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Abstract
We describe a formal correctness proof of RANKING, an online algorithm for online bipartite
matching. An outcome of our formalisation is that it shows that there is a gap in all combinatorial
proofs of the algorithm. Filling that gap constituted the majority of the effort which went into
this work. This is despite the algorithm being one of the most studied algorithms and a central
result in theoretical computer science. This gap is an example of difficulties in formalising graphical
arguments which are ubiquitous in the theory of computing.
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1 Introduction

Matching is a classical problem in computer science, operations research, graph theory, and
combinatorial optimisation. In short, in this problem, given an undirected graph, one tries to
compute a subset of the edges of this graph, s.t. no two edges are incident on the same vertex.
This subset is usually optimised w.r.t. a given objective, e.g. matching cardinality, sum of
weights of edges in the matching, etc. An important special case of matching problems is
maximum cardinality matching in bipartite graphs. It is one of the first problems to be
addressed in combinatorial optimistation, where, for instance, the Hungarian method was
invented in 1955 to solve it in the edge-weighted setting [14]. The online version of that
problem, i.e. the version in which one of the parties of the graphs arrive online, one vertex
at a time, along with its incident edges, has received special attention. This is because the
problem can model many economic situations, most-notably Google’s Adwords market [15].

The most basic version of online bipartite matching is the one where vertices and edges
have no weights. That problem was studied by Karp, Vazirani, and Vazirani (henceforth,
KVV) [13], where they devised the so-called RANKING algorithm. In that paper, KVV
showed that their algorithm can solve the online problem with a competitive ratio, i.e. the
average case ratio of the online algorithm’s solution quality compared to the best offline
algorithm, of 1−1/e. They also showed that this ratio is the best possible for any randomised
online bipartite matching algorithm. The analysis of the RANKING algorithm has been
continuously studied, where authors have mainly tried to simplify the algorithm’s original
correctness proof, i.e. the proof that it achieves a 1− 1/e competitive ratio [9, 3, 4, 6, 19, 16].
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3:2 A Formal Analysis of RANKING

This is because the algorithm’s analysis, which can be divided into a probabilistic and a
combinatorial part, is considered to be “extremely difficult” [18] by the algorithms community,
despite the algorithm itself being very simple.

In this paper we formalise an analysis of the algorithm by Birnbaum and Mathieu [3]
(henceforth, BM) in Isabelle/HOL [17]. BM claim to present the first simple proof of the
algorithm’s competitive ratio. Indeed, the paper’s title is “Online bipartite matching made
simple”, and it is the last attempt at a simple combinatorial proof for the algorithm, as later
works focused on primal-dual analyses of the algorithm.

Our most striking finding is that there is a “gap” in the proof, where there was one lemma
whose proof was “a simple structural observation” by the authors. Formalising the proof of
this lemma constitutes the majority of the effort that went into the work we describe here as
well as the majority of the volume of the formal proof scripts. There are also other interesting
aspects, from a formalisation perspective, of that proof. For instance, it combines graph
theoretic, probabilistic, and graphical arguments. It also requires modelling and reasoning
about online algorithms.

The rest of the paper is structured as follows. We first describe the algorithm and how
we model it in Isabelle/HOL. Then we discuss the probabilistic part of the proof and its
formalisation. We then discuss the combinatorial part of the proof, where we describe the
main findings of this work, namely,
1. the first complete proof that covers the gap in the proof by BM, as well as other

combinatorial proofs of the algorithm, and
2. a significantly simpler proof of a lemma needed by BM to facilitate the algorithm’s

probabilistic analysis.
Lastly, we discuss a part of the proof usually glossed over by other authors, which is lifting
the analysis to obtain an asymptotic statement on the competitive ratio.

Isabelle/HOL. Isabelle/HOL [17] is a theorem prover based on Higher-Order Logic. Roughly
speaking, Higher-Order Logic can be seen as a combination of functional programming with
logic. Isabelle’s syntax is a variation of Standard ML combined with (almost) standard
mathematical notation. Function application is written prefix, and functions are usually
curried (i.e., function f applied to arguments x1 . . . xn is written as f x1 . . . xn instead of
the standard notation f(x1, . . . , xn)). In Isabelle/HOL, SOME is the Hilbert choice, and
THE is the definite description operator.

Availability. Our formalisation is in the Archive of Formal Proofs (www.isa-afp.org).
Throughout the paper, and in the appendix, we added excerpts from the formalisation
representing important definitions and theorem statements to aid in linking the informal
description in the paper and the formal proof scripts.

2 Basic Definitions and Notation

We denote a list of elements as [x1, x2, . . . , xn]. In the rest of this paper, we only consider
lists with distinct elements. We say element xi has rank i1 in the list [x1, x2, . . . , xi, . . . , xn].
We overload the membership, subset, union and intersection set operations to lists. For a
list vs, of length n, and an element v ∈ vs, let, for 1 ≤ i ≤ n, vs[v 7→ i] denote the list which
results from inserting v into vs where v has been removed s.t. its rank is exactly i. Also, let

1 In the formalisation we use index, which is the same as the rank minus one.
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vs(v) denote the rank of v in vs and vs[i] the element of rank i in vs. For a list vs, v#vs
denotes the list vs but with the vertex v appended to its head. A permutation of a finite set
s is a list whose elements are exactly the elements of s.

An edge is a set of vertices with size 2. A graph G is a set of edges. The set of vertices of
a graph G, denoted by V(G), is

⋃
e∈G e. For a vertex v, NG(v) denotes {u | {v, u} ∈ G}. We

say a graph G is bipartite w.r.t. to two sets of vertices V and U (henceforth, the left and
right party) iff
1. V(G) ⊆ V ∪ U ,
2. for any {v, u} ∈ G, we have that {v, u} ̸⊆ V and {v, u} ̸⊆ U .
A set of edges M is a matching iff ∀e ̸= e′ ∈M. e ∩ e′ = ∅. For a matching M and a vertex
v, if there is u s.t. {v, u} ∈ M, we say u is the partner of v, denoted by M(v). We use
G −E to denote the edges in G that are not in E, and, for a set of vertices V , G \ V denotes
G ∩ {e | e ∩ V = ∅}, i.e. the graph with edges incident to vertices in V removed.

In many cases, a matching is a subset of a graph, in which case we call it a matching
w.r.t. the graph. For a graph G, a matching M w.r.t G is a maximum cardinality matching,
aka maximum matching, w.r.t. G iff for any matchingM′ w.r.t. G, we have that |M′| ≤ |M|.
A matching M w.r.t. G is a perfect matching w.r.t. G iff V(M) = V(G). A matching M
w.r.t. G is a maximal matching w.r.t. G iff ∀e ∈ G. e ∩ V(M) ̸= ∅.

A discrete probability space P is defined by a countable sample space ΩP and a probability
mass function (PMF) PP : ΩP → [0, 1] assigning a probability to each sample, where∑

ω∈ΩP
PP (ω) = 1. The PMF is lifted naturally to events (sets of samples) as PP (E) =∑

ω∈E PP (E) for E ⊆ ΩP . The expectation of a random variable X : ΩP → R is denoted
Eω∼P [X(ω)]. For a set B and a non-empty, finite subset A ⊆ B, UB(A) is the discrete
uniform distribution, i.e. ΩUB(A) = B and PUB(A)(a) = 1

|A| if a ∈ A and PU(A)(b) = 0 if
b /∈ A. If A = B we simply write U(A) for UA(A).

We model randomised algorithms as probability distributions over the results of the
algorithm. The Giry Monad [8] allows to compose random experiments in an elegant manner
and is used to express randomised algorithms. The return operator gives a distribution which
places probability 1 on a single sample ω, i.e. Preturn(ω)(x) is 1, if x = ω, and 0, otherwise.

Composition of experiments is achieved via the bind operator (written infix as >>=).
Intuitively, P >>= Q randomly chooses a sample ω according to P and then returns a value
chosen randomly according to the distribution Q(ω). For additional legibility, we use
Haskell-like do-notation for bind and return. This notation can be desugared recursively as
follows:

do{ x← P ; stmts } ≡ P >>= (λx. stmts).

In Isabelle/HOL, we base our work on a simple formalisation of undirected graphs by
Abdulaziz et al. [1], which was introduced in the context of the verification of Edmonds’
blossom matching algorithm. We use this formalisation because of its simplicity, and the
fact that it has a rich library on matchings and other related notions, as we will discuss later.
However, we will not further discuss the merits of this representation as it is outside of the
scope of this work. Interested readers should consult the original paper [1].

Probability theory in Isabelle/HOL is based on a general formalisation of measure theory
by Hölzl [10]. In the formalisation, U(A) is denoted pmf_of_set A, and return is denoted
return_pmf. The meanings of other Isabelle/HOL notations used in the rest of the paper
should be self-explanatory.

ITP 2023
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Figure 1 The steps of computing a matching using online-match, and what happens when an
online vertex is removed from the input.

3 RANKING

Given a bipartite graph G, whose left and right parties are V and U , the ranking algorithm
takes as an offline input V , and a sequence π as an online input, where vertices, along with
their adjacent edges, arrive one-by-one. As an example, consider Fig. 1a, showing a graph
whose left party, i.e. the offline vertices, is {v4, v2, v6, v1, v5, v3}. The right party, i.e. the
online vertices, arrive in the order [u1, u2, u3, u4, u5]. The first step in the algorithm is that
it randomly permutes the offline input. In our example, this is shown in Fig. 1b. Then,
vertices from the right party of the graph arrive one-by-one. The most important thing to
note is that, for every arriving vertex u, the algorithm adds the edge connecting u and the
offline unmatched vertex with the minimum rank, if any such edge exists. In our example,
we have the ranking [v1, v2, v3, v4, v5, v6], of the offline vertices. Fig. 1c shows the state of
the matching after the arrival of u1: it has three edges connecting it to the offline vertices v1,
v3, and v5. The edge connecting it to v1 is added to the matching, as it is unmatched and
has the lowest rank among them. Then, the other vertices on the online side arrive based on
the order given earlier, and the matching is updated, as shown in Fig. 1d-1g, and the final
matching computed by the algorithm is the one represented by the green edges in Fig. 1h.
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Algorithm 1 Pseudo-code of RANKING.

function online-match(G, π, σ) begin
M← ∅
for every arriving vertex u in π do

if ∃v ∈ (NG(u)− V(M)) then M←M∪ {{argminv∈(NG(u)−V(M))σ(v), u}}
return M

end
function RANKING(G, π) begin

σ ← a random permutation of V

return online-match(G, π, σ)
end

Listing 1: Modelling RANKING in Isabelle/HOL.
fun s t e p :: " ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a graph ⇒ ' a graph " where

2 " s t e p − − [ ] M = M"
| " s t e p G u ( v#vs ) M = (

4 i f v /∈ Vs M ∧ u /∈ Vs M ∧ {u , v} ∈ G
then i n s e r t {u , v} M

6 e l s e s t e p G u vs M
) "

8

fun o n l i n e−match ' :: " ' a graph ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a graph ⇒ ' a graph " where
10 " o n l i n e−match ' − [ ] − M = M"

| " o n l i n e−match ' G ( u#us ) σ M = o n l i n e−match ' G us σ ( s t e p G u σ M) "
12

abbreviation " o n l i n e−match G π σ ≡ o n l i n e−match ' G π σ {} "
14

definition " r a n k i n g ≡
16 do {

σ ← pmf−o f−s e t ( p e r m u t a t i o n s−o f−s e t V) ;
18 r e t u r n−pmf ( o n l i n e−match G π σ )

}"

As should be clear by now, the algorithm’s description and, accordingly, modeling is a
simple task. The pseudo-code is in Algorithm 1. In Isabelle/HOL, we model the algorithm as
shown in Listing 1. The first two functions are recursive on lists. The first function, step, is
recursive on the list of the offline vertices, where, given a graph G, a vertex u from the online
side, the list of offline vertices, and the matching, it adds to the matching the first edge it
finds that connects u and an offline vertex v. The function does the recursion on the list,
assuming the list is ordered according to the ranking of the offline vertices, with the head
of the list being the vertex with the lowest rank. The second function, online_match’, is
recursive on the list of online vertices, where the list is ordered according to the arrival order
of those vertices, where the head of the list is the earliest arriving vertex. For each vertex
in the list, online_match’ tries to match it to an offline vertex using step. The other main
function, ranking, chooses a permutation of the offline vertices and passes it to online-match.

We note that we avoid devising an involved way to model and reason about online
computation, and only model it simply as a list of inputs and a step function that operates
on each online input. This is because the algorithm description itself is simple. The primary
focus of our work here is the formalisation of the correctness argument, the mathematical
part of which is the main challenge.

ITP 2023
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3.1 Competitive Ratio of RANKING
The goal of this work is to formalise the analysis of RANKING’s competitiveness. In general,
for online algorithms solving optimisation problems, the analysis focuses on the quality of
their outputs in comparison with the quality of the output of the best offline algorithm,
i.e. an algorithm which has access to the entire input before it starts computing its output.
The outcome of such an analysis is referred to as the competitive ratio of the respective
online algorithm. In the case of bipartite matchings, the best offline algorithms, like the
Hopcroft-Karp algorithm [11], can compute maximum cardinality matching for bipartite
graphs. Thus, for RANKING, the natural way to analyse it is by showing that the size of
the matching it computes maintains a certain ratio if compared to the size of the maximum
matching of the input graph. Furthermore, since RANKING is a randomised algorithm, it is
natural that this relationship is in expectation. More precisely, for RANKING, we have the
following relation, which was first shown by KVV: for any given graph and arrival orders,
the ratio between the expected size of the matching computed by RANKING and the size of
the maximum matching is 1− 1/e. The expectation ranges over the different permutations
of the offline side.

4 Competitiveness for Bipartite Graphs with Perfect Matchings

In the following, let G be a bipartite graph w.r.t. V and U , s.t. M is a perfect matching
w.r.t. G, and |M| = n. Let π be an arrival order for U and let S(A) denote the set of all
permutations of a finite set A.2

The algorithm can be modelled as the following Giry monad

RANKING(G, π) ≡ do { σ ← U(S(V )); return online-match(G, π, σ) }.

In the following, we describe our formal proof of the analysis of the competitive ratio for
instances with perfect matching. This formal proof closely follows the one by BM. However,
we highlight the differences to the original one as they arise.

We need the following lemma ([3, Lemma 5]) before the main result can be shown.

▶ Lemma 1. Let xt denote the probability over the random permutations of V that the vertex
of rank t is matched by the algorithm, for 1 ≤ t ≤ n. Then 1− xt ≤ (1/n)

∑
1≤s≤t xs.

Let v ∈ V be the vertex of rank t for some fixed permutation σ of V . The intuition behind
this bound is that v only remains unmatched if its partner M(v) in the perfect matching
is matched to a vertex ranked lower in π. Since v is a random vertex (when drawing
a permutation), so is M(v). The right-hand-side is supposed to be the probability that
M(v) is matched to a vertex arriving before v (since the sum is the expected number of
vertices matched to vertices of rank at most t). This intuitive idea does not work due to
the dependence of M(v) and the set of vertices matched to vertices of rank at most t. The
correct argument avoids this dependence. However, this requires a stronger statement on
what happens withM(v) if v stays unmatched, captured in the following lemma ([3, Lemma
4]), whose proof we discuss in the next section.

▶ Lemma 2. Let v ∈ V , u denote M(v), and σ ∈ S(V ). If v is not matched by
online-match(G, σ, π) to u, then, for all 1 ≤ i ≤ n, u is matched by online-match(G, σ[v 7→
i], π) to a vi ∈ V s.t. σ[v 7→ i](vi) ≤ σ(v).

2 In the formalisation S(A) is written permutations_of_set A.
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I′
t ≡ do {

σ ← U(S(V ));
v ← U(V );
let R = online-match(G, π, σ[v 7→ t]);
return (v ∈ V(R))
}

(a) In addition to a random permutation σ ∈
S(V ), a random vertex v ∈ V is drawn and
moved to rank t.

I′′
t ≡ do {

σ ← U(S(V ));
v ← U(V );
let R = online-match(G, π, σ);
return (M(v) ∈ V(R) ∧ σ(R(M(v)) ≤ t))
}

(b) Distribution describing the probability that
the partnerM(v) ∈ U of a random vertex v ∈ V
is matched to a vertex of rank at most t.

Figure 2 Two Bernoulli distributions used in the proof of Lemma 1.

Before presenting the proof of Lemma 1, we need to consider how to formally define xt.
It cannot be stated as a probability in the distribution RANKING(G, π). There is no way to
refer to the “vertex of rank t in the permutation σ” since RANKING(G, π) is a distribution
over subgraphs of G and the random permutations used to obtain them are not accessible.
The solution is to explicitly define the Bernoulli distribution capturing the notion of the
vertex of rank t being matched.

It ≡ do { σ ← U(S(V )); let R = online-match(G, π, σ); return (σ[t] ∈ V(R)) }

Then, 1− xt corresponds to the probability PIt
(False).

A key step to achieve the independence of the involved events revolves around not only
drawing a random permutation, but also drawing a random vertex and moving it to rank
t. This is reflected in the distribution I′t, given in Fig. 2a. This deceptively simple change
ensures the independence of the drawn permutation, i.e. σ, and the actual partner in the
perfect matching of the vertex of rank t, i.e. M(σ[v 7→ t][t]) which is the same as M(v).
There is an aspect that is glossed over in the original proof and is intuitively clear: simply
drawing a random permutation uniformly at random and the modified way where a random
vertex is put at rank t are equivalent. This is shown explicitly in the formal proof.

The final distribution we present here, I′′t in Fig. 2b, captures the probability that the
partner M(v) of a random v ∈ V is matched to a vertex of rank at most t.

Proof of Lemma 1. The first step follows from the fact that the permutation σ, in both It

and I′t, and the vertex v are all drawn from uniform distributions.

PIt
(False) = PI′

t
(False)

By Lemma 2, if v ∈ V is unmatched in online-match(G, π, σ[v 7→ t]), then, M(v) is matched
to a vertex of rank at most t in online-match(G, π, σ) (by using σ[v 7→ t][v 7→ σ(v)] = σ).

≤ PI′′
t
(True)

Then, the process of drawing a random v ∈ V and considering M(v) in I′′t can be replaced
with drawing a random u ∈ U directly, using the bijection induced byM. This describes the
probability that a random u ∈ U is matched to a vertex of rank at most t. That probability,
in turn, is exactly the expected size of the set of online vertices matched to vertices of
rank at most t. Formally, these two steps are performed by defining two more Bernoulli
distributions capturing the involved concepts. Their definitions are omitted here. Let I∗t be
the distribution for the set of online vertices matched to vertices of rank at most t.

= 1
n
EO∼I∗

t
[|O|]

ITP 2023



3:8 A Formal Analysis of RANKING

The final step is to express the expected size of the set of online vertices matched to vertices
of rank at most t as a sum of the probabilities that the offline vertices of rank up to t are
matched. This completes the argument.

= 1
n

t∑
s=1

PIs
(True) ◀

Then, we proceed to the main result of this section.

▶ Theorem 1. The competitive ratio of RANKING for instances with a perfect matching of
size n is at least 1− (1− 1

n+1 )n, i.e. 1− (1− 1
n+1 )n ≤ ER∼RANKING(G,π)[|R|]

n .

Proof. The expected size of the matching produced by RANKING(G, π) can be rewritten as
a sum of the probabilities of the vertices of some rank getting matched.

ER∼RANKING(G,π) [|R|]
n

= 1
n

n∑
s=1

PIs
(True)

The bound obtained on PIs(False) for 1 ≤ s ≤ n in Lemma 1 can be used to bound the sum.
This requires a fact on sums provable by induction on n, followed by algebraic manipulation.

≥ 1
n

n∑
s=1

(
1− 1

n + 1

)s

More algebraic manipulation yields the final result.

= 1−
(

1− 1
n + 1

)n

◀

5 Lifting the Competitiveness to General Bipartite Graphs

Until now, we have shown that RANKING satisfies the desired competitive ratio for graphs
with a perfect matching. Also, until now, our formalisation closely follows BM’s proof.
However, in all previous graph-theoretic expositions of the correctness proof of this al-
gorithm [9, 3, 13], as opposed to linear programming-based expositions [4, 6, 19], the authors
would stop at the current point, stating, or implicitly assuming, that it is obvious to see how
the analysis of RANKING for bipartite graphs with perfect matchings extends to general
bipartite graphs. The central argument is as follows: it is easy to see that, for a fixed
permutation of the offline vertices, if we remove a vertex from a bipartite graph that does not
occur in a maximum matching of that graph, then online-match will compute a matching
that is either one edge smaller or of the same size as the matching online-match would
compute, given the original graph.

Indeed, BM, who are the authors who give the most detailed account of the graph-theoretic
correctness proof of this algorithm, state, as a proof for this fact [3, Lemma 2], that “it is
an easy structural observation”. In a sense they are correct: in our example, illustrated in
Fig. 1, if we remove u2, it is easy to see that online-match’s output size will be only one
less than on the original graph. This is because all the matching edges will “cascade” down.
This is illustrated in Fig. 1i, showing the blue edges being replaced with the red edges. In
this section we mainly formalise this argument. We also formalise another easier, but no
less crucial, graph-theoretic part of the proof by BM [3, Lemma 4]. This lemma is used in
the probabilistic part of the proof, as stated earlier. In our formalisation we significantly
simplified the proof. Before we do so, however, we introduce some necessary background and
notions related to paths.
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5.1 Alternating Paths, Augmenting Paths, and Berge’s Lemma
A list of vertices [v1, v2, . . . , vn] is a path w.r.t. a graph G iff {vi, vi+1} ∈ G for 1 ≤ i < n.
Note: a path [v1, v2, . . . vn] is always a simple path as we only consider distinct lists. A list
of vertices [v1, v2, . . . , vn] is an alternating path w.r.t. a set of edges E iff for some E′

1. E′ = E or E′ ∩ E = ∅,
2. {vi, vi+1} ∈ E′ holds for all even numbers i, where 1 ≤ i < n, and
3. {vi, vi+1} ̸∈ E′ holds for all odd numbers i, where 1 ≤ i ≤ n.
We call a list of vertices [v1, v2, . . . , vn] an augmenting path w.r.t. a matching M iff
[v1, v2, . . . , vn] is an alternating path w.r.t. M and v1, vn ̸∈ V(M). If M is a matching w.r.t.
a graph G, we call the path an augmenting path w.r.t. to the pair ⟨G,M⟩. Also, for two sets
s and t, s⊕ t denotes the symmetric difference of the two sets.

A central result in matching theory is Berge’s lemma, which gives an algorithmically
useful characterisation of a maximum cardinality matching.

▶ Theorem 2 (Berge’s Lemma). For a graph G, a matching M is maximum w.r.t. G iff there
is not an augmenting path γ w.r.t. ⟨G,M⟩.

We use a formalisation of the above concepts and Berge’s Lemma by Abdulaziz et al. [1].

5.2 online-match’s Behaviour after Removing a Vertex
Now that we have all the necessary machinery, we can discuss the formalisation of the
correctness of RANKING for general bipartite graphs. The central claim to show is stated
in the following lemma, which is a restatement of Lemma 2 in BM’s paper. It states what
happens to the result of online-match when a vertex is removed from the graph.

▶ Lemma 3. Let G be a bipartite graph w.r.t. the lists σ and π. Consider a vertex u ∈ π.
Let H be G \ {u}. We have that either online-match(G, π, σ) = online-match(H, π, σ) or
online-match(G, π, σ)⊕ online-match(H, π, σ) can be ordered into an alternating path w.r.t.
online-match(G, π, σ) and online-match(H, π, σ), and that path starts at u.

The above lemma was never proved by any of the previous expositions of the combinatorial
argument for the algorithm’s correctness. BM’s exposition is an exception, where there is at
least a graphical example, showing what happens when we remove a vertex before running
online-match. A version of that graphical argument can be seen in Fig. 1. Fig. 1h shows the
matching computed by the algorithm on the original graph, and Fig. 1i shows the difference
in the computed matching if a vertex from the online side of the graph is removed.3 As
shown, when the vertex is removed, the matched edges “cascade downwards”, where the
original matching edges, shown in blue, are replaced with the red edges. The lemma states
that the symmetric difference between the two computed matchings is always an alternating
path, w.r.t. both the old and the new matchings, if there is any difference. When looking at
the graphical illustration this is obvious. However, when formalising that argument, many
challenges manifest themselves.

The first challenge is the characterisation of the path that constitutes the difference
between the two matchings. This characterisation has to, among other things, make formal
proofs by induction manageable. To do so, we had to formulate this characterisation not

3 The lemma above is stated for an online vertex being removed, while in the formalisation an offline
vertex is removed. This highlights an important concept in many of the proofs: the interchangeability
of the offline and online vertices for fixed orders σ and π.
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3:10 A Formal Analysis of RANKING

Listing 2: Formalising shifts-to in Isabelle/HOL
definition " s h i f t s−to G M u v v ' π σ ≡

2 u ∈ s e t π ∧ v ' ∈ s e t σ ∧ i n d e x σ v < i n d e x σ v ' ∧ {u , v ' } ∈ G
∧ (∄u ' . i n d e x π u ' < i n d e x π u ∧ {u ' , v ' } ∈ M) ∧

4 (∀v ' ' . ( i n d e x σ v < i n d e x σ v ' ' ∧ i n d e x σ v ' ' < i n d e x σ v ' )
−→ ({u , v ' ' } /∈ G ∨ (∃u ' . i n d e x π u ' < i n d e x π u ∧ {u ' , v ' ' } ∈ M) ) )

Listing 3: Formalising zig-zag in Isabelle/HOL.
function z i g :: " ' a graph ⇒ ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a l i s t "

2 and zag :: " ' a graph ⇒ ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a l i s t " where
p r o p e r−z i g : " z i g G M v π σ = v # (

4 i f ∃u . {u , v} ∈ M
then zag G M (THE u . {u , v} ∈ M) π σ

6 e l s e [ ] ) " i f " matching M"
| no−matching−z i g : " z i g − M v − − = [ v ] " i f "¬matching M"

8

| p r o p e r−zag : " zag G M u π σ = u # ( i f ∃v . {u , v} ∈ M
10 then

( l e t v = THE v . {u , v} ∈ M i n (
12 i f ∃v ' . s h i f t s−to G M u v v ' π σ

then z i g G M (THE v ' . s h i f t s−to G M u v v ' π σ ) π σ
14 e l s e [ ] )

)
16 e l s e [ ]

) " i f " matching M"
18 | no−matching−zag : " zag − M v − − = [ v ] " i f "¬matching M"

recursively on the given bipartite graph, i.e. the given bipartite graph should not change
across different recursive calls. Otherwise, proving anything about the path would involve a
complicated induction on the given bipartite graph.

To define that path, we first introduce a concept relating two vertices on the online side.
We state v shifts-to v′ iff
1. v occurs before v′ in the offline permutation σ,
2. v is matched to some u,
3. v′ is not matched to any vertex that occurs before u in π, and
4. any vertex v′′ ∈ NG(u) occurring between v and v′ in σ is matched by online-match to a

vertex occurring before u in the arrival order π.
Intuitively, this means that, if v is removed from the graph, then v′ would be matched to u

by online-match. Our formalisation of this definition can be found in Listing 2. Note: the
omitted arguments in the text, G, M, π, σ, and u are usually clear from the context.

Now that we are done with the definition of shifts-to, we are ready to describe our
characterisation of the path whose edges form the symmetric difference of the two matchings
computed by online-match. We characterise it using the following functions:

zig(G,M, v, π, σ) ≡

{
v#zag(G,M, u, π, σ) if {v, u} ∈ M
[v] otherwise

zag(G,M, u, π, σ) ≡

{
u#zig(G,M, v′, π, σ) if {v, u} ∈ M, for some v, and v shifts-to v′

[u] otherwise

As the names of the functions indicate, the path zig-zags between the online and the
offline sides of the graph, going down the online ordering. This is indicated in Fig. 1j. The
formalisation of zig-zag is given in Listing 3. Note that the formalisation has extra cases
for when the second argument is not a matching: this is to ensure termination, which is
not straightforward, as the definite descriptions are not well-defined in these cases. The
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Listing 4: Formalising the specification of online-match’s output in Isabelle/HOL.
definition r a n k i n g−matching :: " ' a graph ⇒ ' a graph ⇒ ' a l i s t ⇒ ' a l i s t ⇒ boo l " where

2 " r a n k i n g−matching G M π σ ≡ graph−matching G M ∧
b i p a r t i t e G ( s e t π) ( s e t σ ) ∧ maximal−matching G M ∧

4 (∀u v v ' . ({u , v} ∈ M ∧ {u , v ' } ∈ G ∧ i n d e x σ v ' < i n d e x σ v ) −→
(∃u ' . {u ' , v ' } ∈ M ∧ i n d e x π u ' < i n d e x π u ) ) ∧

6 (∀u v u ' . ({u , v} ∈ M ∧ {u ' , v} ∈ G ∧ i n d e x π u ' < i n d e x π u ) −→
(∃v ' . {u ' , v ' } ∈ M ∧ i n d e x σ v ' < i n d e x σ v ) ) "

termination relation encodes the intuition that, while zig-zagging, the path also goes down
the ordering of online vertices. More formally, because this is a mutually recursive function,
we have to provide an order that relates the argument passed to recursive calls of zag
from zig and the other way around. For evaluating zig(G,M, v, π, σ), we need a call to
zag(G,M, u, π, σ), in which case the relation holds iff v and u satisfy
1. {v, u} ∈ online-match(G, π, σ) and
2. if there is v′, s.t. v shifts-to v′, then σ(v) < σ(v′).
For evaluating zag(G,M, u, π, σ), we need a call to zig(G,M, v′, π, σ), in which case the
relation holds iff u and v′ satisfy
1. there is v s.t. {v, u} ∈ online-match(G, π, σ) and
2. v shifts-to v′ and σ(v) < σ(v′).

Another challenge for formalising the proof of Lemma 3 is devising a non-recursive
characterisation of the properties of the matching computed by online-match, which would be
enough for proving the lemma, yet more abstract than the actual specification of the algorithm.
This characterisation can be intuitively described as follows: M is a ranking-matching w.r.t.
G, σ, and π iff
1. G is bipartite w.r.t. σ and π,
2. M is a maximal matching w.r.t. G,
3. every vertex from u ∈ π is matched to the unmatched vertex from σ at u’s arrival, to

which it is connected, with the lowest rank in σ, and
4. no vertex from σ “refuses” to be matched.
The formal specification is given in Listing 4. It should be clear that the following properties
hold for ranking-matching.

▶ Proposition 1. If G be a bipartite graph w.r.t. σ and π, then
1. online-match(G, π, σ) is a ranking-matching w.r.t. G, σ, and π,
2. if M is a ranking-matching w.r.t. G, σ, and π, then it is a ranking-matching w.r.t. G, π,

and σ, and
3. if M and M′ are both ranking-matchings w.r.t. G, σ, and π, then M =M′.

This specification of online-match makes our proofs about online-match much simpler, as
it allows us to gloss over many of the computational details of the algorithm. In particular,
it allows us to avoid nested inductions, especially when using the I.H. of Lemma 3.

Now that we have characterised the difference between the matchings computed by
online-match before and after removing a vertex, as well as the main properties satisfied by
matchings computed by online-match, we are ready to present the proof that the competit-
iveness for bipartite graphs with perfect matchings lifts to general bipartite graphs. There
are two main ideas to our proof. The first one is that we show that the output of zig, for
some online vertex u, which is matched to an offline vertex v, stays the same when offline
vertices are removed from the graph and the matching, if those offline vertices are all ranked
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3:12 A Formal Analysis of RANKING

lower than v. Graphically, this is clear. For instance, in Fig. 1j, if we remove the vertex
v1 from the graph and the matching, the result of zig applied to u2, w.r.t. to the modified
graph and matching, will be the same as its output w.r.t. the old graph and matching.

▶ Lemma 4. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π, s.t.
there is v, where {v, u} ∈ M. Consider a set of vertices U ′ ⊆ π, s.t. for all u′ ∈ U ′

we have that π(u′) < π(u). Let M be a ranking-matching w.r.t. G, π, and σ. We have
that zig(G,M, u, σ, π) = zig(G \ U ′,M\ U ′, u, σ, π) and zag(G,M, v, σ, π) = zag(G \ U ′,M\
U ′, v, π, σ).

We do not prove this lemma here: the proof depends on an involved case analysis of the
behaviour of shifts-to, and we describe below similar case analyses, which convey the difficulty
of translating such obvious graphical arguments into proofs. Interested readers, however,
should refer to the accompanying formal proof.

The second idea is that we exploit the symmetry between the online and the offline
vertices. This is encoded in the following relationship between zig and zag.

▶ Lemma 5. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π. Let H be
G \ {u}. Let M be a ranking-matching w.r.t. G, π, and σ, and M′ be a ranking-matching
w.r.t. H, σ, and π. Let v be a vertex s.t. {v, u} ∈ M. We have that zig(H,M′, v, π, σ) =
zag(G,M, v, σ, π).

Before we discuss the proof, we first show a graphical argument of why the lemma holds.
Fig. 1j and 1k show an example of how zig and zag would return the same list of vertices
if invoked on the same vertex once on the offline side, and another time on the online
side. In the first configuration, zag(G,M, v2, σ, π) chooses u3, because in M, we have that
v2 is matched to u2, and u2 shifts-to u3. Then the rest of the recursive calls proceed as
shown in the figure. When the online and offline sides are flipped, as shown in Fig. 1k,
zig(H,M′, v2, π, σ), where H denotes G \ {u2}, will also choose u3 because, this time, it will
be matched to v2 in M′, which is a ranking-matching for H. As we will see in the proof,
this graphical argument is much shorter than the corresponding textual proof, let alone the
formal proof.

Proof. Our proof is by strong induction on the index of v. Let all the variable names in the
I.H. be barred, e.g. the graph is G. Our proof is done by case analysis. We consider 3 cases:
1. we have vertices u′, v′, s.t. {v, u′} ∈ M′ and {u′, v′} ∈ M,
2. we have a vertex u′, s.t. {v, u′} ∈ M′ and there is no v′ s.t. {u′, v′} ∈ M, and
3. there is no vertex u′, s.t. {v, u′} ∈ M′.

We focus on the first case, as that is the one where we employ the I.H. To apply the
I.H., we use the following assignments of the quantified variables. G 7→ G \ {u, v}, π 7→ π,
σ 7→ σ, u 7→ u′, v 7→ v′, M 7→ M \ {u, v}, and M′ 7→ M′ \ {v, u′}. From the I.H., we get
zig(H,M′, v, π, σ) = zag(G,M, u, σ, π). This proof is then finished by Lemma 4. ◀

We are now ready to prove a lemma that immediately implies Lemma 3.

▶ Lemma 6. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π. Let H be
G \ {u}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching
w.r.t. H, σ, and π. We have that M⊕M′ = zig(G,M, u, σ, π)4 or M =M′.

4 We abuse the notation: although zig(G,M, u, σ, π) is the list of vertices in the path, we use it here to
denote the edges in the path.
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Proof. Our proof is by strong induction on |G|. Again, let all the variable names in the I.H.
be barred. We consider two cases, either u /∈ V(M) or u ∈ V(M). In the former case, the
lemma follows immediately, since online-match will compute the same matching.

For the second case, we instantiate the I.H. as follows: G 7→ G \ {u}, M 7→ M′,
M′ 7→ M\ {v, u}, π 7→ σ, σ 7→ π, and u 7→ v, where v is some vertex s.t. {v, u} ∈ M, which
must exist since u ∈ V(M).5 To show that the I.H. is usable in this case, we need to show
that:
1. M is a ranking-matching w.r.t. G, π, and σ, and
2. M′ is a ranking-matching w.r.t. H, π, and σ

. The first requirement follows from the assumption that M′ is ranking-matching w.r.t. H,
σ, and π, and the fact that ranking-matching is commutative w.r.t. the left and right parties
of the given graph. The second requirement follows from a property of ranking-matching,
which we do not prove here, stating that for any M that is a ranking-matching w.r.t. G, σ,
and π, and for any e ∈M, M−{e} is a ranking-matching w.r.t. G \ e, σ, and π.

Then, from the I.H. and since we know that v ∈ V(M), we have that either
1. M =M′ or
2. M⊕M′ = zig(G,M, u, σ, π).
In the former case, we have that M′ =M\ {u, v}, so v was not matched to anything in the
graph, after removing u. This means that there is no u′ for v s.t. u shifts-to u′, which means
that zig(G,M, u, σ, π) = [u, v]. From that, we have the lemma proved for this case, since
M⊕M′ = {v, u}.

In the second case, we have that M⊕M′ = zig(G \ {u},M′, v, π, σ). From Lemma 5,
we have zig(G \ {v},M′, v, π, σ) = zag(G,M, v, σ, π). From the definition of zig and since
{u, v} ∈ M, the lemma follows for this case. ◀

Proof of Lemma 3. Lemma 3 follows immediately from Lemma 6 and from Proposition 1.
◀

5.3 Finishing the Proof
The next step in our proof is to generalise the previous analysis to address the case when the
removed vertex is from the offline side of the graph. Although this is not considered by any
of the previous expositions, this generalisation is crucial for proving the competitive ratio for
general bipartite graphs, i.e. graphs that do not have a perfect matching.

▶ Lemma 7. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex v ∈ σ. Let H be
G \ {v}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching
w.r.t. H, σ, and π. We have that M⊕M′ = zig(G,M, v, π, σ) or M =M′.

The proof of this lemma is very similar to that of Lemma 3. However, we are able to reuse
all our lemmas that exploit the symmetry of the offline and online sides of the graphs, so
there is not much redundancy in our proofs.

Until now, we have primarily focused on the structural difference between matchings
computed by online-match before and after removing a vertex from the original graph. The
next step in the proof is to use that to reason about the competitiveness of online-match for
general bipartite graphs. The first step is proving the following lemma.

5 The instantiation of H follows implicitly from the other instantiations.
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Listing 5: Formalising the specification of make-perfect’s output in Isabelle/HOL.
function make−p e r f e c t−matching :: " ' a graph ⇒ ' a graph ⇒ ' a graph " where

2 "make−p e r f e c t−matching G M = (
i f (∃x . x ∈ Vs G ∧ x /∈ Vs M)

4 then make−p e r f e c t−matching (G \ {SOME x . x ∈ Vs G ∧ x /∈ Vs M}) M
e l s e G

6 )
" i f " f i n i t e G"

8 | "make−p e r f e c t−matching G M = G" i f " i n f i n i t e G"

▶ Lemma 8. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex x. Let H be
G \ {x}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching
w.r.t. H, σ, and π. We have that |M′| ≤ |M|.

Proof. Our proof is by case analysis. The first case is when x /∈ V(M). In this case we will
have that M =M′, which finishes our proof.

The second case is when x ∈ V(M). In this case, we have two sub-cases: either x ∈ π

or x ∈ σ. We only describe the first case here and the second is symmetric. Our proof
is by contradiction, i.e. assuming |M′| > |M|. From Lemma 6, we have that M⊕M′ =
zig(G,M, u, σ, π). Also note that, from Berge’s lemma, we will have that a subsequence of
zig(G,M, u, σ, π) is an augmenting path w.r.t. ⟨G,M⟩. We know from the definition of an
augmenting path that both its first and last vertices are not in the matching it augments.
Accordingly, we have that the first and last vertices of that subsequence of zig(G,M, u, σ, π)
are not in M. This is a contradiction, because all vertices in zig(G,M, u, σ, π), except
possibly the last one, are in V(M). ◀

Lastly, we show that, given a bipartite graph G and a maximum cardinality matching M
for that graph, we can recursively remove the vertices that do not occur in M. To do
that we define a recursive function, make-perfect, to remove these vertices and then prove
the following lemma by computation induction, using the computation induction principle
corresponding to make-perfect. Listing 5 shows the formalisation of that function.

▶ Lemma 9. Let G be a bipartite graph w.r.t. σ and π. Let M be a ranking-matching w.r.t.
G, σ, and π, and M′ be a ranking-matching w.r.t. make-perfect(G,M), σ, and π. We have
that |M′| ≤ |M|.

This last lemma leads to the final theorem below.

▶ Theorem 3. Let G be a bipartite graph w.r.t. σ and π. Let M be a maximum cardinality
matching for G. We have that 1− (1− 1

|M|+1 )|M| ≤ ER∼RANKING(G,π)[|R|]/|M|.

Proof. This follows immediately from Lemma 9, Theorem 1, and the fact that the size of a
maximum cardinality matching for make-perfect(G,M) is the same as the size ofM, ifM is
a maximum cardinality matching for G. ◀

5.4 Proving Lemma 2
Until now we have not discussed how we formalised Lemma 2 – we believe it better fits
here as its proof is a combinatorial argument. Graphically, Fig. 3 shows some instances of
Lemma 2 for v = v3 and M(v3) = u1. No matter where v3 is put, u1 is always matched to a
vertex of rank at most 3. BM prove this Lemma by stating that the difference, if any, between
the matchings computed by online-match before and after moving the offline vertex is also
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Figure 3 Illustrating Lemma 2, where v = v3, and M(v3) = u1. Initially (3a), v3 is unmatched.
Moving it further down in the ranking (3b) does not change the partner of u1. Moving v3 up in the
ranking can either (3c) also leave u1 untouched, or (3d) change the partner of u1.

Listing 6: The formalisation of Theorem 4
abbreviation matching−i n s t a n c e−nat :: " nat ⇒ ( nat × nat ) graph " where

2 " matching−i n s t a n c e−nat n ≡ {{(0 , k ) , ( Suc 0 , k ) } | k . k < n}"

4 definition r a n k i n g−i n s t a n c e s−nat :: " nat ⇒ ( nat × nat ) graph s e t " where
" r a n k i n g−i n s t a n c e s−nat n ≡ {G. max−ca rd−matching G ( matching−i n s t a n c e−nat n ) ∧

6 f i n i t e G ∧ G ⊆ {{(0 , k ) , ( Suc 0 , l ) } | k l . k < 2∗n ∧ l < 2∗n}} "

8 definition a r r i v a l−o r d e r s :: " ( nat × nat ) graph ⇒ ( nat × nat ) l i s t s e t " where
" a r r i v a l−o r d e r s G ≡ p e r m u t a t i o n s−o f−s e t {( Suc 0 , l ) | l . ∃k . {(0 , k ) , ( Suc 0 , l ) } ∈ G}"

10

definition o f f l i n e−v e r t i c e s :: " ( nat × nat ) graph ⇒ ( nat × nat ) s e t " where
12 " o f f l i n e−v e r t i c e s G ≡ {(0 , k ) | k . ∃ l . { (0 , k ) , ( Suc 0 , l ) } ∈ G}"

14 definition comp−r a t i o−nat where
"comp−r a t i o−nat n ≡

16 Min {Min { measure−pmf . e x p e c t a t i o n
( wf−r a n k i n g . r a n k i n g−prob G π ( o f f l i n e−v e r t i c e s G) ) ca rd

18 / ca rd ( matching−i n s t a n c e−nat n )
|π . π ∈ a r r i v a l−o r d e r s G}

20 | G . G ∈ r a n k i n g−i n s t a n c e s−nat n}"

22 theorem comp−r a t i o−l i m i t ' :
assumes " c o n v e r g e n t comp−r a t i o−nat "

24 shows "1 − exp (−1) ≤ ( l im comp−r a t i o−nat ) "

an alternating path, where the ranks of the offline vertices traversed by that path increase.
Again, like other combinatorial parts of the analysis, graphically this is clearly evident:
Fig. 3d shows the difference between online-match(G, π, σ) and online-match(G, π, σ[v3 7→ 1]).
The blue edge was removed from the original matching, and the two red edges are added
instead. The three edges form an alternating path w.r.t. to the original matching.

However, to formalise this argument would be as difficult as for Lemma 3. Indeed, we found
out that there is no reason to construct the entire difference between the two matchings just
to reason about the rank of the vertex vi to which u is matched in online-match(G, π, σ[v 7→
i]). With this approach, the lemma follows almost immediately from the specification
ranking-matching. Hence, the formal proof is much shorter than BM’s approach.

6 The Competitive Ratio in the Limit

BM claim that the competitive ratio tends to 1−1/e if the matching’s size tends to infinity.
The main complication of showing that is to show that the competitive ratio converges, which
they do not address at all. We formalised the following.
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▶ Theorem 4. Let Mn denote {{(0, k), (1, k)} | 1 ≤ k ≤ n}. Let Γn denote graphs in the
power set of {{(0, k), (1, l)} | 1 ≤ k, l ≤ 2n} and that have Mn as a maximum cardinality
matching. Let πn denote S({(1, k) | 1 ≤ k ≤ 2n}). If Qn converges, then Qn tends to 1− 1/e

as n tends to ∞, where Qn denotes min(G,π)∈Γn×πn
ER∼RANKING(G,π)[|R|]/|Mn|.

We only prove the limit for a specific set of bipartite graphs, namely, Γn. We conjecture
that Γn is isomorphic to the set of all bipartite graphs with maximum cardinality matchings
of size n. Despite it being trivial, it was impressive that the part of the proof of this lemma
which pertains to arithmetic manipulation was almost completely automated using Eberl’s
tool [5]. The other part of the proof was to show that Γn is finite, which was tedious.

The more interesting part would be to show that Qn converges. In BM, they do not prove
that, yet they do not have it as an assumption in their theorem statement. One way to show
that this assumption holds is to use the theorem by KVV showing that no online algorithm
for bipartite matching has a better competitive ratio that 1− 1/e. However, formalising that
theorem is beyond the scope of our project.

7 Discussion

KVV’s paper on online bipartite matching was a seminal result in the theory of online
algorithms and matching. Its interesting theoretical properties, together with the emergence
of online matching markets have inspired a lot of generalisations to other settings, e.g. for
weighted vertices [2], online bipartite b-matching [12], the AdWords market [15], which
models the multi-billion dollars industry online advertising industry, and general graphs [7],
which models applications like ride-sharing. All of this means an improved understanding of
the theory of online-matching, and especially RANKING, is of great interest.

Indeed, as stated earlier, multiple authors studied the analysis of RANKING. We mention
here the most relevant five approaches:
1. Goel and A. Mehta [9], tried to simplify the proof and fill in a “hole” in KVV’s original

proof, in particular in the proof of Lemma 6 in KVV’s original paper,
2. Birnbaum and C. Mathieu [3] also provided a simple, primarily combinatorial, proof for

RANKING,
3. Devanur, Jain, and Kleinberg [4] whose main contribution was to model the algorithm

as a primal-dual algorithm, in an attempt to unify the approaches for analysing the
unweighted, vertex-weighted, and the AdWords problem,

4. Eden, Feldman, Fiat, and Segal [6], who tried to simplify the proof by using approaches
from theory of economics, and finally

5. Vazirani [19], who tried to simplify the proof of RANKING, in an attempt to use
RANKING, or a generalisation of it, to solve AdWords.

However, despite all of these attempts, the proof of RANKING’s correctness is still considered
difficult to understand, e.g. Vazirani’s latest trial to generalize it had a critical non-obvious
flaw in the combinatorial part of the analysis [19], which took months of reviewing to find
out.

We believe this formalisation serves two purposes. First, it is yet another attempt to
improve the understanding of this algorithm’s analysis. From that perspective, our work
achieved two things.
1. It further clarified the complexity of the combinatorial argument underlying the analysis

of this algorithm by providing a detailed proof for how one could generalise the com-
petitiveness of the algorithm from bipartite graphs with perfect matchings to general
bipartite graphs. We note that this part of the analysis is analogous to the “no-surpassing
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property” in Vazirani’s work [19], which is where his attempt to generalise RANKING to
AdWords fell apart, further confirming our findings regarding the complexity of this part
of the analysis.

2. We significantly simplified the analysis of the consequences of changing the ranking of an
offline vertex.

Another outcome of this project is interesting from a formalisation perspective. It
further confirmed the previously reported observation that it is particularly hard to formalise
graphical or geometric arguments and concepts. E.g. verbally, let alone formally, encoding the
intuition behind shifts-to, which is a primarily graphical concept, is extremely cumbersome.
We hypothesise that this is an inherent complexity in graphical concepts and arguments
which manifests itself when the graphical argument is put into prose.

One point which we believe would particularly benefit from further study is that of
modelling online computation. In its full generality, online computation is computation where
the algorithm has access only to parts of the input, which arrive serially, but not the whole
input. The way we model our algorithm is ad-hoc and does not capture that essence of online
computation in its full generality. It remains an interesting question how one can model
online computation, more generally. In addition to the theoretical interest, a satisfactory
answer to that question is essential if one is to show that the competitive ratio of RANKING
is optimal for online algorithms, which is a main result of KVV.
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