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Abstract
Many objects of interest in mathematics can be studied both analytically and algebraically, while at
the same time, it is known that analytic geometry and algebraic geometry generally do not behave
the same. However, the famous GAGA theorem asserts that for projective varieties, analytic and
algebraic geometries are closely related; the proof of Fermat’s last theorem, for example, uses this
technique to transport between the two worlds [13]. A crucial step of proving GAGA is to calculate
cohomology of projective space [12, 8], thus I formalise the Proj construction in the Lean theorem
prover for any N-graded R-algebra A and construct projective n-space as ProjA[X0, . . . , Xn]. This
is the first family of non-affine schemes formalised in any theorem prover.
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1 Introduction

Algebraic geometry concerns polynomials and analytic geometry concerns holomorphic
functions. Though all polynomials are holomorphic, the converse is not true; thus many
analytic objects are not algebraic, for example, {x ∈ C | sin(x) = 0} can not be defined
as the zero locus of a polynomial in one variable, for polynomials always have only finite
number of zeros. However, for projective varieties over C, the categories of algebraic and
analytic coherent sheaves are equivalent; a consequence of this statement is that all closed
analytic subspace of projective n-space Pn is also algebraic [13, 4]. A crucial step in proving
the above statement is to consider the cohomology of projective n-space Pn [12].

While one can define Pn over C without consideration of other projective varieties, it
would be more fruitful to formalise the Proj construction as a scheme and recover Pn as
ProjC[X0, . . . , Xn], since, among other reasons, by considering different base rings, one may
obtain different projective varieties, for example, for any homogeneous polynomials f1, . . . , fk,
Proj

(
C[X0,...,Xn]

(f1,...,fk)

)
defines a projective variety over C.

In this paper I describe a formal construction of ProjA in the Lean3 theorem prover [7]
by closely following [9, Chapter II]. The formal construction uses various results from the
Lean mathematical library mathlib, most notably the graded algebra and Spec construction;
this project has been partly accepted into mathlib already while the remaining part is still
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35:2 Formalising the Proj Construction in Lean

undergoing a review process. The code discussed in this paper can be found on GitHub1.
I have freely used the axiom of choice and the law of excluded middle throughout this
project since the rest of mathlib freely uses classical reasoning as well; consequently, the
final construction is not computable. This will not matter for the applications in mind, for
example calculating sheaf cohomology and the GAGA theorem.

As previously mentioned, Proj construction heavily depends on graded algebras and the
Spec construction. A detailed description of graded algebra in Lean and mathlib, as well as
a comparison of graded algebras with that in other theorem provers, can be found in [17];
for my purpose, I have chosen to use an internal grading for any graded ring A ∼=

⊕
Ai

so that the result of the construction is about homogeneous prime ideals of A directly
instead of

⊕
i Ai. The earliest complete Spec construction in Lean can be found in [2]

where the construction followed a “sheaf-on-a-basis” approach from [14, Section 01HR],
however, it differs significantly from the Spec construction currently found in mathlib where
the construction follows [9, Chapter II]; for this reason, I have also chosen to follow the
definition in [9, Chapter II]. Some other theorem provers also have or partially have the Spec
construction: in Isabelle/HOL, Spec is formalised by using locales and rewriting topology
and ring theory part of the existing library in [1], however, the category of schemes is yet to
be formalized; an early formalisation of Spec in Coq can be found in [3] and a definition of
schemes in general can be found in its UniMath library [16]; due to homotopy type theory of
Agda, only a partial formalisation of Spec construction can be found in [11]. Though some
theorem provers have defined a general scheme, I could not find any concrete construction of
a scheme other than Spec of a ring2. Thus this paper exhibits the first concrete formalised
example of non-affine scheme.

After explaining the mathematical details involved in the Proj construction in Section 2,
Lean code will be provided and explained in Section 3. For typographical reasons, some code
of formalisation will be omitted and marked as omitted or _ and some code presented in this
paper is presented with shortened notations for presentability and readability.

2 Mathematical details

In this section, certain familiarity with basic ring theory, topology and category theory will
be assumed. In Sections 2.1 and 2.2, definition of a scheme is explained in detail; Spec
construction will also be briefly explained to fix the mathematical approach used in mathlib.
Then by following the definition of a scheme step by step, the Proj construction will be
explained in Section 2.3.

2.1 Sheaves and Locally Ringed Spaces
Let X be a topological space and Opens(X) be the category of open subsets of X.

▶ Definition 1 (Presheaves [10]). Let C be a category. A C-valued presheaf F on X is
a functor Opens(X)op =⇒ C. Morphisms between C-valued presheaves F ,G are natural
transformations. The category thus formed is denoted as PSh(X,C).

In this paper, the category of interest is the category of presheaves of rings Psh(X,Ring).
More explicitly, a presheaf of rings F assigns to each open subset U ⊆ X a ring F(U)
whose elements are called sections on U and for any open subsets U ⊆ V ⊆ X, F assigns

1 url: https://github.com/leanprover-community/mathlib/pull/18138/
2 In this paper, all rings are assumed to be unital and commutative.

https://stacks.math.columbia.edu/tag/01HR
https://github.com/leanprover-community/mathlib/pull/18138/
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a ring homomorphism F(V ) → F(U) often denoted as resVU or simply with a vertical bar
s |U (a section s on V restricted to U). Examples of presheaves of rings are abundant:
considering open subsets of C, U 7→ {(continuous, holomorphic) functions on U} with the
natural restriction map defines a presheaf of rings. In these examples, compatible sections
on different open subsets can be glued together to form bigger sections on the union of the
said open subsets; this property can be generalized to arbitrary categories:

▶ Definition 2 (Sheaves [10, 14]). A presheaf F ∈ Psh(X,C) is said to be a sheaf if for any
open covering of an open set U =

⋃
i Ui ⊆ X, the following diagram is an equalizer

F(U)
∏
i F(Ui)

∏
i,j F (Ui ∩ Uj).

(resU
Ui

)
(

resUi
Ui∩Uj

)
(

res
Uj
Ui∩Uj

)
The category of sheaves Sh(X,C) is the full subcategory of the category of presheaves
satisfying the sheaf condition.

▶ Definition 3 (Locally Ringed Space [14, 9]). If OX is a sheaf of rings on X, then the
pair (X,OX) is called a ringed space; a morphism between two ringed space (X,OX) and
(Y,OY ) is a pair (f, ϕ) such that f : X → Y is continuous and ϕ : OY → f∗OX is a
morphism of sheaves where f∗OX ∈ Sh(Y ) assigns V ⊆ Y to OX(f−1(V )). A locally ringed
space (X,OX) is a ringed space such that for any x ∈ X, its stalk OX,x is a local ring where
OX,x = colimx∈U∈OpensX OX(U); a morphism between two locally ringed spaces (X,OX) and
(Y,OY ) is a morphism (f, ϕ) of ringed space such that for any x ∈ X the ring homomorphism
induced on stalk ϕx : OY,f(x) → OX,x is local.

From the previous definitions, if OX is a presheaf and U ⊆ X is an open subset, then
there is a presheaf OX |U on U by assigning every open subset V of U to OX(V ). This is
called restricting a presheaf; sheaves, ringed spaces and locally ringed spaces can also be
similarly restricted.

2.2 Definition of Affine Scheme and Scheme
The Spec construction

Let R be a ring and let SpecR denote the set of prime ideals of R. Then for any subset
s ⊆ R, its zero locus is defined as {p | s ⊆ p}. These zero loci can be considered as closed
subsets of SpecR; the topology thus formed is called the Zariski topology. Then a sheaf of
rings on SpecR can be defined by assigning U ⊆ SpecR to the ring{

s :
∏
x∈U

Rx | s is locally a fraction
}
,

where s is locally a fraction if and only if for any prime ideal x ∈ U , there is always an open
subset x ∈ V ⊆ U and a, b ∈ R such that for any prime ideal y ∈ V , b ̸∈ y and s(y) = a

b .
This sheaf O is called the structure sheaf of SpecR. (SpecR,O) is a locally ringed space
because for any prime ideal x ⊆ R, Ox

∼= Ax [9, Chapter 2, Proposition 2.2].

Scheme

▶ Definition 4 (Scheme). A locally ringed space (X,OX) is said to be a scheme if for
any x ∈ X, there is always some ring R and some open subset x ∈ U ⊆ X such that
(U,OX |U ) ∼= (SpecR,OSpecR) as locally ringed spaces. The category of schemes is the full
subcategory of locally ringed spaces where objects are schemes.

ITP 2023



35:4 Formalising the Proj Construction in Lean

Thus to construct a scheme, one needs the following:
a topological space X;
a presheaf O;
a proof that O satisfies the sheaf condition;
a proof that all stalks are local;
an open covering {Ui} of X;
a collection of rings {Ri} and isomorphism (Ui,OX |Ui) ∼= (SpecRi,OSpecR).

In Section 2.3, the Proj construction will be described following the steps above. Hence, the
Proj construction though appears to be a definition, is in fact a mixture of defining a ringed
space and a proof that the constructed ringed space is locally affine.

2.3 The Proj Construction
Throughout this section, R will denote a ring and A an N-graded R-algebra, in order to keep
notations the same as Section 3, the grading of A will be written as A, i.e. A ∼=

⊕
i∈N Ai as

R-algebras.

Topology

▶ Definition 5 (Proj A as a set). Proj A is defined to be
{p ∈ SpecA | p is homogeneous and relevant}, where

an ideal p ⊆ A is said to be homogeneous if for any a ∈ p and i ∈ N, ai is in p as well
where ai ∈ Ai is the i-th projection of a with respect to grading A;
an ideal p ⊆ A is said to be relevant if

⊕∞
i=1 Ai ̸⊆ p.

Similar to Spec construction in Section 2.2, there is a topology on Proj A whose close
sets are exactly the zero loci where for any s ⊆ A, zero locus of s is {p ∈ Proj A | s ⊆ p};
this topology is also called the Zariski topology. For any a ∈ A, D(a) denotes the set
{x ∈ Proj A | a ̸∈ x}.

▶ Theorem 6. For any a ∈ A, D(a) is open in Zariski topology and {D(a) | a ∈ A} forms a
basis of the Zariski topology.

Proof. Proofs can be found in [14, 00JM] and [9, Chapter 2, proposition 2.5] ◀

Structure sheaf

Let U ⊆ Proj A be an open subset. The sections on U are defined to be

O(U) =
{
s ∈

∏
x∈U

A0
x | s is locally a homogeneous fraction

}
,

where A0
p denotes the homogeneous localization of A at a homogeneous prime ideal p, i.e. the

subring of Ap of elements of degree zero, and s is said to be locally a homogeneous fraction if
for any x ∈ U , there is some open subset x ∈ V ⊆ U , i ∈ N and a, b ∈ Ai such that for all
y ∈ V , s(y) = a

b . Equipped with the natural restriction maps, O defined in this way forms a
presheaf; the sheaf condition of O is checked in the category of sets where it follows from
the definition of locally homogeneous fractions. This sheaf is called the structure sheaf of
Proj A, also written as OProjA
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Locally ringed spaces

▶ Theorem 7. The stalk of (Proj A,O) at a homogeneous prime relevant ideal p is isomorphic
to A0

p.

Proof. It can be checked that the function A0
p → OProj A,p defined by a

b 7→ ⟨D(b), x 7→ a
b ⟩ is

a ring isomorphism. Details can be found in [14, 01M4] ◀

Since A0
p is a local ring for any homogeneous prime ideal p, it can be concluded that

(Proj A,OProj A) is a locally ringed space.

Affine cover

▶ Lemma 8. For any x ∈ Proj A, there is some 0 < m ∈ N and f ∈ Am, such that x ∈ D(f),
i.e. f ̸∈ x.

Proof. Let x ∈ Proj A, by construction,
⊕∞

i=1 Ai ̸⊆ x. Thus there is some f = f1 +f2 + · · · ̸∈
x, then at least one fi ̸∈ x for otherwise f ∈ x. ◀

Thus, to construct an affine cover, it is sufficient to prove that for all 0 < m ∈ N and
homogeneous element f ∈ Am, (D(f),OProj A |D(f)) is isomorphic to (SpecA0

f ,OSpecA0
f
)

where A0
f is the subring of the localised ring Af consisting of elements of degree zero. By

fixing the previous notations, an isomorphism between locally ringed space is a pair (ϕ, α)
where ϕ is a homeomorphism between the topological spaces D(f) and SpecA0

f and α an
isomorphism between ϕ∗(OProj A |D(f)) and OSpecA0

f
.

▶ Theorem 9. D(f) ∼= SpecA0
f are homeomorphic as topological spaces.

The following proofs are an expansion of [9, II.2.5] while drawing ideas from [15, II.4.5].

Proof. Define ϕ : D(f) → SpecA0
f by p 7→ span

{
g
1 | g ∈ p

}
∩A0

f ; by clearing denominators,
one can show that ϕ(p) = span

{
g
fi |g ∈ p ∩Ami

}
. One can check that ϕ(p) is indeed a prime

ideal. ϕ is continuous by checking on the topological basis consisting of basic open sets of
SpecA0

f . The fact that basic open sets form a basis is already recorded in mathlib. Take
a
fn ∈ A0

f , then ϕ−1 (D (a/fn)) = D(f) ∩D(a).
D(f) ∩D(a) is a subset of ϕ−1 (D (a/fn)) because if y ∈ D(f) ∩D(a) and a/fn ∈ ϕ(y), i.e.
a/fn =

∑
i(ci/fni)(gi/1), then by multiplying suitable powers of f , afN

/1 = (
∑

i
cigif

mi)/1

for some N , so by definition of localisation, afNfM =
∑
i cigif

mi for some M implying
that a ∈ y. Contradiction.
On the other hand, if ϕ(y) ∈ D (a/fn) and a ∈ y, then a/1 ∈ h(y), contradiction because
a/fn = a/11/fn ∈ ϕ(y).

For the other direction, define ψ : SpecA0
f → D(f) to be x 7→

{
a | for all i ∈ N, am

i

fi ∈ x
}

.
For ψ to be well-defined, one needs to check that ψ(x) is a homogeneous prime ideal that is
relevant. Continuity of ψ depends on that ϕ and ψ are inverse to each other. D(f) with the
subspace topology has a basis of the form D(f) ∩ D(a), thus it is sufficient to prove that
preimages of these sets are open. By considering ϕ(D(f) ∩ D(a)) =

⋃
i ϕ(D(f) ∩ D(ai)),

each ϕ(D(f) ∩ D(ai)) is open because ϕ(D(f) ∩ D(ai)) = D (am
i /fi) in SpecA0

f . To prove
ϕ(D(f) ∩D(ai)) = D (am

i /fi), it is sufficient to prove ϕ−1(D (am
i /fi)) = D(f) ∩D(a) and this

is true by continuity of ϕ. Since ϕ and ψ are inverses to each other, preimage of D(f) ∩D(a)
is indeed ϕ(D(f) ∩D(a)). ◀

ITP 2023



35:6 Formalising the Proj Construction in Lean

Let ϕ and ψ be the continuous functions defined in the previous proof, U be an open
subset of SpecA0

f , s be a section on ϕ−1(U) and x ∈ U , then ψ(x) ∈ ϕ−1(U), hence s(ψ(x)) =
n
d ∈ A0

ψ(x) for some i ∈ N and n, d ∈ Ai. Keeping the same notation, a ring homomorphism

αU : ϕ∗(OProj |D(f))(U) → OSpecA0
f
(U) can be defined as s 7→

(
x 7→ ndm−1/fi

dm/fi

)
where

n, d ∈ Ai. Assuming αU is well-defined, it is easy to check that U 7→ αU is natural in U ,
hence α defines a morphism of sheaves.

▶ Lemma 10. For any open subset U ⊆ SpecA0
f , αU is well-defined; hence α defines a

morphism of sheaves.

Proof. It is clear that both the numerator and denominator have degree zero. Now dm
/fi ̸∈ x

follows from d ̸∈ ψ(x). Next αU (s) is locally a fraction: since s is locally a quotient, for any
x ∈ U , there is some open set V ⊆ ProjA such that ψ(x) ∈ V ⊆ ϕ−1(U) such that s(y) = a

b

for all y ∈ V where a, b ∈ An and b ̸∈ y, then to check αU (s) is locally quotient, use the open
subset ϕ(V ) and check that for all z ∈ ϕ(V ), αU (s)(z) = abm−1

bm . The proof of αU being a
ring homomorphism involves manipulations of fractions in localised rings, for more details,
see Section 3. ◀

In the other direction, if s ∈ OSpecA0
f
(U) and y ∈ ϕ−1(U), then ϕ(y) ∈ U , so s(ϕ(y)) can

be written as a
b where a, b ∈ A0

f ; then a can be written as na

fia for some na ∈ Amia and b as nb

fib

for some nb ∈ Amib . Hence, a ring homomorphism βU : OSpecA0
f
(U) → OProj |D(f) (ϕ−1(U))

can be defined as s 7→
(
y 7→ naf

i
b

nbfia

)
. Assuming β is well defined, it is easy to check that the

assignment U 7→ βU is natural so that β is a natural transformation.

▶ Lemma 11. For any open subset U ⊆ SpecA0
f , βU is well-defined; hence β defines a

morphism of sheaves.

Proof. naf ibb and nbf
ia have the same degree. nbf

ia ̸∈ y follows from b ̸∈ ϕ(y). Since s
locally is a fraction, there are open sets ϕ(y) ∈ V ⊆ U , such that for all z ∈ V , s(z) is
a/fl1
b/fl2 . Then on ϕ−1(V ) ⊆ ϕ−1(U), ψU (s)(y) is always af l2

bf l1 . Checking that βU is a ring
homomorphism involves manipulating fractions of fractions. ◀

▶ Theorem 12. ϕ∗(OProj A |D(f)) and OSpecA0
f

are isomorphic as sheaves.

Proof. By combining Lemma 10 and Lemma 11, it is sufficient to check α ◦ β and β ◦ α are
both identities.

β ◦ α = 1: let s ∈ OProj |D(f) (ϕ−1(U)), then for x ∈ ϕ−1(U)

αU (s) = x 7→
ndm−1

/fi

dm
/fi

,

where s(x) = n
d . Thus, by definition

βU (αU (s))(x) = ndm−1f i

dmf i
= n

d
= s(x).

α ◦ β = 1: let s ∈ OSpecA0
f
(U), then for x ∈ U

βU (s) = x 7→ naf
ib

nbf ia

where s(x) = na/fia

nb/fib
. Thus

ϕU (ψU (s))(x) =
naf

ib(nbf
ia)m−1

/fj

(nbf
ia)m

/fj
=

na/fia

nb/fib
= s(x). ◀

▶ Corollary 13. (Proj A,OProj A) is a scheme.
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3 Formalisation details

3.1 Homogeneous Ideal
Let A be an R-algebra and an ι-grading A : ι → R-submodules of A, ideal.is_homogeneous
is the proposition of an ideal being homogeneous and homogeneous_ideal is the type of all
homogeneous ideals of A [17]. Note that, by this implementation, homogeneous ideals are
not literally ideals, for this reason, Proj A cannot be implemented as a subset of SpecA.

1 def ideal.is_homogeneous : Prop :=
2 ∀ (i : ι) {|r : A|}, r ∈ I → (direct_sum.decompose A r i : A) ∈ I
3
4 structure homogeneous_ideal extends submodule A A :=
5 (is_homogeneous' : ideal.is_homogeneous A to_submodule)
6
7 def homogeneous_ideal.to_ideal (I : homogeneous_ideal A) : ideal A :=

I.to_submodule
8
9 lemma homogeneous_ideal.is_homogeneous (I : homogeneous_ideal A) :

10 I.to_ideal.is_homogeneous A := I.is_homogeneous'
11
12 def homogeneous_ideal.irrelevant : homogeneous_ideal A :=
13 ⟨(graded_ring.proj_zero_ring_hom A).ker, omitted⟩

3.2 Homogeneous Localisation
If x is a multiplicatively closed subset of ring A, then the homogeneous localisation of A
at x is defined to be the subring of localised ring Ax consisting of elements of degree zero.
This ring is implemented as triples {(i, a, b) : ι × Ai × Ai | b ̸∈ x} under the equivalence
relation that (i1, a1, b1) ≈ (i2, a2, b2) def⇐⇒ a1

b1
= a2

b2
in Ax. The quotient approach gives

an induction principle via quotients, though the construction still uses classical reasoning,
many lemmas will be automatic because of the rich API in mathlib about quotient spaces
already; compared to the subring approach, one would need to write corresponding lemmas
manually by excessively invoking classical.some and classical.some_spec which are APIs
in Lean to extract the data and the corresponding proof from an existentially quantified
proposition. One potential benefit of the subring approach is that different propositions can
be specified for different multiplicative subsets to customize what properties and attributes
are to be made explicit; for example for localisation away from a single element, it is useful
to make powers of denominators explicit. But this would sacrifice a universal approach to
homogeneous localisation for different multiplicative subsets so that auxiliary lemmas would
have to be duplicated. To maintain consistency and prevent duplication, this paper will
adopt the approach via quotient space. Before writing this paper, the subring approach has
also been tested. Comparing the two approaches proves that there is no significant difference
in the smoothness of two formalisations but the quotient approach has a smaller code size.

1 variables {ι R A: Type*} [add_comm_monoid ι] [decidable_eq ι]
2 variables [comm_ring R] [comm_ring A] [algebra R A]
3 variables (A : ι → submodule R A) [graded_algebra A]
4 variables (x : submonoid A)
5
6 structure num_denom_same_deg :=
7 (deg : ι) (num denom : A deg) (denom_mem : (denom : A) ∈ x)

ITP 2023



35:8 Formalising the Proj Construction in Lean

8
9 def embedding (p : num_denom_same_deg A x) : localization x :=

10 localization.mk p.num ⟨p.denom, p.denom_mem⟩
11
12 def homogeneous_localization : Type* := quotient (setoid.ker $ embedding A x)

Then if (y : homogeneous_localization A x), its value, degree, numerator and denomin-
ator can all be defined by using induction/recursion principles for quotient spaces:

1 variable (y : homogeneous_localization A x)
2
3 def val : localization x :=
4 quotient.lift_on' y (num_denom_same_deg.embedding A x) $ λ _ _, id
5
6 def num : A := (quotient.out' y).num
7 def denom : A := (quotient.out' y).denom
8 def deg : ι := (quotient.out' y).deg
9

10 lemma denom_mem : y.denom ∈ x := (quotient.out' y).denom_mem
11 lemma num_mem_deg : y.num ∈ A f.deg := (quotient.out' y).num.2
12 lemma denom_mem_deg : y.denom ∈ A y.deg := (quotient.out' y).denom.2
13 lemma eq_num_div_denom : y.val = localization.mk y.num ⟨y.denom, y.denom_mem⟩ :=
14 omitted

3.3 The Zariski Topology
In this section A will be graded by N and the grading denoted by A. Proj A is formalised a
structure:

1 structure projective_spectrum :=
2 (as_homogeneous_ideal : homogeneous_ideal A)
3 (is_prime : as_homogeneous_ideal.to_ideal.is_prime)
4 (not_irrelevant_le : ¬(homogeneous_ideal.irrelevant A ≤ as_homogeneous_ideal))

After building more API around projective_spectrum, the Zariski topology with a basis
of basic open sets can be formalised as:

1 def zero_locus (s : set A) : set (projective_spectrum A) :=
2 {x | s ⊆ x.as_homogeneous_ideal}
3
4 instance zariski_topology : topological_space (projective_spectrum A) :=
5 topological_space.of_closed (set.range (zero_locus A)) omitted omitted omitted
6
7 def basic_open (r : A) : topological_space.opens (projective_spectrum A) :=
8 { val := { x | r /∈ x.as_homogeneous_ideal },
9 property := ⟨{r}, set.ext $ λ x, set.singleton_subset_iff.trans $ not_not.symm⟩ }

10
11 lemma is_topological_basis_basic_opens : topological_space.is_topological_basis
12 (set.range (λ (r : A), (basic_open A r : set (projective_spectrum A)))) :=
13 omitted

3.4 Locally Ringed Spaces
mathlib provides Top.presheaf.is_sheaf_iff_is_sheaf_comp to check the sheaf condition by
composing a forgetful functor and Top.subsheaf_to_Types to construct subsheaf of types
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satisfying a local predicate [6]; OSpec in mathlib adopted this approach [5], and structure
sheaf of Proj will also be constructed in this way. is_locally_fraction is a local predicate
expressing “being locally a homogeneous fraction” in Section 2.3:

1 def is_fraction {U : opens (Proj A)} (f : Π x : U, A0
x ) : Prop :=

2 ∃ (i : N) (r s : A i), ∀ x : U, ∃ (s_nin : s.1 /∈ x.1.as_homogeneous_ideal),
3 f x = quotient.mk' ⟨i, r, s, s_nin⟩
4
5 def is_fraction_prelocal : prelocal_predicate (λ (x : Proj A), A0

x ) :=
6 { pred := λ U f, is_fraction f,
7 res := by rintros V U i f ⟨j, r, s, w⟩; exact ⟨j, r, s, λ y, w (i y)⟩ }
8
9 def is_locally_fraction : local_predicate (λ (x : Proj A), A0

x ) :=
10 (is_fraction_prelocal A).sheafify
11
12 def structure_sheaf_in_Type : sheaf Type* (Proj A):=
13 subsheaf_to_Types (is_locally_fraction A)

The presheaf of rings is also defined as structure_presheaf_in_CommRing and it is checked
that composition with the forgetful functor is naturally isomorphic to the underlying presheaf
of structure_sheaf_in_Type which implies that structure_presheaf_in_CommRing satisfies the
sheaf condition as well by using Top.presheaf.is_sheaf_iff_is_sheaf_comp.

1 def structure_presheaf_in_CommRing : presheaf CommRing (Proj A) :=
2 { obj := λ U, CommRing.of ((structure_sheaf_in_Type A).1.obj U), ..omitted }
3
4 def structure_presheaf_comp_forget :
5 structure_presheaf_in_CommRing A >>> (forget CommRing) ∼=
6 (structure_sheaf_in_Type A).1 :=
7 omitted
8
9 def Proj.structure_sheaf : sheaf CommRing (Proj A) :=

10 ⟨structure_presheaf_in_CommRing A, (is_sheaf_iff_is_sheaf_comp _ _).mpr
11 (is_sheaf_of_iso (structure_presheaf_comp_forget A).symm

(structure_sheaf_in_Type A).cond)⟩

Then following Theorem 7, stalk_to_fiber_ring_hom is a family of ring homomorphism∏
x OProj A,x → A0

x obtained by universal property of colimit with its right inverse as a family
of function homogeneous_localization_to_stalk:

1 def stalk_to_fiber_ring_hom (x : Proj A) :
2 (Proj.structure_sheaf A).presheaf.stalk x −→ CommRing.of A0

x :=
3 limits.colimit.desc (((open_nhds.inclusion x).op) >>> (Proj.structure_sheaf A).1)
4 omitted
5
6 def section_in_basic_open (x : Proj A) :
7 Π (f : A0

x), (Proj.structure_sheaf A).1.obj (op (Proj.basic_open A f.denom)) :=
8 λ f, ⟨λ y, quotient.mk' ⟨_, ⟨f.num, _⟩, ⟨f.denom,_⟩, _⟩, _⟩
9

10 def homogeneous_localization_to_stalk (x : Proj A) :
11 A0

x → (Proj.structure_sheaf A).presheaf.stalk x :=
12 λ f, (Proj.structure_sheaf A).presheaf.germ
13 (⟨x, homogeneous_localization.mem_basic_open _ x f⟩ : Proj.basic_open _ f.denom)
14 (section_in_basic_open _ x f)
15
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16 def Proj.stalk_iso' (x : Proj A) :
17 (Proj.structure_sheaf A).presheaf.stalk x ≃+* CommRing.of A0

x :=
18 ring_equiv.of_bijective (stalk_to_fiber_ring_hom _ x)
19 ⟨omitted, function.surjective_iff_has_right_inverse.mpr
20 ⟨homogeneous_localization_to_stalk A x, omitted⟩⟩

Hence establishing that Proj A is a locally ringed space:

1 def Proj.to_LocallyRingedSpace : LocallyRingedSpace :=
2 { local_ring := λ x, @@ring_equiv.local_ring _
3 (show local_ring A0

x , from infer_instance) _
4 (Proj.stalk_iso' A x).symm,
5 ..(Proj.to_SheafedSpace A) }

3.5 Affine cover

1 variables {f : A} {m : N} (f_deg : f ∈ A m) (x : Proj| D(f))

Spec.T and Proj.T denote the topological space associated with each locally ringed space. Let
0 < m ∈ N and f ∈ Am and x ∈ D(f), by following Theorem 9, the continuous function ϕ

is formalised as Proj_iso_Spec_Top_component.to_Spec where continuity is checked on basic
open sets:

1 namespace Proj_iso_Spec_Top_component
2 namespace to_Spec
3
4 def carrier : ideal A0

f :=
5 ideal.comap (algebra_map A0

f Af)
6 (ideal.span $ algebra_map A (away f) '' x.val.as_homogeneous_ideal)
7
8 def to_fun : Proj.T| D(f) → Spec.T A0

f :=
9 λ x, ⟨carrier A x, omitted /-a proof for primeness-/⟩

10
11 end to_Spec
12
13 def to_Spec (f : A) : Proj.T| D(f) −→ Spec.T Af :=
14 { to_fun := to_Spec.to_fun A f,
15 continuous_to_fun := omitted }

Similarly, ψ is defined as a function first, then the fact that ϕ and ψ are inverses to each other
is formalised next as to_Spec_from_Spec and from_Spec_to_Spec respectively. The continuity
of ψ hence follows.

1 namespace from_Spec
2
3 def carrier (q : Spec.T A0

f) : set A :=
4 {a | ∀ i, (quotient.mk' ⟨_, ⟨proj A i a ^ m, _⟩, ⟨f^i, _⟩, _⟩ : A0

f) ∈ q.1}
5
6 def carrier.as_ideal : ideal A := { carrier := carrier f_deg q, ..omitted }
7 def carrier.as_homogeneous_ideal : homogeneous_ideal A :=
8 ⟨carrier.as_ideal f_deg hm q, omitted⟩
9

10 def to_fun : Spec.T A0
f → Proj.T| D(f) :=

11 λ q, ⟨⟨carrier.as_homogeneous_ideal f_deg hm q, omitted, omitted⟩, omitted⟩
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12
13 end from_Spec
14
15 lemma to_Spec_from_Spec : to_Spec.to_fun A f (from_Spec.to_fun f_deg hm x) = x :=
16 omitted
17 lemma from_Spec_to_Spec : from_Spec.to_fun f_deg hm (to_Spec.to_fun A f x) = x :=
18 omitted
19
20 def from_Spec : Spec.T A0

f −→ Proj.T| D(f) :=
21 { to_fun := from_Spec.to_fun f_deg hm,
22 continuous_to_fun := omitted }
23
24 end Proj_iso_Spec_Top_component

The homeomorphism between D(f) and SpecA0
f is achieved by combining ϕ and ψ together.

1 def Proj_iso_Spec_Top_component:
2 Proj.T| D(f) ∼= Spec.T (A0

f) :=
3 { hom := Proj_iso_Spec_Top_component.to_Spec A f,
4 inv := Proj_iso_Spec_Top_component.from_Spec hm f_deg,
5 ..omitted /-composition being identity-/ }

Then by following Lemma 11, β is formalised as
Proj_iso_Spec_Sheaf_component.from_Spec.

1 namespace Proj_iso_Spec_Sheaf_component
2 namespace from_Spec

Let V be an open set in SpecA0
f and s be a section on V, then let y be an element of ϕ−1(V ),

1 variables (V : (opens (Spec A0
f))op) (s : (Spec A0

f).presheaf.obj V)
2 variables (y : ((@opens.open_embedding Proj.T D(f)).is_open_map.functor.op.obj
3 ((opens.map (Proj_iso_Spec_Top_component hm f_deg).hom).op.obj V)).unop)
4 -- This is but a verbose way of spelling y is in ϕ−1(V) for type checking reasons.

one can evaluate s(ϕ(y)) and represent the result as a fraction a
b where a = na

fia and b = nb

fib
.

1 -- Corresponding to evaluating a section in Lemma 11.s(ϕ(y))
2 def data : structure_sheaf.localizations A0

f

3 ((Proj_iso_Spec_Top_component hm f_deg).hom ⟨y.1, _⟩) :=
4 s.1 ⟨_, _⟩
5
6 -- s(ϕ(y)) = a

b
, this is a, see Lemma 11.

7 def data.num : A0
f := omitted

8
9 -- s(ϕ(y)) = a

b
, this is b, see Lemma 11

10 def data.denom : A0
f := omitted

Then naf
ib

nbfia is a homogeneous fraction in A0
y. The function thus defined is indeed a ring

homomorphism and locally a fraction. This sheaf morphism is recorded as from_Spec where
its naturality is checked automatically by Lean’s simplifier.

1 -- s 7→
(
y 7→ nafib/nbfia

)
, this is naf

ib , see Lemma 11.
2 def num : A :=
3 (data.num _ hm f_deg s y).num * (data.denom _ hm f_deg s y).denom
4
5 -- s 7→

(
y 7→ nafib/nbfia

)
, this is nbf

ia , see Lemma 11.
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6 def denom : A :=
7 (data.denom _ hm f_deg s y).num * (data.num _ hm f_deg s y).denom
8
9 def bmk : A0

y :=
10 quotient.mk'
11 { deg := (data.num _ hm f_deg s y).deg + (data.denom _ hm f_deg s y).deg,
12 num := ⟨num hm f_deg s y, _⟩,
13 denom := ⟨denom hm f_deg s y, _⟩,
14 denom_mem := omitted }
15
16 def to_fun.aux : ((Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj|

D(f)).presheaf).obj V :=
17 ⟨bmk hm f_deg V s, omitted /-being locally a homogeneous fraction-/⟩
18
19 def to_fun : (Spec A0

f).presheaf.obj V −→
20 ((Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf).obj V :=
21 { to_fun := λ s, to_fun.aux A hm f_deg V s, ..omitted /-ring homomorphism

proofs-/ }
22
23 end from_Spec
24
25 def from_Spec : (Spec A0

f).presheaf −→
26 (Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf :=
27 { app := λ V, from_Spec.to_fun A hm f_deg V,
28 naturality' := λ _ _ _, by { ext1, simp } }
29
30 end Proj_iso_Spec_Sheaf_component

By following Lemma 10, α is formalised as Proj_iso_Spec_Sheaf_component.to_Spec: let
U be an open set in SpecA0

f and s a section in ϕ∗(OProj |D(f))(U), then let y be any point
in U ,

1 namespace Proj_iso_Spec_Sheaf_component
2 namespace to_Spec
3 variable (U : (opens (Spec.T A0

f))op)
4 variable (s : ((Proj_iso_Spec_Top_component hm f_deg).hom _*
5 (Proj| D(f))).presheaf.obj U) -- (ϕ∗(OProj |D(f)))(U)

After evaluating s(ψ(y)), the result can be represented as n
d where n, d both have degree

i. Then ndm−1

fi and dm

fi are both homogeneous fractions of the same degree and hence
(ndm−1/fi)/(dm/fi) is an element of the twice localised ring

(
A0
f

)
y
. The function thus defined

is a ring homomorphism and locally a fraction. This sheaf morphism is recorded as to_Spec
where its naturality is checked automatically by Lean’s simplifier.

1 -- evaluating a section, this is s(ψ(y))
2 def hl (y : unop U) : homogeneous_localization A _ :=
3 s.1 ⟨((Proj_iso_Spec_Top_component hm f_deg).inv y.1).1, _⟩
4
5 -- s 7→

(
x 7→ ndm−1/fi/dm/fi

)
where n, d ∈ Ai, this is ndm−1

/fi, see Lemma 10.
6 def num (y : unop U) : A0

f :=
7 quotient.mk'
8 { deg := m * (hl hm f_deg s y).deg,
9 num := ⟨(hl hm f_deg s y).num * (hl hm f_deg s y).denom ^ m.pred, _⟩,

10 denom := ⟨f^(hl hm f_deg s y).deg, _⟩,
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11 denom_mem := _ }
12
13 def denom (y : unop U) : A0

f :=
14 quotient.mk'
15 { deg := m * (hl hm f_deg s y).deg,
16 num := ⟨(hl hm f_deg s y).denom ^ m, _⟩,
17 denom := ⟨f ^ (hl hm f_deg s y).deg,_⟩,
18 denom_mem := _ }
19
20 def fmk (y : unop U) : (A0

f)y :=
21 mk (num hm f_deg s y) ⟨denom hm f_deg s y, _⟩
22
23 def to_fun :
24 ((Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f))).obj U −→
25 (Spec A0

f).presheaf.obj U :=
26 { to_fun := λ s, ⟨λ y, fmk hm f_deg s y, omitted /-proof of being locally a

fraction-/⟩, ..omitted /-proof of being a ring homomorphism-/},
27 end to_Spec
28
29 def to_Spec :
30 (Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf −→
31 (Spec A0

f).presheaf :=
32 { app := λ U, to_Spec.to_fun hm f_deg U,
33 naturality' := λ U V subset1, by { ext1, simp } }
34 end Proj_iso_Spec_Sheaf_component

After checking from_Spec (β) and to_Spec (α) compose to identity, one establishes that
(D(f),OProj A) is isomorphic (SpecA0

f ,OSpecA0
f
) as locally ringed spaces. Hence Proj A with

structure sheaf ,OProj A is a scheme.

1 def Sheaf_component:
2 (Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf ∼=
3 (Spec A0

f).presheaf :=
4 { hom := Proj_iso_Spec_Sheaf_component.to_Spec A hm f_deg,
5 inv := Proj_iso_Spec_Sheaf_component.from_Spec A hm f_deg,
6 ..omitted /-composition is identity-/ }
7
8 def iso:
9 (Proj| D(f)) ∼= Spec A0

f :=
10 let H : (Proj| D(f)).to_PresheafedSpace ∼= (Spec A0

f).to_PresheafedSpace :=
11 PresheafedSpace.iso_of_components
12 (Proj_iso_Spec_Top_component hm f_deg) (Sheaf_component A f_deg hm) in
13 LocallyRingedSpace.iso_of_SheafedSpace_iso
14 { hom := H.1, inv := H.2, hom_inv_id' := H.3, inv_hom_id' := H.4 }
15
16 def Proj.to_Scheme : Scheme :=
17 { local_affine := omitted,..Proj }

This concludes the formalisation of the Proj construction for any N-graded rings. In [17],
R[X0, . . . , Xn] is endowed with a grading by its R-submodule of homogeneous polynomials
of fixed degrees so that projective n-space over R can be formalised as Proj.to_Scheme (λ
i, mv_polynomial.homogeneous_submodule (fin (n + 1)) R i); similarly, once the fact that
quotient operation induces a grading on the quotiented object is formalised, projective
varieties can also be defined using Proj.to_Scheme.
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3.6 Reflections on the formalisation
An example of a calculation

Most calculations in proofs of Theorem 9 and Lemmas 10 and 11 are omitted. I present
the details of verifying βU preserves multiplication to showcase the flavour of calculations
involved. Verifying that βU preserving zero and one is similar but slightly simpler while
preservation of addition is more cumbersome. Since α only involves one layer of fractions,
calculations are not as long.

Let x, y be two sections, the aim is to show βU (xy) = βU (x)βU (y), i.e. for all z ∈ ϕ−1(U),
βU (xy)(z) = βU (x)(z)βU (y)(z).

1 lemma bmk_mul (x y : (Spec A0
f).presheaf.obj V) :

2 bmk hm f_deg V (x * y) = bmk hm f_deg V x * bmk hm f_deg V y :=
3 begin
4 ext1 z,

by writing x(ϕ(z)) as ax/fix

bx/fjx , y(ϕ(z)) as ay/f
iy

by/f
jy and (xy)(ϕ(z)) = axy/f

ixy

bxy/f
jxy , one deduces that

axay/f
ix+iy

bxby/f
jx+jy = axy/f

ixy

bxy/f
jxy , by definition of equality in localised ring, it implies that, there is some

c
f l such that

axaybxyc

f ix+iy+jxy+l = axybxbyc

f ixy+jx+jy+l .

1 have mul_eq := data.eq_num_div_denom hm f_deg (x * y) z,
2 . . . -- simplification
3 erw is_localization.eq at mul_eq,
4 obtain ⟨⟨C, hC⟩, mul_eq⟩ := mul_eq, -- C is the c/fl above.
5 . . .

6
7 -- c ̸∈ z

8 have C_not_mem : C.num /∈ z.1.as_homogeneous_ideal := omitted,
9

10 -- setting up notations.
11 set a_xy := _, set i_xy := _, set b_xy := _, set j_xy := _,
12 set a_x := _, set i_x := _, set b_x := _, set j_x := _,
13 set a_y := _, set i_y := _, set b_y := _, set j_y := _,
14 set l := _,
15 . . .

By definition of equality in localisation again, there exists some n1 ∈ N such that

axaybxycf
ixy+jx+jy+l+n1 = axybxbycf

ix+iy+jxy+l+n1 (1)

1 obtain ⟨⟨_, ⟨n1, rfl⟩⟩, mul_eq⟩ := mul_eq,

The aim is to show

axyf
jxy

bxyf ix
= axf

jx

bxf ix
ayf

jy

byf iy
,

by Equation (1) and definition of equality in localised ring, cf l+n1 verifies this equality.
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1 suffices : (mk (a_xy * f ^ j_xy) ⟨b_xy * f ^ i_xy, _⟩ : localization.at_prime _)
2 = mk (a_x * f ^ j_x) ⟨b_x * f ^ i_x, _⟩ * mk (a_y * f ^ j_y) ⟨b_y * f ^ i_y, _⟩

:= omitted,
3 . . .

4 refine ⟨⟨C.num * f^(l + n1), _⟩, _⟩,
5 . . .

6 end

In totality, this is about ~100 lines of code by following essentially three lines of calculation
when done with pen-and-paper. Admittedly, the above code is not the most optimal, but the
magnitude is not greatly exaggerated. Strictly speaking, setting 13 variable names takes a
lot of code and is not necessary, but with readable variable names, rewriting is made much
simpler in the latter stage of this calculation. I think the following factors contribute to the
differences between formalisation and a pen-and-paper-proof:

Every element of a localised ring can be written as a fraction of a numerator and a
denominator is a corollary of the construction but does not follow straightly from its
definition. When written on a paper, it is often read “let a

b ∈ Ap” while in Lean it is
becomes intro x, set x_denom := . . ., set x_num := . . ., have eq1 : x.val = x_num /
x_denom := . . .. This problem is more noticeable when rewrite [eq1] is unsound. Thus,
many extra steps are required to set up the proof.

Elements of a (homogeneously) localised ring contain not only data, but proofs as well.
For example, the denominator of an element is a term ⟨d, some_proof⟩ of a subtype. This
makes rewrite less smooth to use, for equalities are often of the form h : d = d', thus
rewrite [h] is type theoretically unsound.

Terms of localization x or homogeneous_localization A x have to contain proofs to
make the definitions correct, thus constructing any term of these types requires many
proofs or disproofs of membership. Thus, a formalised calculation cannot be as liberal as
a pen-and-paper-proof when come to whether the terms are well-defined. The situation
can be partially mitigated by writing a simple tactic to try lemmas involving degrees of
an element in a graded object, for example automatically splitting a * b ∈ A (m + n) to
a ∈ A (m + n) to a ∈ A m and b ∈ A n and try recursively try to solve both. However,
if non-definitional equalities is involved, tactics would be less helpful, when the subterms
are in the wrong order, one needs to manually re-organise the subterms into its correct
order to use the customary tactic.

Not many high powered tactics are available for localised ring, for example ring will be
able to solve x * y = y * x and much more complicated goal in a commutative ring, but
ring cannot (and should not be able to) solve (a / b * c / d : localization _) = c /
b * a / d.

The first three bullet points are essentially all because formalisation requires more rigour
than that of pen-and-paper proofs; whether the requirement of extra rigour is beneficial
is another question and not in the scope of this paper. For the fourth bullet point, it is
definitely helpful to have a tactic automating many proofs, the catch is that equality in
localised ring is existentially quantified – a

b = a′

b′ if and only if ab′c = a′bc for some c in
a multiplicative subset, while proving ab′c = a′bc is easily mechanized by the ring tactic,
providing c to Lean is certainly hard to be made trivial by any tactic soon. Thus, a tactic
can only do so much without human input for now.
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On propositional equality

Originally, I expected propositional equalities that are not equal by definition such as
ϕ(ψ(y)) = y in Theorem 9 would pose a challenge, but the difficulty is less severe: indeed,
I only need to prove some redundant lemma like ϕ(ψ(y)) is in some open sets that clearly
contains y; the reason is that in this project I did not compare algebraic structures depending
on propositional equality, i.e. Oy and Oϕ(ψ(y)); but foreseeably, this difficulty will come back
when one starts to develop the theory of projective variety furtherer.

4 Conclusion

Since a large part of modern algebraic geometry depends on the Proj construction, much
potential future research is possible: calculating cohomology of projective spaces; defining
projective morphisms; Serre’s twisting sheaves to name a few. Other approaches to the
Proj construction also exist, for example, by gluing a family of schemes together; however,
since there is no other formalisation of the Proj construction, I could not compare different
approaches or compare capabilities of formalising modern algebraic geometry of different
theorem provers. Thus I would like to conclude this paper with an invitation/challenge –
state and formalise something involving more than affine schemes in your preferred theorem
prover; for the only way to know which, if any, theorem provers handle modern mathematics
satisfactorily is to actually formalise more modern mathematics.
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