
Figure 5. For example, a component integrating a plotting library could be a starting point
for plotting functions in a formally verified way [34]. Finally, we note that this first step
of wrapping JavaScript functionality in a Component can be skipped when the necessary UI
component already exists. Thus it is desirable to write reusable components. For instance,
PenroseDiagram is not specific to algebra but supports general constraint-based diagramming;
we use it again in Figure 7.

In the second step, we write a Lean metaprogram to display the user widget. There are
many ways to do this in general. Since Figure 4 uses an Expr presenter, we will describe
this approach. Like most provers, Lean features an elaborator which translates surface-level
(vernacular) syntax into fully explicit terms of the underlying type theory by filling in

W. Nawrocki, E. W. Ayers, and G. Ebner 24:9

Figure 5 The Rubiks component loads the three.js library in order to create a 3D visualization
of a Rubik’s cube. An HTML tree <Rubiks seq={eg} /> containing an instance of this component
is passed to the #html command. This command can be used to render HTML trees in the infoview
with a user widget (HTML Display). The sequence of rotations eg is determined by the Lean script.

implicit arguments, finding typeclass instances, resolving ambiguous notation, inserting
coercions, and so on. Lean 4 also contains a delaborator which essentially does the inverse –
it attempts to make an explicit term human-readable by heuristically removing detail while
ensuring that the elaborator can still process the resulting vernacular. Eliding detail, the
delaborator has type Expr → MetaM Term where Expr is the type of kernel terms, Term the
type of abstract syntax trees corresponding to vernacular terms, and MetaM an appropriate
monad. By composing with a pretty-printer for syntax trees we get the full pretty-printer of
type Expr → MetaM String.

An Expr presenter is a ProofWidgets metaprogram which can be viewed as one general-
ization of the above process. Rather than producing strings, we output HTML trees which
may include user widgets. As the name suggests, it is aimed at producing presentations
of mathematical objects. The set of Expr presenters is user-extensible. We dispatch to the
appropriate one based on characteristics of the given Expr such as using a known constant at
the top level. This echoes the general design philosophy of Lean 4 as a tower of abstractions:
some uses of ProofWidgets are expressed mostly simply by writing an Expr presenter, and
for those that are not it is possible to drop to a lower level of abstraction.

To use this framework in our example, we wrote a Penrose specification for general
commutative diagrams, as well as an Expr presenter that translates equalities of morphisms
in a category into diagram descriptions which use that specification. A representative code
fragment follows.

/-- Expressions to display as labels in a diagram. -/
abbrev ExprEmbeds := Array (String × Expr)

open scoped Jsx in
def mkCommDiag (sub : String) (embeds : ExprEmbeds) : MetaM EncodableHtml := do

-- Pretty-print kernel terms into interactive labels for the diagram.
let embeds ← embeds.mapM fun (s, h) =>

return (s, EncodableHtml.ofHtml
<InteractiveCode fmt={← Widget.ppExprTagged h} />)

return EncodableHtml.ofHtml

ITP 2023

24:10 An Extensible User Interface for Lean 4

-- Instantiate a PenroseDiagram using a JSX-like EDSL.
<PenroseDiagram

embeds={embeds}
-- Penrose specification of general commutative diagrams.
dsl={include_str "commutative.dsl"}
sty={include_str "commutativeOpt.sty"}
-- The particular diagram we are given.
sub={sub} />

. . . -- Definitions of commSquareM? and commTriangleM? elided

/-- Present an expression as a commutative diagram. -/
@[expr_presenter]
def commutativeDiagramPresenter : ExprPresenter where

userName := "Commutative diagram"
present type := do

-- Attempt to deconstruct ‘type‘ into a commutative square or triangle
-- and use ‘mkCommDiag‘ if successful.
if let some d ← commSquareM? type then

return some d
if let some d ← commTriangleM? type then

return some d
return none

3.2 Selection contexts
On a blackboard, we can underline and point to expressions and objects in order to highlight
the relevant parts of a formula or depiction when explaining an argument. Analogously, a
selection context is a subset of (subexpressions of) goals, hypotheses, and (subexpressions
of) hypothesis types appearing in a goal state. The user specifies it by shift-clicking on
the respective elements in the infoview. The current selection context is passed as input to
user widgets that pertain to the goal. In Figure 4 just the target type was selected. The
withSelectionDisplay combinator, which we use there and in Figure 6, is a tactic combinator
that associates a general-purpose widget with the range of the entire nested tactic script,
and then runs the script unchanged. The widget displays each selected expression using
registered Expr presenters (if multiple presenters apply, a choice can be made in the UI).

Selecting more than one subexpression can be helpful in comparing differences between
these subexpressions, to figure out what remains to be proven. In Figure 6, we copied a
balancing function for red-black trees verbatim from Okasaki [37]. As it turns out, due to
overlapping patterns in the definition of balance, the reduction law one might expect does
not hold in all cases. It does hold when balance is called after inserting one node into a
well-formed red-black tree because in that case, the invariants ensure that no more than one
red-red edge exists. In Figure 6, we can see at a glance from their visual representations
that the two selected trees cannot be equal, so an invariant must have been violated. In
this way diagrams appearing live during proof development serve as cognitive aids. The
visualization of general red-black trees uses the react-d3-tree5 library to do most of the
heavy lifting and took less than an hour to prototype. Afterwards, figures from Okasaki’s
paper are reproduced by the system with no further effort.

5 https://github.com/bkrem/react-d3-tree

https://github.com/bkrem/react-d3-tree

W. Nawrocki, E. W. Ayers, and G. Ebner 24:11

Figure 6 A balancing function for red-black trees is implemented in balance. Two terms appearing
in the course of a proof about it are selected in the goal and illustrated as trees.

Finally, rather than using withSelectionDisplay which treats elements of the selection
context as independent, users may choose to visualize the selection context as one entity.
This is useful when the global information contained therein can be coherently diagrammed.
In Figure 7, two subset relations are relevant to the proof whereas a third one is not. We
use PenroseDiagram together with Penrose’s builtin support for Venn diagrams to display the
two relations which imply the conclusion. The combinator withVennDisplay used here works
similarly to withSelectionDisplay except in that, rather than emitting the general-purpose
selection display widget, it produces an instance of a Venn diagram specifically.

3.3 Contextual suggestions and graphical calculi
Beyond providing static displays of goal states guided by the selection context, user widgets
may invoke Lean metaprograms, access proof states, and edit the proof script. Since
metaprograms can also display user widgets, the link between widgets and metaprogramming
is bidirectional. It is possible to make progress on proofs through the UI.

One application of this functionality could be proof by pointing [10, 11] which, to a first
approximation, demands that the UI should allow guiding proof synthesis by pointing (with
a mouse, for example) at the term to use, decompose, or otherwise manipulate in the next
proof step. Since the selection context already contains terms which the user pointed out,
a proof by pointing widget would only need to respond to clicks by inserting appropriate
tactics into the proof script. On the other hand Paulson argues [38] that certain specific
variations of this idea, such as guiding term rewriting by hand, are better served by powerful
automation. Ultimately some combination of both appears most likely to be useful. For
example, a piece of Sledgehammer-like automation [12], or a system based on recent advances
in deep learning [28], could suggest proof steps that make progress on the proof in a manner
related to the current selection context. ProofWidgets avoids committing to any single
approach by remaining agnostic about which actions or graphical proof methods are available,
instead leaving the choice to users and their particular applications. What we hope to achieve
is to make the implementation of any such method as frictionless as possible by providing
a library of basic components. We envision it being used for contextual suggestions and
graphical calculi.

ITP 2023

24:12 An Extensible User Interface for Lean 4

Figure 7 A subset of hypotheses relevant to the proof is selected. The set relationships are
visualized in one Venn diagram.

Contextual suggestions are provided by suggestion providers. These are metaprograms
which, given a goal state and selection context, return a list of relevant or potentially useful
tactics that the user may then pick from. For example, proof by pointing implementations
could be viewed as suggestion providers which suggest tactics to carry out the desired goal
transformation. Like the set of Expr presenters, the set of suggestion providers is user-
extensible rather than fixed. In Figure 8 we demonstrate how a user widget presenting a
suggestion can operate. In Lean, the conv tactic mode allows “zooming in” on a subexpression
of the target or a hypothesis type in order to apply local transformations. In the figure, a
suggestion provider returns a conv tactic which would put the selected subexpression in focus.
The tactic is then displayed in the infoview and may be inserted by clicking the button.

As we observed in Section 1, diagrams serve as cognitive aids in a variety of mathematical
pursuits. Graphical calculi are distinguished from general depictions by being active,
meaning that manipulations of the depiction correspond to steps in a proof; sound, meaning
that valid manipulations are valid proof steps; and ideally complete, meaning that every
proof in a chosen class can be expressed graphically. Examples include the Reidemeister
moves on knot diagrams [40], manipulations of string diagrams [26], or more specific variants
in category theory such as ZX-diagrams [18], Globular proofs [6], and homotopy.io [41]
proofs. A formalization of any of these graphical languages could be accompanied by a
ProofWidgets component which translates manipulations of a graphical proof state in the
infoview into tactic steps in the Lean proof script.

W. Nawrocki, E. W. Ayers, and G. Ebner 24:13

Figure 8 A subterm -a + a + -a of the goal in a proof about groups [21] is selected. The conv
user widget by Robin Böhne and Jakob von Raumer displays a button suggesting a tactic which
would zoom in on the selected subterm. Clicking the button inserts the tactic into the proof script.

4 Implementation

A complete setup consists of three components. Figure 9 outlines an example interaction
between them.

The language server is written in Lean. It communicates with the editor and with the
infoview via the Language Server Protocol (LSP6). Through the LSP it provides standard
code intelligence facilities – go-to-definition, type hovers, autocompletion, etc. Proof
states and related objects such as terms of the type theory are stored in the server.

The infoview is written in TypeScript. It is a self-contained web application displayed by
the editor. Client-side JavaScript code from user widgets executes here.

The text editor is chosen by the user. Besides storing the proof script, the editor connects
to the server, manages the infoview, and mediates between them. To support both,
the editor must be capable of communicating via LSP and displaying web content. For
example, the Visual Studio Code extension vscode-lean4 embeds the infoview in a
webview pane which it has control over.

Remote procedure calls. The infoview and the server are independent programs which may
not even execute on the same computer. Indeed, this happens when Lean is used over SSH
or in a cloud-based service such as Gitpod. In these cases, the editor and infoview execute on
the user’s local machine whereas the server is remote. Certain objects stored in the server’s
memory should not be serialized and sent to the infoview over the network due to their size –
for instance, the environment (which stores known theorems, definitions, metadata, etc) can
weigh several gigabytes in sufficiently large proof developments. Consequently, metaprograms
which operate on heavy objects must execute in the server.

Nevertheless, user widgets need to run such metaprograms, for example to try a tactic
or infer an expression’s type: both of these need access to the environment. Therefore
widgets must be able to invoke methods on the server. To enable this, we designed a foreign

6 https://microsoft.github.io/language-server-protocol/

ITP 2023

https://microsoft.github.io/language-server-protocol/

24:14 An Extensible User Interface for Lean 4

Language
server

Text
editor Infoview

1. Cursor
moved to 4:5.

2. Widgets at
4:5?

3. Widgets at
4:5 are [. . .].

Figure 9 In order to determine which user widgets to show in the infoview, a sequence of messages
is exchanged every time the text cursor moves. First, the editor informs the infoview about the new
cursor position (here line 4, column 5). Then, the infoview queries the language server for the user
widgets that should be shown at that position. Finally, the server replies with a list of user widgets.
Its contents are then displayed in the infoview. The editor acts as a proxy for infoview–server
communication, indicated by dashed lines.

function interface for Lean with support for remote calls from JavaScript. The interface is
effectively an extension to LSP. The LSP is based on JSON-RPC7, a simple protocol for
remote procedure calls which encodes argument and output data as JSON. For example, to
request a symbol’s definition, the editor invokes the textDocument/definition method by
sending a JSON record of the file, line, and column where an instance of the symbol occurs.
The return value sent back by the server is the definition’s location. To support arbitrary
other functionality, we made the registry of procedures that can be invoked on the server via
JSON-RPC user-extensible. To mark a Lean procedure as remotely callable, one annotates
it with @[server_rpc_method]. A procedure so marked must be of the type A → RequestM
B where RequestM is a monad with access to server state and A,B are JSON-serializable
types. (De)serialization routines are autogenerated by annotating a type definition with
deriving ToJson, FromJson or deriving RpcEncoding.

Remote references. When making multiple remote calls, widgets need to pass data between
the metaprograms they invoke, for example to compute an expression’s explicit form and
then infer the type of a subexpression of that (as do the two popups in Figure 2). Since the
relevant data is not serialized, client-side code needs a way of referencing objects stored in
the server’s memory. This is achieved by allowing JSON-RPC payloads to contain opaque
references to server-side objects. A value of any type may be referenced opaquely by being
marked with the WithRpcRef type-level function. To ensure type correctness, runtime type
information is stored and checked on any remote reference access.

Remote references are the backbone of our implementation of presentations. One use is
found in expression presentations. Recall from Section 3.1 that Lean features a delaborator, a
system for converting kernel-level expressions back into syntax trees. To implement expression
presentations, the delaborator has been extended with the ability to tag syntax subtrees
with references to subexpressions of the original expression. These references are encoded
using WithRpcRef. The exact tagging strategy has been described by Ayers and coauthors [5].

Allowing the client to refer to server-side objects presents us with a classic memory
management problem – when is it safe for the server to delete objects for which remote
references have been created? Conveniently, both Lean and JavaScript are garbage-collected

7 https://www.jsonrpc.org/

https://www.jsonrpc.org/

W. Nawrocki, E. W. Ayers, and G. Ebner 24:15

languages. Using a FinalizationRegistry8 we can instruct the JavaScript garbage collector
to send a memory release instruction to the server when it collects the corresponding client-
side reference. This is cooperative and may fail in case of client-side errors: a client which does
not release server-side memory could cause it to leak. While we can’t prevent this in general
using only server-side mechanisms, we require the client to regularly send keepalive messages
inspired by the Transmission Control Protocol [13]. Upon not seeing any keepalives for
sufficiently long, the server frees all remote references. This eliminates a class of disconnection-
and hang-related memory leaks.

Dynamic code delivery. User widgets are required to be self-contained JavaScript modules9.
This is considered a low-level target – users may employ any libraries and toolchains they
need (for example TypeScript), as long as the eventual compilation or transpilation output
matches the required format. Modules are registered in Lean using the @[widget_module]
annotation. Upon being so annotated, modules are stored in a content-addressed cache
accessible to the server. In order to display a particular user widget, the infoview fetches its
source module from the cache using a remote procedure call, and then dynamically loads this
source. User widgets execute in a runtime environment including the @leanprover/infoview
library which they may import. This library exposes builtin functionality of the infoview (it
can be used to display expression, structured trace, or goal presentations) as well as methods
of communicating with the editor (these can be used for instance to edit the proof script or
place another Lean file in focus) and services for making remote procedure calls from user
widgets.

5 Related work

Our work descends directly from graphical tooling for Lean 3 (the previous version of Lean),
notably ProofWidgets 3 [5] and the previous infoview. ProofWidgets 4 is a complete
redesign and reengineering. Compared to ProofWidgets 4, the previous version was not
able to incorporate JavaScript libraries which we make heavy use of; used purely server-
side rendering which resulted in disruptive latency approaching seconds [35] in distributed
settings where code editor and prover reside on different machines (e.g. cloud-based services
such as Gitpod); and could not handle asynchronous events which are necessary to invoke
long-running computations from the UI. Compared to the previous version we have lost (and
hope to regain) the ability to program UI event handlers directly in Lean rather than in
JavaScript. We expect this to become feasible when a JavaScript or WebAssembly backend
is developed for Lean. The previous infoview did not support goal diffs, structured traces,
interactive messages, or selection contexts.

The work of Mehnert, Christiansen, Korkut, and coauthors on idris-mode [33, 16, 27]
encouraged us to dream of richer programming environments, and suggested presentations
as a useful concept. idris-mode is primarily limited by the practical difficulty of embedding
web-based and non-textual interfaces in Emacs with which it is tightly integrated.

User interfaces for theorem provers can be broadly categorized along two axes. Along one,
they can either be built for a specific domain and use case only, or they can be tool-making
tools designed for extensibility. Along another axis, they can either be integrated with a

8 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
FinalizationRegistry

9 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

ITP 2023

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

24:16 An Extensible User Interface for Lean 4

special-purpose formal system such as a synthetic axiomatization of geometry, or they can
support a general foundation. Our interface is designed from the ground up to fall on the right
of both axes, that is to support general interface extensions in a general-purpose theorem
prover. Existing work tends to place towards the left of at least one of the axes, with many
tools excelling at providing fixed sets of UI functionality.

CtCoq [8] and its successor Pcoq [2] were early systems which focused on displaying
formulas and proofs in natural language with mathematical notation, on structured editing
of proofs, and on proof by pointing. Some extensions to Pcoq have been developed by its
authors, notably GeoView [9], a display for statements in plane geometry. Nevertheless
Pcoq does not appear to support general user-extensibility. The GeoProof [36] project
improved on GeoView by supporting proof construction, rather than just viewing, in the
geometric display. However, GeoProof was developed as a standalone application that did
not use Pcoq. Robert’s PeaCoq [42] focuses on visualizing proof trees and steps, but not the
mathematical objects appearing therein such as the diagrams of Figure 4. The recent Actema
project [22] aims to extend the interactions available in proof by pointing to drag-and-drop
interfaces. KeY [1] and KeYmaera X [24] provide interfaces specific to software verification
and purpose-built logics. The Incredible Proof Machine [14] is a browser-based diagrammatic
prover. We hope that our framework enables the creation of similar purpose-specific tooling
for the Lean proof assistant.

A recent interface which does aim at general-purpose proving and domain-specific exten-
sions is that of HolPy [48]. Compared to ProofWidgets 4, at this moment HolPy stresses
proof by pointing and LATEX display but not general visualization of objects or computations.

Another class of interfaces and tools are web-based ones including jsCoq [3] and Clide
[32]. The comparison here is subtler – while jsCoq in particular allows building websites
intermixing Coq snippets and UI components, it doesn’t seem to provide a way for these
components to invoke the metaprogramming API and directly manipulate proof state. It
may be that the potential for powerful extensions is there, but was simply never realized
in practice. The recent Alectryon [39] supports proof archival in Coq and in Lean (via
LeanInk [15]) by storing recorded proof states alongside beautified proof scripts. In contrast,
our system serves proof development by providing a live display with a variety of graphical
representations. We would, however, like to store a static form of these representations in
LeanInk outputs in the future.

Other systems intersect with our featureset in various ways. ProofGeneral [4] used to
support expression presentations, but only for the LEGO prover [31]. Feasibility of real-time
asynchronous processing was demonstrated in Isabelle/PIDE [46]. Both PeaCoq and Coq
itself contain similar goal diffing capabilities to ours. Multi-representation GUIs for proof
assistants were pioneered in the 1990s by the LΩUI [44], HyperProof [7] and XBarnacle [30]
projects.

Finally, we are generally inspired by Engelbart’s (to-date not realized!) vision of human
intelligence augmented through computer interfaces [23], and the systems of yore which
followed it including Smalltalk [25].

6 Conclusion

We designed and implemented an extensible user interface for the Lean 4 theorem prover
together with ProofWidgets 4, a supporting library of metaprograms and UI components.
The interface is based on presentations: UI elements that store references to the objects they
are displaying. Presentations enable detailed introspection of tactics and systems comprising

W. Nawrocki, E. W. Ayers, and G. Ebner 24:17

the prover. Extending the interface with ProofWidgets 4 empowers users to work with
a variety of interactive, graphical representations. Building on the JavaScript ecosystem
enables quick prototyping. The framework’s domain of applicability includes exploring
computation traces, symbolic visualization and exploration of mathematical objects and
data structures, custom interfaces for tactics and tactic modes, data visualization, function
plotting, and interactive simulations. Supporting not only expert users, it could be used
in education to build interactive textbooks and tutorials. We demonstrated example user
widgets diagramming mathematical data and suggesting possible proof steps from within
the UI.

In tune with the overall design philosophy of Lean 4, every layer of the visual stack can
be extended. We provide a tool-making tool which enables the creation of rich environments
for program and proof in science and mathematics.

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and

Mattias Ulbrich. Deductive Software Verification - The KeY Book. Lecture Notes in Computer
Science. Springer, 2016. doi:10.1007/978-3-319-49812-6.

2 Ahmed Amerkad, Yves Bertot, Loïc Pottier, and Laurence Rideau. Mathematics and Proof
Presentation in Pcoq. Technical Report RR-4313, INRIA, November 2001. URL: https:
//hal.inria.fr/inria-00072274.

3 Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. jscoq: Towards hybrid theorem
proving interfaces. In Serge Autexier and Pedro Quaresma, editors, Proceedings of the 12th
Workshop on User Interfaces for Theorem Provers, UITP 2016, Coimbra, Portugal, 2nd July
2016, volume 239 of EPTCS, pages 15–27, 2016. doi:10.4204/EPTCS.239.2.

4 David Aspinall. Proof general: A generic tool for proof development. In Susanne Graf and
Michael I. Schwartzbach, editors, International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 1785 of Lecture Notes in Computer Science,
pages 38–43. Springer, Springer, 2000. doi:10.1007/3-540-46419-0_3.

5 Edward W. Ayers, Mateja Jamnik, and William T. Gowers. A graphical user interface frame-
work for formal verification. In Liron Cohen and Cezary Kaliszyk, editors, 12th International
Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy
(Virtual Conference), volume 193 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.4.

6 Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for
higher-dimensional rewriting. In Leibniz International Proceedings in Informatics, volume 52,
pages 34:1–34:11, 2016. ncatlab.org/nlab/show/Globular.

7 Jon Barwise and John Etchemendy. Hyperproof: Logical reasoning with diagrams. In Working
Notes of the AAAI Spring Symposium on Reasoning with Diagrammatic Representations, 1992.
URL: https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf.

8 Yves Bertot. The ctcoq system: Design and architecture. Formal Aspects Comput., 11(3):225–
243, 1999. doi:10.1007/s001650050049.

9 Yves Bertot, Frédérique Guilhot, and Loic Pottier. Visualizing geometrical statements with
geoview. In David Aspinall and Christoph Lüth, editors, Proceedings of the User Interfaces
for Theorem Provers Workshop, UITP@TPHOLs 2003, Rome, Italy, September 8, 2003,
volume 103 of Electronic Notes in Theoretical Computer Science, pages 49–65. Elsevier, 2003.
doi:10.1016/j.entcs.2004.09.013.

10 Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Masami Hagiya and
John C. Mitchell, editors, Theoretical Aspects of Computer Software, International Conference
TACS ’94, Sendai, Japan, April 19-22, 1994, Proceedings, volume 789 of Lecture Notes in
Computer Science, pages 141–160. Springer, 1994. doi:10.1007/3-540-57887-0_94.

ITP 2023

https://doi.org/10.1007/978-3-319-49812-6
https://hal.inria.fr/inria-00072274
https://hal.inria.fr/inria-00072274
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.4230/LIPIcs.ITP.2021.4
http://ncatlab.org/nlab/show/Globular
https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf
https://doi.org/10.1007/s001650050049
https://doi.org/10.1016/j.entcs.2004.09.013
https://doi.org/10.1007/3-540-57887-0_94

24:18 An Extensible User Interface for Lean 4

11 Yves Bertot and Laurent Théry. A generic approach to building user interfaces for theorem
provers. J. Symb. Comput., 25(2):161–194, 1998. doi:10.1006/jsco.1997.0171.

12 Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledge-
hammer with SMT solvers. J. Autom. Reason., 51(1):109–128, 2013. doi:10.1007/
s10817-013-9278-5.

13 R. Braden. Requirements for internet hosts - communication layers. RFC 1122, RFC Editor,
October 1989. URL: https://www.rfc-editor.org/rfc/rfc1122.txt.

14 Joachim Breitner. Visual theorem proving with the incredible proof machine. In Jasmin Chris-
tian Blanchette and Stephan Merz, editors, International Conference on Interactive Theorem
Proving, pages 123–139. Springer, 2016. doi:10.1007/978-3-319-43144-4_8.

15 Niklas Bülow. Proof visualization for the lean 4 theorem prover, April 2022.
16 David Christiansen, David Darais, and Weixi Ma. The final pretty printer,

2016. URL: https://web.archive.org/web/20230219222209/https://davidchristiansen.
dk/drafts/final-pretty-printer-draft.pdf.

17 Eugene Charles Ciccarelli. Presentation based user interfaces. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1984. URL: https://hdl.handle.net/1721.
1/15346.

18 Bob Coecke and Ross Duncan. Interacting quantum observables. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foundations, volume
5126 of Lecture Notes in Computer Science, pages 298–310. Springer, 2008. doi:10.1007/
978-3-540-70583-3_25.

19 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28
- 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 625–635. Springer,
2021. doi:10.1007/978-3-030-79876-5_37.

20 Silvia de Toffoli. Chasing the diagram–the use of visualizations in algebraic reasoning. Review
of Symbolic Logic, 10(1):158–186, 2017. doi:10.1017/s1755020316000277.

21 R.A. Dean. Elements of Abstract Algebra. Wiley international edition. Wiley, 1966. URL:
https://books.google.com/books?id=kmulxmBgkxoC.

22 Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. A drag-and-drop proof tactic. In
Andrei Popescu and Steve Zdancewic, editors, CPP ’22: 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, Philadelphia, PA, USA, January 17 - 18, 2022,
pages 197–209. ACM, 2022. doi:10.1145/3497775.3503692.

23 Douglas C. Engelbart. Augmenting human intellect: A conceptual framework. Technical
report, Stanford Research Institute, October 1962. URL: https://web.archive.org/web/
20230220110343/https://dougengelbart.org/pubs/augment-3906.html.

24 Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart
Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538. Springer, 2015. doi:
10.1007/978-3-319-21401-6_36.

25 Adele Goldberg. Smalltalk-80 - the interactive programming environment. Addison-Wesley,
1984.

26 André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in mathematics,
88(1):55–112, 1991.

27 Joomy Korkut and David Thrane Christiansen. Extensible type-directed editing. In Richard A.
Eisenberg and Niki Vazou, editors, Proceedings of the 3rd ACM SIGPLAN International
Workshop on Type-Driven Development, TyDe@ICFP 2018, St. Louis, MO, USA, September
27, 2018, pages 38–50. ACM, 2018. doi:10.1145/3240719.3241791.

https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://www.rfc-editor.org/rfc/rfc1122.txt
https://doi.org/10.1007/978-3-319-43144-4_8
https://web.archive.org/web/20230219222209/https://davidchristiansen.dk/drafts/final-pretty-printer-draft.pdf
https://web.archive.org/web/20230219222209/https://davidchristiansen.dk/drafts/final-pretty-printer-draft.pdf
https://hdl.handle.net/1721.1/15346
https://hdl.handle.net/1721.1/15346
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1017/s1755020316000277
https://books.google.com/books?id=kmulxmBgkxoC
https://doi.org/10.1145/3497775.3503692
https://web.archive.org/web/20230220110343/https://dougengelbart.org/pubs/augment-3906.html
https://web.archive.org/web/20230220110343/https://dougengelbart.org/pubs/augment-3906.html
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1145/3240719.3241791

W. Nawrocki, E. W. Ayers, and G. Ebner 24:19

28 Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat,
Gabriel Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural
theorem proving. CoRR, abs/2205.11491, 2022. doi:10.48550/arXiv.2205.11491.

29 Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11(1):65–100, 1987. doi:10.1111/j.1551-6708.1987.tb00863.x.

30 Helen Lowe and David Duncan. Xbarnacle: Making theorem provers more accessible. In
William McCune, editor, Automated Deduction - CADE-14, 14th International Conference on
Automated Deduction, Townsville, North Queensland, Australia, July 13-17, 1997, Proceedings,
volume 1249 of Lecture Notes in Computer Science, pages 404–407. Springer, 1997. doi:
10.1007/3-540-63104-6_39.

31 Zhaohui Luo and Robert Pollack. Lego proof development system: User’s manual. Technical
report, LFCS, Edinburgh University, 1992. URL: https://www.lfcs.inf.ed.ac.uk/reports/
92/ECS-LFCS-92-211/.

32 Christoph Lüth and Martin Ring. A web interface for isabelle: The next generation. In
Jacques Carette, David Aspinall, Christoph Lange, Petr Sojka, and Wolfgang Windsteiger,
editors, Intelligent Computer Mathematics - MKM, Calculemus, DML, and Systems and
Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8-12, 2013. Proceedings, volume
7961 of Lecture Notes in Computer Science, pages 326–329. Springer, 2013. doi:10.1007/
978-3-642-39320-4_22.

33 Hannes Mehnert and David Christiansen. Tool demonstration: An ide for programming and
proving in idris, 2014. URL: https://davidchristiansen.dk/pubs/dtp2014-idris-mode.
pdf.

34 Guillaume Melquiond. Plotting in a formally verified way. In José Proença and Andrei Paske-
vich, editors, Proceedings of the 6th Workshop on Formal Integrated Development Environment,
F-IDE@NFM 2021, Held online, 24-25th May 2021, volume 338 of EPTCS, pages 39–45, 2021.
doi:10.4204/EPTCS.338.6.

35 Robert B Miller. Response time in man-computer conversational transactions. In Proceedings
of the December 9-11, 1968, fall joint computer conference, part I, pages 267–277, 1968.

36 Julien Narboux. A graphical user interface for formal proofs in geometry. J. Autom. Reason.,
39(2):161–180, 2007. doi:10.1007/s10817-007-9071-4.

37 Chris Okasaki. Red-black trees in a functional setting. J. Funct. Program., 9(4):471–477, 1999.
doi:10.1017/s0956796899003494.

38 Lawrence C. Paulson. Thoughts on user interfaces for theorem provers, December
2022. URL: https://web.archive.org/web/20230219221749/https://lawrencecpaulson.
github.io/2022/12/14/User_interfaces.html.

39 Clément Pit-Claudel. Untangling mechanized proofs. In Ralf Lämmel, Laurence Tratt, and
Juan de Lara, editors, Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2020, Virtual Event, USA, November 16-17, 2020, pages
155–174. ACM, 2020. doi:10.1145/3426425.3426940.

40 Kurt Reidemeister. Knot theory. BCS Associates, 1983.
41 David Reutter and Jamie Vicary. High-level methods for homotopy construction in associative

n-categories. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’19. IEEE Press, 2021.

42 Valentin Robert. Front-end tooling for building and maintaining dependently-typed functional
programs. PhD thesis, University of California, San Diego, USA, 2018. URL: http://www.
escholarship.org/uc/item/9q3490fh.

43 Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. Tabled Typeclass Resolution.
CoRR, 2020. arXiv:2001.04301v2.

44 Jörg Siekmann, Stephan Hess, Christoph Benzmüller, Lassaad Cheikhrouhou, Armin Fiedler,
Helmut Horacek, Michael Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Martin
Pollet, and Volker Sorge. Loui: Lovely omega user interface. Formal Aspects of Computing,
11(3):326–342, 1999. doi:10.1007/s001650050053.

ITP 2023

https://doi.org/10.48550/arXiv.2205.11491
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/3-540-63104-6_39
https://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-211/
https://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-211/
https://doi.org/10.1007/978-3-642-39320-4_22
https://doi.org/10.1007/978-3-642-39320-4_22
https://davidchristiansen.dk/pubs/dtp2014-idris-mode.pdf
https://davidchristiansen.dk/pubs/dtp2014-idris-mode.pdf
https://doi.org/10.4204/EPTCS.338.6
https://doi.org/10.1007/s10817-007-9071-4
https://doi.org/10.1017/s0956796899003494
https://web.archive.org/web/20230219221749/https://lawrencecpaulson.github.io/2022/12/14/User_interfaces.html
https://web.archive.org/web/20230219221749/https://lawrencecpaulson.github.io/2022/12/14/User_interfaces.html
https://doi.org/10.1145/3426425.3426940
http://www.escholarship.org/uc/item/9q3490fh
http://www.escholarship.org/uc/item/9q3490fh
https://arxiv.org/abs/2001.04301v2
https://doi.org/10.1007/s001650050053

24:20 An Extensible User Interface for Lean 4

45 Aaron Stockdill, Daniel Raggi, Mateja Jamnik, Grecia Garcia Garcia, and Peter C.-H. Cheng.
Considerations in representation selection for problem solving: A review. In Amrita Basu,
Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo, and Petrucio Viana, editors,
Diagrammatic Representation and Inference, pages 35–51, Cham, 2021. Springer International
Publishing.

46 Makarius Wenzel. Asynchronous user interaction and tool integration in isabelle/pide. In
Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science,
pages 515–530. Springer, 2014. doi:10.1007/978-3-319-08970-6_33.

47 Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich, Joshua
Sunshine, and Keenan Crane. Penrose: from mathematical notation to beautiful diagrams.
ACM Trans. Graph., 39(4):144, 2020. doi:10.1145/3386569.3392375.

48 Bohua Zhan, Zhenyan Ji, Wenfan Zhou, Chaozhu Xiang, Jie Hou, and Wenhui Sun. Design of
point-and-click user interfaces for proof assistants. In Yamine Aït Ameur and Shengchao Qin,
editors, Formal Methods and Software Engineering - 21st International Conference on Formal
Engineering Methods, ICFEM 2019, Shenzhen, China, November 5-9, 2019, Proceedings,
volume 11852 of Lecture Notes in Computer Science, pages 86–103. Springer, 2019. doi:
10.1007/978-3-030-32409-4_6.

49 Jiaje Zhang and Donald A. Norman. Representations in distributed cognitive tasks. Cognitive
Science, 18(1):87–122, 1994. doi:10.1016/0364-0213(94)90021-3.

https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1007/978-3-030-32409-4_6
https://doi.org/10.1007/978-3-030-32409-4_6
https://doi.org/10.1016/0364-0213(94)90021-3

	1 Introduction
	1.1 Contributions

	2 The user interface
	2.1 Expression and trace presentations

	3 ProofWidgets 4: programmable, referential interfaces
	3.1 Diagrams for algebra
	3.2 Selection contexts
	3.3 Contextual suggestions and graphical calculi

	4 Implementation
	5 Related work
	6 Conclusion

