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Abstract
Directed sets are of fundamental interest in domain theory and topology. In this paper, we formalize
some results on directed sets in Isabelle/HOL, most notably: under the axiom of choice, a poset has
a supremum for every directed set if and only if it does so for every chain; and a function between
such posets preserves suprema of directed sets if and only if it preserves suprema of chains. The
known pen-and-paper proofs of these results crucially use uncountable transfinite sequences, which
are not directly implementable in Isabelle/HOL. We show how to emulate such proofs by utilizing
Isabelle/HOL’s ordinal and cardinal library. Thanks to the formalization, we relax some conditions
for the above results.
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1 Introduction

A directed set is a set D equipped with a binary relation ⊑ such that any finite subset X ⊆ D

has an upper bound in D with respect to ⊑. The property is often equivalently stated that
D is non-empty and any two elements x, y ∈ D have a bound in D, assuming that ⊑ is
transitive (as in posets).

Directed sets find uses in various fields of mathematics and computer science. In topology
(see for example the textbook [8]), directed sets are used to generalize the set of natural
numbers: sequences N→ A are generalized to nets D → A, where D is an arbitrary directed
set. For example, the usual result on metric spaces that continuous functions are precisely
functions that preserve limits of sequences can be generalized in general topological spaces
as: the continuous functions are precisely functions that preserve limits of nets. In domain
theory [1], key ingredients are directed-complete posets, where every directed subset has a
supremum in the poset, and Scott-continuous functions between posets, that is, functions
that preserve suprema of directed sets. Thanks to their fixed-point properties (which we
have formalized in Isabelle/HOL in a previous work [6]), directed-complete posets naturally
appear in denotational semantics of languages with loops or fixed-point operators (see for
example Scott domains [13, 15]). Directed sets also appear in reachability and coverability
analyses of transition systems through the notion of ideals, that is, downward-closed directed
sets. They allow effective representations of objects, making forward and backward analysis
of well-structured transition systems – such as Petri nets – possible (see e.g., [7]).

Apparently milder generalizations of natural numbers are chains (totally ordered sets)
or even well-ordered sets. In the mathematics literature, the following results are known
(assuming the axiom of choice):
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▶ Theorem 1 ([5]). A poset is directed-complete if (and only if) it has a supremum for every
non-empty well-ordered subset.

▶ Theorem 2 ([10]). Let f be a function between posets, each of which has a supremum
for every non-empty chain. If f preserves suprema of non-empty chains, then it is Scott-
continuous.

The pen-and-paper proofs of these results use induction on cardinality, where the finite
case is merely the base case. The core of the proof is a technical result called Iwamura’s
Lemma [9], where the countable case is merely an easy case, and the main part heavily uses
transfinite sequences indexed by uncountable ordinals.

In this paper, we formalize these results in the proof assistant Isabelle/HOL [11]. We
extensively use the existing library for ordinals and cardinals in Isabelle/HOL [4], but we
needed some delicate work in emulating the pen-and-paper proofs. In Isabelle/HOL, or any
proof assistant based on higher-order logic (HOL), it is not possible to have a datatype for
arbitrarily large ordinals; hence, it is not possible to directly formalize transfinite sequences.
We show how to emulate transfinite sequences using the ordinal and cardinal library [4]. As
far as the authors know, our work is the first to mechanize the proof of Theorems 1 and 2,
as well as Iwamura’s Lemma. We prove the two theorems for quasi-ordered sets, relaxing
antisymmetry, and strengthen Theorem 2 so that chains are replaced by well-ordered sets
and conditions on the codomain are completely dropped.

Related Work

Systems based on Zermelo-Fraenkel set theory, such as Mizar [2, 3] and Isabelle/ZF [12], have
more direct support for ordinals and cardinals and should pose less challenge in mechanizing
the above results. Nevertheless, a part of our contribution is in demonstrating that the power
of (Isabelle/)HOL is strong enough to deal with uncountable transfinite sequences.

Except for the extra care for transfinite sequences, our proof of Iwamura’s Lemma is
largely based on the original proof from [9]. Markowsky presented a proof of Theorem 1 using
Iwamura’s Lemma [10, Corollary 1]. While he took a minimal-counterexample approach, we
take a more constructive approach to build a well-ordered set of suprema. This construction
was crucial to be reused in the proof of Theorem 2, which Markowsky claimed without a
proof [10]. Another proof of Theorem 1 can be found in [5], without using Iwamura’s Lemma,
but still crucially using transfinite sequences.

Outline

The paper is organized as follows. In Section 2, we recall some basic concepts of order theory,
ordinals, and cardinals, as well as their prior formalizations [4, 6]. In Section 3, we tackle the
main formalization work of Iwamura’s Lemma. The axiom of choice plays two crucial roles
in the proof: first to obtain a well-ordering of a given set, and then to pick an upper bound
for every finite subset. Finally, we use induction on directed sets – enabled by Iwamura’s
Lemma – to prove the equivalence between directed-completeness and well-completeness
(Section 4), and the equivalence between Scott-continuity and preservation of suprema of
chains (Section 5).
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The formalization is available in the development version of the Archive of Formal Proofs
as entry Directed_Sets, consisting of 726 lines of Isabelle code in total. The work also
involves refactoring of our previous AFP entry Complete_Non_Orders1 for reformulating
continuity, completeness, well-foundedness and directed sets. The most changes are found in
the new files Continuity.thy and Directedness.thy (427 lines).

2 Preliminaries

We assume some familiarity with Isabelle/HOL and use its notations also in mathematical
formulas in the paper. We refer interested readers to the textbook [11] for more detail. Logical
implication is denoted by =⇒ or −→. We use meta-equality ≡ to introduce definitions and
abbreviations. By X :: ’a set we denote a set X whose elements are of type ’a, and
R :: ’a ⇒ ’a ⇒ bool is a binary predicate defined over ’a. Type annotations “:: _” are omitted
unless necessary. The application of a function f to an element x is written f x, and the
image of a set X under f is f ‘ X . The power set of X is denoted by Pow X .

2.1 Binary Relations

In our previous Isabelle/HOL formalization on binary relations [6], some notations and
properties of relations are defined as locales. Another approach is to use Isabelle’s type class
mechanism, which fixes a relation ≤ for each type so that one do not have to specify the
relation of concern as a parameter. The drawback of the class-based approach is that one
must use this relation ≤, which is too restrictive in the current development where we want
to use some well-ordering of a given set.

To illustrate the use of locales, we revisit some definitions we need for the current paper.
By related set we mean a set A with a binary relation (predicate) less_eq defined on A,
denoted by infix symbol ⊑. In Isabelle:

locale related_set =
fixes A :: ’a set and less_eq :: ’a ⇒ ’a ⇒ bool (infix ⊑ 50 )

Then reflexivity and transitivity are defined as locales by making corresponding assumptions
as follows:

locale reflexive = related_set + assumes x ∈ A =⇒ x ⊑ x

locale transitive = related_set +
assumes x ⊑ y =⇒ y ⊑ z =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x ⊑ z

Then quasi-ordered sets are defined as the combination of reflexivity and transitivity:

locale quasi_ordered_set = reflexive + transitive

In this paper, we may use terminologies assuming that the right side of ⊑ is “greater”,
and use ⊒ to denote the dual of ⊑, though the notation is not always available in the actual
Isabelle code. An (upper) bound of a set X is formalized by

definition bound X (⊑) b ≡ ∀x ∈ X . x ⊑ b for r (infix ⊑ 50 )

1 https://www.isa-afp.org/entries/Complete_Non_Orders.html
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Dually, bound X (⊒) b specifies a lower bound. A greatest (extreme) element in X is a bound
which is also in X:

definition extreme X (⊑) e ≡ e ∈ X ∧ (∀x ∈ X . x ⊑ e) for r (infix ⊑ 50 )

Dually, extreme X (⊒) e specifies a least element. The following generalization of well-ordered
sets frequently appears in this paper:

locale well_related_set = related_set +
assumes X ⊆ A =⇒ X ̸= {} =⇒ ∃e. extreme X (⊒) e

that is, a set A together with a relation ⊑ such that every non-empty subset of A has a least
element for ⊑. It can be also rephrased as the well-foundedness of the negation of ⊑. A
well-related set is necessarily reflexive, which can be formalized by a sublocale statement:

sublocale well_related_set ⊆ reflexive...

A well-ordered set is a well-related set where ⊑ is also antisymmetric (or equivalently a total
order). A pre-well-ordered set is a well-related set which is also a quasi-order.

2.2 Ordinals and Cardinality Library

Here we briefly recap the ordinal and cardinality library [4] of Isabelle/HOL.
The library chooses the set-oriented formulation of relations: type ’a rel is a shorthand

for (’a × ’a) set, and proposition (x,y) ∈ R denotes that x and y are in relation R :: ’a rel.
An order embedding of a relation (A,⊑) into (B,⊴) is a function f : A→ B such that

x ⊑ y ⇐⇒ f x ⊴ f y. The polymorphic relation ≤o :: ’a rel ⇒ ’b rel ⇒ bool over binary
relations is defined by R ≤o S if and only if there is an order embedding from R to S . Two
relations R :: ’a rel and S :: ’b rel are order isomorphic, R =o S , if R ≤o S and S ≤o R.

One of the important results from the ordinal library is that <o, the asymmetric part
of ≤o (defined by x <o y ≡ x ≤o y ∧ ¬ y ≤o x), seen as a relation over the same type, is
well-founded. In fact, ≤o forms a pre-well-order.

Conceptually, an ordinal can be seen as the equivalence class of well-orderings which are
order isomorphic to each other. In Isabelle/HOL, or in any other HOL-based systems, it is
not possible to have a set collecting well-orderings of different types. It is hence not possible
to have a type for general ordinals in Isabelle/HOL. Instead, any well-ordering of any type is
used to represent an ordinal in [4].

The cardinality of a set X is the least ordinal that is bijective with X . In Isabelle/HOL,
|X | :: ’a rel is defined as one of the well-orderings on X :: ’a set which are least with respect
to ≤o; there are well-orderings on X thanks to the well-order theorem (which is in turn due
to the axiom of choice), and there are least ones since ≤o is a pre-well-order.

3 Iwamura’s Lemma

The main idea for proving Theorem 1 is, given a directed set D, to construct a well-ordered
set whose supremum (which exists by assumption) is also a supremum for D. The difficulty is
that the usual methods to construct a well-ordered set, such as Zorn’s lemma, fail to achieve
this goal. The crucial idea brought by Markowsky [10, Corollary 1] is that this well-ordered
set can be obtained by a transfinite induction on the cardinality of the directed set, using
Iwamura’s Lemma [9]. Concretely, Iwamura’s Lemma states the following:
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▶ Theorem 3. Let (A,⊑) be a reflexive directed set. If A is infinite, then there exists a
transfinite sequence {Iα}α<|A| of subsets of A that satisfies the following four conditions:

directedness: Iα is directed for all α < |A|,
cardinality: |Iα| < |A| for all α < |A|,
monotonicity: Iα ⊆ Iβ whenever α ≤ β < |A|, and
range:

⋃
α<|A| Iα = A.

Note that, if we drop directedness, then the statement is equivalent to the well-ordering
theorem. The main point of Iwamura’s Lemma is that one can extend any subset of a directed
set into a directed one without changing the cardinality.

As in the original statement, ⊑ need not be transitive. Hence, directedness is formalized
as follows:

definition directed_set A (⊑) ≡ ∀X ⊆ A. finite X −→ (∃b ∈ A. bound X (⊑) b)
for less_eq (infix ⊑ 50 )

As the proof involves a number of (inductive) definitions, we build a locale for collecting
those definitions and lemmas.

locale Iwamura_proof = related_set +
assumes dir : directed_set A (⊑)

begin

Inside this locale, a related set (A,⊑) is fixed and assumed to be directed. The proof starts
with declaring, using the axiom of choice, a function f that chooses a bound f X ∈ A for
every finite subset X ⊆ A. This function can be formalized using the SOME construction:

definition f where f X ≡ SOME x. x ∈ A ∧ bound X (⊑) x

In Isabelle, SOME x. ϕ x takes some value x that satisfies the condition ϕ x , if such a value
exists; otherwise it takes an unspecified value. As we assume that any finite subset X ⊆ A

has an upper bound in A, we can prove that f satisfies the following specification:

lemma assumes X ⊆ A and finite X
shows f X ∈ A and bound X (⊑) (f X) ...

After obtaining this f , the proof constructs {Iα}α<|A| depending crucially on whether A

is countably or uncountably infinite.

3.1 Uncountable Case

We start with the core case, where A is uncountable. The original proof goes as follows:
Thanks to the well-order theorem, one can have a sequence {Aα}α<|A| of subsets of A that
satisfies the following three conditions:

cardinality: |Aα| < |A| for every α < |A|,
monotonicity: Aα ⊆ Aβ whenever α ≤ β < |A|, and
range: A =

⋃
α<|A| Aα.

Then it is shown that any subset of A, in particular Aα, can be monotonically extended to
a directed one Iα, such that |Iα| ≤ |Aα| · ℵ0. Since |Aα| < |A| and |A| is uncountable, it
follows that |Iα| < |A|.

In order to formalize the above argument in Isabelle/HOL, one of the challenges is that
we do not have a datatype for ordinals (that works for arbitrary types of A), and thus one
cannot formalize transfinite sequences as functions from ordinals.

ITP 2023
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3.1.1 Formalizing Transfinite Sequences

As we cannot formalize transfinite sequences directly, we take the following approach: We
just use A as the index set, and instead of the ordering on ordinals, we take the well-order
(⪯A) that is chosen by the cardinality library to denote |A|, as follows:

definition ... where (⪯A) x y ≡ (x,y) ∈ |A|

Recall that |A| is defined as one of the well-orders on A which are least with respect to ≤o,
in a set-oriented formulation of relations. We also introduce infix notations for ⪯A and its
asymmetric part ≺A as follows:

abbreviation ... where x ⪯A y ≡ (⪯A) x y
abbreviation ... where x ≺A y ≡ asympartp (⪯A) x y

Now we show that A≺ : A → Pow A serves the purpose of {Aα}α<|A| above, where

definition ... where A≺ a ≡ {x ∈ A. x ≺A a}

First, we prove the counterpart of the cardinality condition |Aα| < |A|.

lemma Pre_card: assumes a ∈ A shows |A≺ a| <o |A|

Proof. On pen and paper, one would first well-order A as {aα}α<|A| and chose Aα = {aβ}β<α;
then |Aα| < |A| would look obvious. Note that there is an implicit use of the fact that |A| is
least; otherwise α < |A| and |{aβ}β<α| = |A| is possible.

In the formalization, we derive this fact by connecting to the cardinality library. In
fact, A≺ a corresponds precisely to underS |A| a in terms of the library. Then lemma
card_of_underS from the library easily concludes the lemma. ◀

Second, the monotonicity condition, Aα ⊆ Aβ whenever α ≤ β, is easy:

lemma Pre_mono: monotone_on A (⪯A) (⊆) (A≺) ...

The final property we need is
⋃

α<|A| Aα = A. This is not as easy as the previous two
properties; note that it cannot hold for finite A. We first prove that if the well-ordering
(A,⪯A) has a greatest element, then A must be finite:

lemma extreme_imp_finite: assumes extreme A (⪯A) e shows finite A

Proof. Since e is greatest in A, we have A≺ e = A − {e}. On the other hand, |A − {e}| =o |A|
if A is infinite. This cannot happen due to Lemma Pre_card. ◀

This allows us to prove the desired property:

lemma infinite_imp_Un_Pre: assumes infinite A shows
⋃

(A≺ ‘ A) = A

Proof. The inclusion A≺ ‘ A ⊆ A is obvious. For the other direction, consider a ∈ A. Due
to Lemma extreme_imp_finite, a cannot be the greatest in A with respect to ⪯A. So there
exists some b ∈ A such that a ≺A b. Hence a ∈ A≺ b ⊆

⋃
(A≺ ‘ A). ◀



A. Yamada and J. Dubut 34:7

3.1.2 Expanding Infinite Sets into Directed Sets

Actually, the main part of the proof of Iwamura’s Lemma is about monotonically expanding
an infinite subset (in particular Aα) of A into a directed one, without changing the cardinality.
To this end, Iwamura’s original proof introduces a function F : Pow A → Pow A that expands
a set with upper bounds of all finite subsets. This approach is different from Markowsky’s
reproof (based on [14]) which uses nested transfinite induction to extend a set one element
after another.

definition F where F X ≡ X ∪ f ‘ Fpow X

Here, Fpow X is an Isabelle/HOL notation for the set of finite subsets of X . Hence, for any
finite subset Y of X , there is an upper bound f Y in F X . We take the ω-iteration of the
monotone function F , namely:

definition Flim (Fω) where Fω X ≡
⋃

i. F i X

We prove that {Fω (A≺ a)}a∈A serves the purpose of {Iα}α<|A| when A is uncountable.
Directedness condition is satisfied regardless of uncountability. More generally, Fω X is

directed for every X ⊆ A.

lemma Flim_directed: assumes X ⊆ A shows directed_set (Fω X) (⊑)

Proof. Take an arbitrary finite subset Y ⊆ Fω X. Since Y is finite, we inductively obtain
i ∈ N such that Y ⊆ F i X, i.e., Y ∈ Fpow (F i X). Hence we find an upper bound f Y ∈
F i+1 X ⊆ Fω X . ◀

The cardinality condition holds when |A| is uncountable. Using the cardinality library,
(un)countability is stated using the term natLeq, which denotes the well-order (N,≤), i.e.,
the ordinal ω or cardinality ℵ0.

lemma card_uncountable:
assumes a ∈ A and natLeq <o |A| shows |Fω (A≺ a)| <o |A|

Proof. Let X = A≺ a. The proof proceeds by case distinction on whether X is finite or not.
If X is finite, then every F i X is finite and thus Fω X is at most countable. Note that Fω X

is not necessarily finite. Nevertheless, since A is assumed to be uncountable, we conclude
|Fω X | <o |A|.

Now we show that if X is infinite, then |Fω X | =o |X |. This will conclude the claim as
|X | <o |A| due to Lemma Pre_card. First, we have |F X | =o |X |. This is easy using the
library fact card_of_Fpow_infinite: infinite X =⇒ |Fpow X | =o |X |. Then this property is
carried over to |F i X | =o |X | for every i ∈ N, proved by an easy induction.

Now, the following fact (card_of_UNION_ordLeq_infinite) is available in the library:

infinite B =⇒ |I | ≤o |B| =⇒ ∀i∈I . |A i| ≤o |B| =⇒ |
⋃

(A ‘ I )| ≤o |B|

Since X is infinite, we know |N| ≤o |X |, and we have proved that |F i X | ≤o |X | for all i ∈ N.
Thus, by taking I = N, A i = F i X , and B = X , we conclude |Fω X | ≤o |X | <o |A|. Since
X ⊆ Fω X , we also have |Fω X | =o |X |. ◀

Monotonicity is due to that of the building components:

lemma mono_uncountable: monotone_on D (⪯A) (⊆) (Fω ◦ A≺)

ITP 2023
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Proof. As A≺ is monotone (Lemma Pre_mono) and monotonicity is preserved by composition,
it suffices to show that Fω is monotone. It is easy to see that F is monotone. Then so is F i

for every i ∈ N, as i-th fold of a monotone function is still monotone. Finally, we conclude
the monotonicity of Fω by the following more general statement:

lemma Sup_funpow_mono:
fixes f :: ’a :: complete_lattice ⇒ ’a
assumes mono f shows mono (

⊔
i. f i) ...

which is proved easily. ◀

Finally, for the range condition, the infiniteness of A is sufficient.

lemma range_uncountable: assumes infinite A shows
⋃

((Fω ◦ A≺) ‘ A) = A

Proof. The (⊆)-direction is obvious. For the (⊇)-direction, take a ∈ A. As A is infinite, by
lemma extreme_imp_finite, we obtain b ∈ A such that a ∈ A≺ b. By definition, X ⊆ F X .
By induction, X ⊆ Fω X . We conclude a ∈ A≺ b ⊆ Fω (A≺ b) ⊆

⋃
((Fω ◦ A≺) ‘ A. ◀

3.2 Countable Case

Next we consider the case where A is countably infinite. We make the assumption by making
a subcontext within the locale Iwamura_proof :

context
assumes countable: |A| =o natLeq

begin

The assumption above means that there exists an order-isomorphism between (N,≤) and
(A,⪯A). In Isabelle/HOL, we can obtain the isomorphism as follows:

definition seq :: nat ⇒ ’a where seq ≡ SOME g. iso natLeq |A| g

lemma seq_iso: iso natLeq |A| seq ...

The definition of the predicate iso is given in the ordinal library. For our use, it suffices to
know a few consequences of seq_iso. Most importantly, seq is bijective between N and A:

lemma seq_bij_betw: bij_betw seq UNIV A

This means that A has been indexed by N: A = {seq 0 , seq 1 , seq 2 , . . . }. We turn the
sequence into a sequence of directed subsets of A: Seq 0 ⊆ Seq 1 ⊆ Seq 2 ⊆ . . . ⊆ A.

fun Seq :: nat ⇒ ’a set where
Seq 0 = {f {}}

| Seq (Suc n) = Seq n ∪ {seq n, f (Seq n ∪ {seq n})}

As Seq is a plain inductive function, it is an easy exercise to formally prove that {Seq n}n∈N
satisfies the four requirements of Iwamura’s Lemma. A more interesting formalization work
is in combining with the uncountable case. In Section 3.1, we took Fω ◦ A≺ as the candidate
of I, which is of type ’a ⇒ ’a set. On the other hand, Seq is of type nat ⇒ ’a set. To match
the types, we use the inverse seq−1 :: ’a ⇒ nat (inv seq in the standard Isabelle notation) of
the isomorphism seq. We define the final I as follows:
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definition I where I ≡ if |A| =o natLeq then Seq ◦ seq−1 else Fω ◦ A≺

Now we close the locale Iwamura_proof and state the final result in the global scope.

theorem (in reflexive) Iwamura:
assumes directed_set A (⊑) and infinite A
shows ∃I . (∀a ∈ A. directed_set (I a) (⊑) ∧ |I a| <o |A| ) ∧

monotone_on A (⪯A) (⊆) I ∧
⋃

(I‘A) = A

Proof. Inside the proof we reopen the proof locale:

interpret Iwamura_proof ...

By this we obtain I defined above. We conclude by proving that I satisfies the requirements.

directed_set (I a) (⊑): The uncountable case is by Flim_directed. For the countable case,
we show that Seq n is directed for every n ∈ N. Note that Seq n can be written X ∪ {f X}
for appropriate X . Then since f X is an upper bound of X and ⊑ is reflexive, f X serves
as an upper bound of any (finite) subset of X ∪ {f X}.
|I a| <o |A|: The uncountable case is by card_uncountable. For countable case, we just
prove that Seq n is finite for any n ∈ N, by easy induction.
monotone_on A (⪯A) (⊆) I : The uncountable case is by mono_uncountable. For the
countable case, we need another consequence of lemma seq_iso:

lemma inv_seq_mono: monotone_on A (⪯A) (≤) (seq−1) ...

We then combine with the monotonicity of Seq, which is easily proved by induction.⋃
(I ‘ A) = A: The uncountable case is by range_uncountable. For the countable case,

we need to prove
⋃

((Seq ◦ seq−1) ‘ A) = A. The (⊆)-direction is obvious. For the
other direction, take an arbitrary a ∈ A. We know a = seq (seq−1 a) ∈ Seq n with
n = Suc (seq−1 a). On the other hand, seq n ∈ A. Hence a ∈ Seq n = Seq (seq−1 (seq
n)) ⊆

⋃
(Seq ◦ seq−1) ‘ A. ◀

4 Directed Completeness

Now we formalize Theorem 1: A quasi-ordered set has a supremum for every directed subset,
if and only if it does so for every non-empty well-related subset. The statement is slightly
generalized, so that the underlying order need not be antisymmetric.

The property that certain class of subsets have suprema is called completeness. We
formalize completeness as follows:

definition ... where
C-complete A (⊑) ≡ ∀X ⊆ A. C X (⊑) −→ (∃s. extreme_bound A (⊑) X s)
for less_eq (infix ⊑ 50 )

Using this notation, we can formalize Theorem 1 concisely as follows:

theorem (in quasi_ordered_set) well_complete_iff_directed_complete:
(nonempty ⊓ well_related_set)-complete A (⊑) ←→ directed_set-complete A (⊑)

ITP 2023
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where nonempty A ≡ if A = {} then ⊥ else ⊤. For the (←−)-direction we must prove
that non-empty well-related sets are actually directed. Well-related sets clearly are connex,
i.e., every two elements are comparable. Under transitivity this is sufficient for directedness,
but we can actually prove a stronger statement without transitivity: every non-empty finite
subset X of a well-related set A has a greatest element.

lemma (in well_related_set) finite_sets_extremed:
assumes finite X and X ̸= {} and X ⊆ A
shows extremed X (⊑)

Proof. By induction on the number2 of elements in the finite set X . As X is nonempty,
by well-relatedness, it has a least element l. If X − {l} is empty, then l is the greatest in
X = {l} by reflexivity. Otherwise, by induction hypothesis, X − {l} has a greatest element
e. As l is least in X and in particular l ⊑ e, e is also greatest in X . ◀

For the (−→)-direction, we prove the following elaborated statement:

lemma (in quasi_ordered_set) directed_completeness_lemma:
assumes (nonempty ⊓ well_related_set)-complete A (⊑)

and directed_set D (⊑) and D ⊆ A
shows ∃x. extreme_bound A (⊑) D x

Proof. We apply induction on the cardinality |D| with respect to <o. To be more precise,
we are given fresh D for which we must prove ϕ D, where ϕ X denotes

directed_set X (⊑) =⇒ X ⊆ A =⇒ ∃x. extreme_bound A (⊑) X x

assuming ϕ D’ for any D’ with |D’ | <o |D|.
If D is finite, then D has an upper bound of itself, i.e., a greatest element, which serves

also as a supremum. So suppose that D is infinite. For this D, we apply Iwamura’s Lemma
and obtain I as follows.

obtain I where monotone_on D (⪯D) (⊆) I
and ∀a ∈ D. |I a| <o |D|
and ∀a ∈ D. directed_set (I a) (⊑)
and

⋃
(I ‘ D) = D ...

For every d ∈ D, since |I d| <o |D|, induction hypothesis ensures that I d has a supremum
in A. Thus, using the axiom of choice, we obtain a function s that picks a supremum for
I d. Note that as we do not assume that ⊑ is antisymmetric, suprema are not unique so the
axiom of unique choice cannot be used.

obtain s where d ∈ D =⇒ extreme_bound A (⊑) (I d) (s d) for d ...

Next we show that (s ‘ D,⊑) is well-related. To this end, we formalized the following
fact: monotone image of a well-related set is well-related.

lemma (in well_related_set) monotone_image_well_related:
fixes leB (infix ⊴ 50 )
assumes monotone_on A (⊑) (⊴) f shows well_related_set (f ‘ A) (⊴) ...

2 In Isabelle, card X is used to denote the number of elements in X , assuming that X is finite. In contrast,
|X| is the cardinality in more general sense.
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So now we need that s is monotone from (D,⪯D) to (A,⊑). This follows as I is monotone
from (D,⪯D) to (Pow D,⊆), and taking suprema is monotone from (Pow D,⊆) to (A,⊑).
This concludes that (s ‘ D,⊑) is well-related. Since D is infinite and thus non-empty, thanks
to the completeness assumption we obtain a supremum x of s ‘ D. We conclude by showing
that x is also a supremum of D.

To show that x is a bound of D, consider an arbitrary d ∈ D. Since D =
⋃

(I ‘ D), we
obtain d’ ∈ D such that d ∈ I d’ . As s d’ is a supremum of I d’ , we know d ⊑ s d’ . Since
s d’ ∈ s ‘ D and x is a supremum of s ‘ D, we have s d’ ⊑ x. By transitivity we conclude
d ⊑ x.

Finally, let b be another bound of D. For any d ∈ D, since I d ⊆ D, b is a bound of I d.
Since s d is least among the bounds of I d, we have s d ⊑ b. This shows that b is a bound of
s ‘ D. Since x is least among the bounds of s ‘ D, we conclude x ⊑ b. ◀

5 Scott-Continuity

The previous inductive proof can be strengthened to prove and generalize Theorem 2: A
function that preserves suprema of well-related subsets also preserves suprema of directed
subsets, if the domain has a supremum for every nonempty well-related sets. Markowsky
claimed Theorem 2 [10, Corollary 3], saying briefly that it follows from Iwamura’s Lemma
and transfinite induction. We did not find it that obvious (at least for mechanization), and
by completing the proof, we could slightly generalize Markowsky’s claim. Now it works
for quasi-ordered domain, relaxing antisymmetry; the codomain need not be complete in
any class, or even transitivity or reflexivity are not necessary; and chains are refined to
well-related sets.

Functions that preserve a particular class of suprema are called continuous. We formalize
the notion in Isabelle as follows:

definition ... where
C-continuous A (⊑) B (⊴) f ≡ f ‘ A ⊆ B ∧
(∀X s. C X (⊑) −→ X ̸= {} −→ X ⊆ A −→

extreme_bound A (⊑) X s −→ extreme_bound B (⊴) (f ‘ X) (f s))
for leA (infix ⊑ 50 ) and leB (infix ⊴ 50 )

A useful fact about continuous functions, is that, under a mild condition on the class C
– namely, all pairs of related elements are in the class – every C-continuous function is
monotone:

lemma (in reflexive) continuous_imp_monotone_on:
assumes C-continuous A (⊑) B (⊴) f and ∀i ∈ A. ∀ j ∈ A. i ⊑ j −→ C {i,j} (⊑)
shows monotone_on A (⊑) (⊴) f ...

This is the case for well_related_set-continuous functions.
The Isabelle statement of Theorem 2 then becomes:

theorem (in quasi_ordered_set)
assumes (nonempty ⊓ well_related_set)-complete A (⊑)
shows well_related_set-continuous A (⊑) B (⊴) f ←→ directed_set-continuous A (⊑) B

(⊴) f

As before, the (←−)-direction is obvious. For the (−→)-direction, our strategy is to prove
that f preserves the suprema of every directed set, at the same time we construct the suprema
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in the previous section. Precisely, into the statement of lemma directed_completeness_lemma
we add the following claim:

and well_related_set-continuous A (⊑) B (⊴) f =⇒
D ̸= {} =⇒ extreme_bound A (⊑) D x =⇒ extreme_bound B (⊴) (f ‘ D) (f x)

Proof. The claim is proved simultaneously with the previous statement by induction on |D|.
Our new goal is to show, given a supremum x of D in (A,⊑), that f x is a supremum of f ‘ D
in (B,⊴).

By monotonicity, f x is a bound of f ‘ D, so we show that it is least of such. Recall that,
in the previous section, a supremum of D is obtained as a supremum of a well-related set C ,
where C is a singleton set in the finite case, and is s ‘ D in the infinite case. Note that, as
we do not assume antisymmetry, this supremum is not necessarily the supremum x we are
given. Nevertheless, we know that x is also a supremum of C , thanks to the transitivity of
(A,⊑). As f preserves suprema of well-related sets, we also know that f x is a supremum of
f ‘ C in (B,⊴). Hence, by showing that any bound b of f ‘ D is also a bound of f ‘ C , we
can show f x ⊴ b and conclude the proof.

The finite case is obvious as C ⊆ D. Consider the infinite case: C = s ‘ D. We know that
b is a bound of f ‘ I d for every d ∈ D, as D =

⋃
(I ‘ D). Recall that, in the previous section,

s d is an inductively obtained supremum of I d. With |I d| <o |D|, by induction hypothesis
we know that f (s d) is a supremum of f ‘ I d. In particular f (s d) ⊴ b, concluding that b is
a bound of f ‘ s ‘ D = f ‘ C . ◀

6 Conclusion

In this paper, we formalized some results for directed sets: Iwamura’s Lemma to enable
induction arguments on them; Cohn’s theorem stating the equivalence between directed-
completeness and well-completeness; and Markowski’s corollary on Scott-continuity being
equivalent to the preservation of suprema of well-related chains. The proofs involved some
non-trivial formalization work on transfinite sequences that has been enabled by a careful
management of locales and contexts, and Isabelle/HOL’s libraries on cardinals and ordinals.
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