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Abstract
We formalise the proof of the first case of Fermat’s Last Theorem for regular primes using the Lean
theorem prover and its mathematical library mathlib. This is an important 19th century result that
motivated the development of modern algebraic number theory. Besides explaining the mathematics
behind this result, we analyze in this paper the difficulties we faced in the formalisation process and
how we solved them. For example, we had to deal with a diamond about characteristic zero fields
and problems arising from multiple nested coercions related to number fields. We also explain how
we integrated our work to mathlib.
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1 Introduction

Fermat’s Last Theorem states that for n ≥ 3, the equation xn +yn = zn has no solutions with
x, y, z ∈ Z and xyz ̸= 0. This question remained unsolved for 300 years until the eventual
proof of this was completed by Andrew Wiles and Richard Taylor [12, 10] in 1994. This proof
requires a great deal of mathematical machinery in order to study deep connections between
number theory, algebra, geometry and analysis and its formalisation is currently out of reach.
However, certain special cases of this theorem were already known long before Wiles’ work.
First of all, it’s easy to prove that we can restrict to the case where the exponent n is an
odd prime p. Moreover, Kummer proved in 1847 that

▶ Theorem 1 (Kummer). Let p be a regular (odd) prime. Then xp + yp = zp has no solutions
with x, y, z ∈ Z and xyz ̸= 0.

Here regular means that p does not divide the class number of the cyclotomic field Q(ζp),
where ζp is a primitive p-th root of unity (i.e. ζp

p = 1 and ζk
p ̸= 1 for any 0 < k < p). For
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36:2 Fermat’s Last Theorem for Regular Primes

example, the only irregular primes less that 100 are 37, 59 and 67. It is worth noting that
currently there is no proof that there are infinitely many regular primes, but it is expected
that roughly 60% of primes are regular.

In this short paper we report on ongoing work, the flt_regular project, to formalise
Kummer’s proof using the Lean theorem prover [6]. We build upon the mathlib library [7] is
a large library of formalized mathematics for Lean. This library contains, for example, the
definition of a number field and that of its ring of integers. More specifically for this work,
the definitions and basic lemmas about class groups and class numbers have already been
formalised [3], including that the class number of a number field is finite, a nontrivial fact
that is required to even define regular primes properly.

Kummer’s proof can be split into two cases, depending on if p is allowed to divide xyz in
the theorem, or not. These are known in the field as the first case and the second case:

▶ Theorem 2 (Case I). Let p be a regular (odd) prime. Then xp + yp = zp has no solutions
with x, y, z ∈ Z and gcd(xyz, p) = 1.

Case II then changes gcd(xyz, p) = 1 to gcd(xyz, p) = p, and together the two cases
imply Kummer’s theorem. While the proofs of the first and second case are broadly similar,
and use many of the same techniques, results, and ideas, the proof of the second case uses
more delicate results about units in cyclotomic fields (including one known as Kummer’s
lemma), and is therefore more difficult to formalise, even though many underlying results
are the same. The formalisation of the second case is work in progress, so we will focus on
the first case from now on.

These results are by now viewed as classical results in algebraic number theory and are
covered in a number of works, we have followed the standard reference [11] for the most part.
We also made use of a blueprint, an informal document included with the project covering
the formalization targets in sufficient detail that the formalization progress could be tracked
against it.

For large parts of this project the formalisation process and the process of adding the
results to mathlib were done almost in parallel, see Section 4 below for more details.

2 Cyclotomic fields

The formalisation begins with the definition of cyclotomic fields and of more general of
cyclotomic extensions. This is necessary to even define regular primes, and also appear in
the first step of the high level overview of Kummer’s proof. The basic mathematical idea is
to work in the field Q(ζp), that is the field obtained by adding to Q a primitive p-th root of
unity (in C say). In such a field the left-hand-side of Fermat’s equation can be written as

xp + yp = (x + y)(x + ζpy) · · · (x + yζp−1
p ).

Using this, one can deduce information about the rational, and integral, solutions of Fermat’s
equation. The arithmetic properties of Q(ζp) (such as how integral elements decompose as
products of prime elements) are much more complicated than those of Q. Studying such
questions is the main subject of algebraic number theory. Fortunately for us, mathlib already
contains many of the basic definitions the we will need, such as algebras, number fields, rings
of integers and class groups. Unfortunately, mathlib did not contain examples of non-trivial
number fields, so these definitions also served as a good test of the existing API.

Let A and B be commutative rings. For an A-algebra B and a set S of positive natural
numbers, we say that B is a S-cyclotomic extension, if for every n ∈ S there exists a primitive
n-th root of unity in B and moreover that B is generated over A by the n-th roots of unity
(for n ∈ S). We hence define a class is_cyclotomic_extension, now part of mathlib.
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@[mk_iff] class is_cyclotomic_extension : Prop :=
(exists_prim_root {n : N+} (ha : n ∈ S) : ∃ r : B, is_primitive_root r n)
(adjoin_roots : ∀ (x : B), x ∈ adjoin A { b : B | ∃ n : N+, n ∈ S ∧

b ^ (n : N) = 1 })

The choice of working with n in N+ rather than in N is motivated by the fact that, even
if it requires us to insert certain coercions (for example to say that n is prime), the 0-th
cyclotomic extension is not well behaved and theorems have a neater statement when that
possibility is excluded.

We then define cyclotomic_field n K, where n is as above and K a field, and we
prove that the corresponding field extension is an instance of the is_cyclotomic_extension
class. To be precise, we define cyclotomic_field n K as the splitting field over K of the
n-cyclotomic polynomial.

@[derive [field, algebra K, inhabited]]
def cyclotomic_field : Type w := (cyclotomic n K).splitting_field

Here, the derive attribute makes the field, algebra K and inhabited instances from
splitting_field apply to cyclotomic_field. The is_cyclotomic_extension instance
must then be proved manually.

Mathematically, using a predicate in the way we use the class is_cyclotomic_extension
is uncommon, as one usually only works with the specific example cyclotomic_field n K
(and indeed all n-th cyclotomic extensions of a field K are isomorphic if n ̸= 0 in K), but
having a characteristic predicate is essential in the formalisation process, for example to
state that subextensions of a given cyclotomic extension generated by roots of unity are
still cyclotomic, and to be able to apply lemmas to them. We prove several results about
cyclotomic extensions and importantly, we prove that if S is finite and K is a number field,
then any S-cyclotomic extension of K is again a number field. This allows us to define the
usual cyclotomic number fields, such as Q(ζn).

After the setup defining such fields is done, the main task is then to prove that the ring
of integers of Q(ζn) is Z[ζn]. In general, for a field K, its ring of integers OK is the set of
elements of K that are roots of a monic polynomial with coefficients in Z. In particular,
the inclusion Z[ζn] ⊆ OQ[ζn] is clear, but equality is a nontrivial result that is specific to
cyclotomic extensions, and we proved it only when n = pk is a power of a prime. Proving
only this case is sufficient for us, indeed to prove Kummer’s theorem only the case n = p is
needed, and in addition the general case makes use of this result for the prime-power case.
This lemma is therefore a natural candidate for inclusion in a library that aims to include
results in as much generality as possible, i.e. mathlib in the case of Lean code. To prove
that OQ(ζ

pk ) = Z[ζpk ] we had to add a considerable amount of mathematics to mathlib, and
this was the first significant milestone of the project. This required expanding the existing
API for the norm and trace of elements of a number field, defining the discriminant of a
number field and proving results relating discriminants to bases of rings of integers, etc.,
all material that would appear in a first course on algebraic number theory. Amongst the
required results, we proved that, for k > 0 and p > 2 a prime, the discriminant of Q(ζpk )
is (−1)φ(pk)/2ppk−1((p−1)k−1), with φ the Euler’s totient function. Moreover, for p = 2 and
k > 1 the same formula holds. In mathlib we can use the fact that as natural numbers, we
have by convention, that 1/2 = 0 and 0 − 1 = 0. This allows us to give a simple formula for
the discriminant that applies in all cases:

ITP 2023
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lemma discr_prime_pow {p : N+} {k : N} {K L : Type*} {ζ : L} [field K]
[field L] [algebra K L] [hcycl : is_cyclotomic_extension {p ^ k} K L]
[hp : fact (p : N).prime] (hζ : is_primitive_root ζ ↑(p ^ k))
(hirr : irreducible (cyclotomic (↑(p ^ k) : N) K)) :
discr K (hζ.power_basis K).basis = (-1) ^ (((p ^ k : N).totient) / 2) *

p ^ ((p : N) ^ (k - 1) * ((p - 1) * k - 1))

Note that here K and L are only assumed to be fields (so, for example, they could have
characteristic p), which is why we need the additional assumptions, that hold if K = Q and
L = Q(ζpk ).

3 About the proof of case I

One issue that we often encountered came from a typeclass diamond resulting from multiple
inheritance paths when working with a field of characteristic zero (see [1] for more on
how this sort of issue arises and is resolved). Our issue arises as cyclotomic_field n K
is endowed with the instance algebra K (cyclotomic_field n K), but if K = Q, then
there is another instance algebra Q (cyclotomic_field n Q), coming from the fact that
cyclotomic_field n Q is a characteristic zero field, and hence a Q-algebra. These two
Q-algebra structures were propositionally, but not definitionally, equal. This caused some
friction when using results stated via the more general instance but Lean finds the one
resulting from characteristic zero. However, we were able to resolve this issue by changing
the way that splitting_field is defined.

Previously, these instances were lifted from a base field to the splitting field by direct
induction, and this gave us no definitional control of the field of this structure (specifically, the
qsmul and rat_cast fields in field (splitting_field f)). The fix for this was to lift every
field individually and put them together later, so that we can control these crucial definitional
equalities. As we are lifting to a quotient, we need to take care that these operations are well
defined, and this led to the introduction of distrib_smul: a typeclass carrying the action
of one type on another weak enough that the “obvious” map Q × K → K satisfies it, but
strong enough to guarantee that lifting this to the map Q × K[X]/(p(X)) → K[X]/(p(X))
is well defined.

Having developed the cyclotomic field framework we then moved to proving the technical
number theoretic lemmas which are required in the proof of case I. These involve the careful
study of units in the rings of integers of cyclotomic fields as well as certain ideals in these
rings. Before describing the necessary lemmas, let us highlight a recurring issue when dealing
with units.

Consider the following situation. Let R be an integral domain and K its field of fractions.
Given a unit r ∈ R×, we may want to think of r as an element of R×, R or K. In mathlib
these are all different types so we need coercions maps between them. Now for r as an
element of R× and K, we can easily work with its inverse, i.e, we can consider r−1, but
this is not possible when considered as an element R, since R is only a ring, so in general
elements don’t have a multiplicative inverse, but when coerced one step further to elements
of the field K we are once again able to define a well defined inverse function. These issues
arise often when working with ideals, which are submodules of R but when the proofs require
one to use units in several places. Note that it is not clear how to set up simp lemmas that
normalise elements, since sometimes we want to move from R to K and sometimes from R

to R×. The solution to this is to have simple lemmas relating the images of r−1 in R and K.
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lemma coe_coe_inv (u : R×) : ((u : R) : K)−1 = ((u−1 : R×) : R)

As an example of where this is used we have the following lemma, where K will denote
Q(ζp) and R = Z[ζp]. We will also denote ζp by ζ; note that hζ.unit’ is the same as ζ, but
considered in the units R×.

▶ Lemma 3. Let p ̸= 2 be a prime. Then every unit u ∈ Z[ζp]× can be written as u = xζn
p

for some n ∈ Z and x ∈ Z[ζp]× such that x ∈ R.

lemma unit_lemma_gal_conj (h : p ̸= 2) (hp : (p : N).prime) (u : R×)
(hζ : is_primitive_root ζ p) :
∃ (x : R×) (n : Z), is_gal_conj_real p (x : K) ∧

(u : R) = x * (hζ.unit’ ^ n : R×)

Here the integer n cannot be supposed to be in N, so x must be an element of a group
(namely R×), to allow integer-valued powers. On the other hand, the existence of x ∈ K is
not enough, so we both need R and R×. Finally, the Galois group acts on K, so we really
need the three different types to state the lemma cleanly. Note also that we state the informal
condition that x ∈ R to is_gal_conj_real p x, which says that x is fixed under complex
conjugation, where complex conjugation is thought of as an element of Gal(Q(ζp)/Q). In
particular, we can avoid the non-canonical coercion into the real numbers used implicitly in
standard proofs by reformulating what it means to be “real” in this setting.

This situation is perhaps not yet fully satisfactory, as manually rewriting to convert
between the same element coerced into different types forces us to work at a lower level than
we would when discussing the material informally. Another solution such as more automation
may be better in the long term.

For brevity, we will not list all of the lemmas required to prove case I, but full details
can be found on our project blueprint here: https://leanprover-community.github.io/
flt-regular/. The final result we prove is

theorem caseI {a b c : Z} {p : N} [fact p.prime] (h : is_regular_prime p)
(caseI : ¬ ↑p | a * b * c) :
a ^ p + b ^ p ̸= c ^ p

and a full sorry-free proof can be found in https://github.com/leanprover-community/
flt-regular/. We note that the case of p = 3 can be done without the tools we have
formalised here. In fact, in this case, the result was formalised by Ruben van de Velde at
https://github.com/Ruben-VandeVelde/flt using elementary methods.

We end this section with the definition of is_regular_prime. Here is_regular_number
says that a positive integer n is regular if n is coprime to the size of the class group of
Q(ζn) from which we define is_regular_prime as the condition that a prime number is
regular. We currently have a proof that p = 2 is a regular prime, but in general proving that
a certain prime is regular (with our current definition) requires us to compute the relevant
class number, which in general is difficult to do in mathlib, this is something that will be
addressed in the proof of case II, which will relate being regular to a more easily checkable
condition (factorizations of certain Bernoulli numbers). Explicit calculations of class numbers
of quadratic fields have been formalized [2], and while the cyclotomic fields we use here are
in general not quadratic, some of the same techniques may be of use when calculating class
numbers of cyclotomic fields directly.
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def is_regular_number [hn : fact (0 < n)] : Prop :=
n.coprime

(card (class_group (ring_of_integers (cyclotomic_field ⟨n, hn.out⟩ Q))))

4 Integration to mathlib

While working on a mathematical formalization such as this one, newly introduced material
is often not stable. For instance, new definitions are often changed as working with them
reveals deficiencies, and proof strategies are factored out into common lemmas or abstractions
when they are recognized after being seen several times. This means that when working on
such a project new material is initially not ready for use outside of the project as it may
change radically to suit the needs of the project. Nevertheless contributing material to a
large library is a way to ensure continued maintenance of the code, especially when the
upstream library changes. Thus contribution to a library may be desirable when the code
is sufficiently mature, despite the fact that adding such material to a large library requires
external review and may take time.

One slightly unusual aspect of our work is that we tried to include our results in mathlib
almost in real time, keeping the two projects closely in sync. This is in contrast to many
other similar projects where first the main theorem is formalised in its entirety and then
one begins the process of adding the results to mathlib, which usually results in a great
deal of modifications to the original code. For example the Perfectoid Project [4] and the
Liquid Tensor Experiment [5] both have huge for_mathlib folders with a lot of formalised
mathematics that in principle is supposed to be integrated into mathlib, but the code does
not yet have the required standards of quality and generality. This state is often reached as
authors do not have the time required to polish the code to the standard required and open
PRs to contribute it. Developing against a library with little to no backwards compatibility
maintained such as mathlib then means that maintaining the code of a large project can be a
painful job. For example, the Perfectoid Project is essentially stuck to a very old version of
mathlib, and updating it to the latest version is a nearly impossible task.

Our approach is to have a folder ready_for_mathlib where we put as much as results
as possible, opening PRs immediately. Even if this means sometimes proving certain results
in unneeded generality, we think this is the best strategy for a medium-sized project as this
one. Moreover, this also implies that our code is up to the standard of mathlib, that are
usually very high. This kept the size of the flt_regular project relatively small, but for
example the whole folder number_theory/cyclotomic (that is around 2000 lines of code)
in mathlib was written as a byproduct of our work. One other side effect is that updating
mathlib is a rather easy process: we are indeed using the latest version and we plan to keep
doing so. In practice we opened (and had accepted) more than 110 PRs, in various areas of
mathematics, ranging from linear algebra to number theory. A partial history of the PRs
opened can be seen at https://github.com/leanprover-community/flt-regular/wiki.

In order for large ecosystems of formal proofs, such as Lean’s mathlib and surrounding
libraries, to continue to scale and cover a significant portion of graduate level mathematics it
seems more automation will be necessary to ease the contribution and organisational burden.
The fields of program repair and automated refactoring (and more specifically the burgeoning
field of proof repair [9], with more emphasis on mathematical proofs) provide a model for
what should be possible and useful. For instance when a large library that a project such as
flt_regular depends on is updated, an automated summarisation of changes and required

https://github.com/leanprover-community/flt-regular/wiki
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modifications (or even automated patch creation and application) would reduce the manual
effort keeping up to date with a rapidly changing upstream. Automated style fixers and
code improvers (to simplify the process of golfing and generalizing working proofs or to
avoid anti-patterns) would reduce the effort required to contribute functional but less mature
proofs to a standard library. Automation to help more specifically with moving code between
libraries, by situating it correctly and updating local import paths would also improve the
workflow.

5 Future work

The next step in our work will be to give a full proof of Fermat’s Last Theorem in the regular
case. The main obstacle here is to prove Kummer’s lemma:

▶ Theorem 4. Let p be a regular prime and let u ∈ Z[ζp]×. If u ≡ a mod p for some a ∈ Z,
then there exists v ∈ Z[ζp]× such that u = vp.

There are several ways to prove this lemma, with modern approaches using class field
theory. For our purposes this approach would take is too far afield from our final goal. The
first step will be to use an alternative definition of regular prime, which instead of asking
that p does not divide the class number of Q(ζp) asks that p does not divide the numerator of
certain Bernoulli numbers. This definition also has the added benefit that it is easy to check
that a prime is regular, since Bernoulli numbers are easy to compute (and this is already in
mathlib). This then leaves the task of checking that these definitions are equivalent, which
can be done without using class field theory, but will still require significant work. Following
classical proofs the main obstacle in proving this equivalence of definitions (and Kummer’s
lemma) will be the need to understand the image in the p-adic completion of K the logarithm
of certain units. Amongst other things the final proof of case II will require the formalisation
of p-adic completions of number fields and their extensions. Furthermore we will require
analytic results for p-adic logarithms and their links to Bernoulli numbers.

Several results relating Bernoulli numbers to values of p-adic L-functions have been
formalized by Narayanan [8], these results may form a nontrivial part of the formalization of
case II, depending on the approach taken.
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