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Abstract
The Mizar language and its corresponding proof-checker offers the tactic of definitional expansions
in proof skeletons. This apparatus is rather fragile in the case of intensive overloading of notions
(which is widely observed e.g. in the field of algebra, but it is also present in the more fundamental
set-theory contexts). We propose the extension of this mechanism: the change should offer users
the more precise control over expansions via choosing the right definitional variant for the proof
under consideration, still letting the authors to retain the more conservative approach. As a rule,
the change will affect new Mizar texts, but obviously, it allows also for solving some context conflicts
caused by the original approach in the Mizar repository. The usefulness of our approach is shown by
a number of experiments carried out within MML, which is also affected by the change.
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1 Introduction

For almost fifty years the Mizar proof checking system together with its repository of
mathematical texts – the Mizar Mathematical Library (MML) was developed to follow
ordinary mathematicians’ writing style. This included a formalization style mimicking
human papers, the rigour in formal proofs acceptable by computer, and in the same time
relative flexibility, allowing to choose author’s favourite way of encoding. As systems evolved,
computerized proof assistants are closer to real-life use, with growing popularity of many
hammering techniques, but together with the more efficient proof automation we can loose
human verbosity of the proof. This could affect an interactive proof assistant input script to
be seen more like the collection of proof obligations for a theorem prover.

In mathematics, many notions can be defined in different ways, e.g., lattices can be
understood as abstract algebras with two binary operations over the same carrier, or as
posets with binary suprema and binary infima. The correspondence between such alternative
definitions is usually expressed in the form of theorems or corollaries. Moreover, the same
relations between certain types of mathematical objects can be expressed using various
symbolisms specific for the types of these objects. If we take for example the notion of the
equality for sets, relations, functions, finite sequences, etc., it can be expressed using either
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37:2 Implementing More Explicit Definitional Expansions in Mizar

Table 1 Definitional variants of the equality predicate.

∀A,B : (∀x : x ∈ A ⇔ x ∈ B) ⇔ A = B (1)
∀R1,R2 : (∀x,y : (x, y) ∈ R1 ⇔ (x, y) ∈ R2) ⇔ R1 = R2 (2)

∀f1,f2 : (dom(f1) = dom(f2) ∧ ∀x : x ∈ dom(f1) ⇒ f1(x) = f2(x)) ⇔ f1 = f2 (3)
∀f1:A→B,f2:A→B : (∀a : a ∈ A ⇒ f1(a) = f2(a)) ⇔ f1 = f2 (4)

∀f1:A×B→C,f2:A×B→C : (∀a,b : a ∈ A ∧ b ∈ B ⇒ f1(a, b) = f2(a, b)) ⇔ f1 = f2 (5)
∀F1,F2 : (len(F1) = len(F2) ∧ ∀n∈N : 1 ≤ n ≤ len(F1) ⇒ F1(n) = F2(n)) ⇔ F1 = F2 (6)

arbitrary sets, or ordered pairs, or domains and function applications, or lengths of sequences,
respectively. The corresponding statements could be represented in Table 1, where A, B, C

are sets, R1, R2 are binary relations, f1, f2 are functions, and F1, F2 are finite sequences. Due
to the Mizar subtyping, the choice of the variant strictly depends on the type arguments. For
mathematicians, such differences are negligible and so equivalent domains and symbolisms
can be used interchangeably and mixed fluently. In the case of the above listed variants of the
equality predicate [5], it is usually not needed to express directly which form of the statement
should be used to justify a certain goal. The situation is different, however, when one does
computer-aided mathematics under the control of proof-assistants. No matter which system
is being used, authors are always supposed to indicate, in a more or less precise way, which
version of the equality the program should apply to prove a statement in a given context.

In the Mizar system [1, 4], there are two methods to indicate which statements should
be used in the proof of a given inference: either explicit references to theorems or schemes
(theorems with free second-order variables, e.g., the scheme of separation), or using so-
called definitional expansions, when the verifier automatically tries to find out and utilize
appropriate definitions among all accessible definition statements. The latter are used in two
different contexts: to control the logical structure of proofs and to enhance the computational
power of the verifier [8]. In this paper we describe an extension of the language and the Mizar
proof checker that allows authors to explicitly declare which definitions (of the predicate,
with a keyword pred) should be expanded and according to which definitions proofs must be
verified. This new feature will give authors more control over the structures of proofs which
they send for verification.

The implementation of this extension requires changes in almost all basic modules of the
Mizar verifier: Parser controlling the lexical structure of a given article and generating the
parse tree of the text; MSM Processor – which identifies labels, variables, and constants;
Analyzer – performing type checking, resolving ambiguities and identifying objects and
operations; and Reasoner, controlling structures of proofs. The communication between
these modules is realized by several XML files; from our viewpoint, the most important
files are those created by Parser and MSM Processor: Parser generates .wsx files
which represent parse trees of processed articles. Then, MSM Processor generates .msx
files enriching .wsx files by the information about used labels, variables, and constants.
MSM, WSM, ESM, which stand for Weakly Strict, More Strict, and Even more Strict Mizar
respectively, are various XML data representation formats of the Mizar article, where ESM
combines both syntactic and semantic data and can be used independently by the dedicated
Mizar proof checking software [3]. Because our work extends the syntax of the Mizar language
and semantics of the system, we modified the grammar of these files adding XML elements to
store information about explicit references to expanded definitions.

Related work. In Coq, the unfold tactic replaces a defined term in the goal with its definition
using syntax unfold <term>. Unfolding of definitions (transparent, not opaque, constants)
is realized as δ-reductions (automatically), which replace variables defined in local contexts
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or constants defined in the global environment with their values. Unfolding on a hypothesis
in the context can be done with the syntax unfold <term> in <hypothesis>. In Isabelle,
unfold expands the given definitions throughout all goals; any chained facts provided are
inserted into the goal and subject to further rewriting. First, the given equations are used
directly for rewriting; then, the equations are passed through the attribute abs_def – to
ensure that definitions are fully expanded, regardless of the actual parameters that are
provided. Exactly the rules specified as arguments are considered in order to optional
fine-tuned decomposition of a proof problem [13]. In Lean, there are several ways to utilize
unfolding definitions and none of them is affected by imports (unlike in the case of Mizar).
Definitions can be unfolded explicitly on demand of users or can also be unfolded implicitly,
using the definitional equality relation that is built in to dependent type theory. Users
can use e.g., unfold dname or simp [dname], replacing all occurrences of dname with its
definition according to the definitional equations – theorems proven automatically by Lean
with each definition.1 Implicit unfolding of definitions can be used through an intro rule,
which is valid if the goal is made to become a general quantified formula.

2 Definitional expansions in proof skeletons

A well-known idea standing behind the process of creating proof interactively is a proof
sketch, finding all building blocks (hints) needed to follow the solution. This should facilitate
creating the proper structure of the proof (in Mizar we call this structure of proofs a proof
skeleton, in some other declarative proof languages this is referred to as a proof outline).
As the next step, authors should decide which available lemmas could be used to justify
intermediate proof steps (some of them can be reconstructed automatically). The choice of
these auxiliary facts has a big influence on the length and complexity of proofs. For example,
to prove the equality of two functions with the same domain, it is better to use the theorem
(4) from Table 1 than (3), because the reasoning about domains can be omitted. It is also
much better than (2), as the representation of those functions as sets of pairs can be avoided.
Moreover, proofs based on (3) and (4) require implications while a proof based on (2) requires
a bi-implication. In practice, mathematical papers often do not mention explicitly a theorem
used in a proof, relying on the context knowledge of the readers. The Mizar system tries
to mimic mathematicians’ style and in some contexts (when current goals to be proven are
atomic formulae) allows users not to refer explicitly to theorems which are needed to be used
in order to justify given statements; instead, it tries to find out, use and accept appropriate
definitions among all accessible definitions.

Definitional expansions allow to construct proofs (proof skeletons) according to the
formula which defines the notion or property being proven in a given goal. It can be seen as
an implicit reference to so-called definitional theorems – automatically generated for any new
definitions. As an example we can compare two proofs of the monotonicity of the (relation)
restriction, using two versions of the inclusion: first, using the general form valid for arbitrary
sets – see Listing 1 [11] and its variant for binary relations (Listing 2) [14]. Listing 3 presents
alternative, rather clumsy unfolding available: although valid and potentially useful, seems
not to be widely used in the MML (only six explicit references overall). The MML item
RELSET_1 itself is frequently imported, because its second definition – the predicate of the
equality for relations on sets – is quite handy, but then there is no mechanism preventing
unneeded implicit expansions. In total, this file is imported in *.def definientia files by 331
files; it is one fourth of 1275 in the case of RELAT_1 (but the ratio of definitions is 2 vs. 17).

1 As one of the reviewers pointed out, from our perspective the related mechanism is the same as in the
case of Coq, relying on δ-reduction.
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Listing 1 Definition of inclusion of sets
definition let A,B be set;

pred A c= B means :: TARSKI :def 3
for x being object st

x in A holds x in B;
end;

Listing 2 Definition of inclusion of relations
definition let P,R be Relation ;

redefine pred P c= R means :: RELAT_1 :def 3
for a,b being object st

[a,b] in P holds [a,b] in R;
end;

Listing 3 Definition of inclusion of typed relation
definition let X,Y be set; let R for Relation of X,Y; let Z be set;

redefine pred R c= Z means :: RELSET_1 :def 1
for x being Element of X, y being Element of Y holds

[x,y] in R implies [x,y] in Z;
end;

Listing 4 contains some skeletal statements: let x be object; and assume x in R|X;
which start the expansion of the inclusion according to the version related to arbitrary
sets. Listing 5 via let a,b be object; utilizes the version specific for binary relations.
An advantage of the latter approach is that we start the expansion with introducing two
constants a and b, which are necessary to reason about the restriction at once. In the former
proof, the related constants a and b had to be introduced by decomposing the constant x.
The latter proof is evidently more compact.

Listing 4 The proof with TARSKI expansion
for R being Relation

for X,Y being set st X c= Y holds
R | X c= R | Y

proof
let R be Relation ;
let X,Y be set such that

A1: X c= Y;
let x be object ;

:: expansion of inclusion predicate starts
assume

A2: x in R | X; then
consider a,b being object such that

A3: x = [a,b] by RELAT_1 :def 1;
A4: [a,b] in R by A2 ,A3 , RELAT_1 :def 11;

a in X by A2 ,A3 , RELAT_1 :def 11;
then a in Y by A1 , TARSKI :def 3;
hence x in R|Y by A3 ,A4 , RELAT_1 :def 11;

end;

Listing 5 The proof with RELAT_1 expansion
for R being Relation

for X,Y being set st X c= Y holds
R | X c= R | Y

proof
let R be Relation ;
let X,Y be set such that

A1: X c= Y;
let a,b be object ;

:: expansion of inclusion predicate starts
assume

A2: [a,b] in R | X;

A3: [a,b] in R by A2 , RELAT_1 :def 11;
a in X by A2 , RELAT_1 :def 11;
then a in Y by A1 , TARSKI :def 3;
hence [a,b] in R|Y by A3 , RELAT_1 :def 11;

end;

Each Mizar article is a plain text file consisting of two parts: environment (import
section), and text-proper, with definitions, theorems, lemmas and other items supported
by the Mizar language [4]. We focus on the definitions directive – a comma separated
list of MML identifiers determining proof skeletons. The order of entities in this directive
matters: when the statement written by the user does not match the current goal resulting
from the logical structure of the statement being proved, the verifier goes through the list
of file names listed in this directive, reads definitions from these articles, and tries to find
those matching the current goal with the definiens. If such a definition is found, the current
goal is replaced and the proof can be continued. In the example about the inclusion of
restrictions of a relation to sets presented above, the first proof (related to the inclusion
of sets) is allowed when the definition of the inclusion of sets labeled as TARSKI:def 3 is
matched before the definition of the inclusion of relations labeled as RELAT_1:def 3, that is,
when TARSKI appears after RELAT_1 on the definitions list; the second proof is correct in
the opposite case.
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3 Unfolding wrt chosen definitions

In this section we propose an extension of the Mizar language and the Mizar checker which
allows authors to explicitly declare which definitions should be expanded and according to
which definitions proofs must be verified. This new feature will give authors more control over
the structures of proofs to be accepted by the verifier. Mizar texts are internally represented
using a recursive Blocks and Items structure, where blocks are supposed to store lists of items,
and items contain essential information and, if necessary, may contain one block. Among the
items which may be tracked in the syntax of the language, the most important group are
those representing proof skeletal elements, that is, Generalization (let for fixing variables),
Assumption (with self-explanatory assume), ExistentialAssumption (similar, with given),
Exemplification (presenting examples – take), and Conclusion (keywords thus or hence).
All these items change the state of thesis and can be used adequately to the logical structure
of proven statements.

As our goal is developing a way to explicitly indicate which definition should be auto-
matically expanded, we propose to extend the Mizar language with the keyword unfolding
and to extend the set of items related to proof skeletons with a new item Unfolding, which
will be generated when Mizar keyword unfolding occurs within proofs. Then, we propose
to extend the Mizar syntax with new grammar rules correspondingly (see Supplementary
material for full version):
Skeleton -Item = Generalization | Assumption | Conclusion |

Exemplification | Unfolding .
Unfolding = ‘‘unfolding ’’ References ‘‘;’’ .

Following these rules, a pseudo code of an exemplary proof text could look like some
reasoning; unfolding references; some reasoning; where references used after the
unfolding construction may contain references to either local or global definitions (imported
from MML). When global definitions are referred to, filenames of articles where the definitions
were introduced must be listed in both theorems and definitions declarations, where the
earlier describes just the name space for file identifiers, and the latter forces the system to
load the definitions and make them accessible and expandable within proofs. In the case
when the list of used references has more than one reference to a definition, the references
are processed one by one from left to right, and corresponding definitions are expanded.

As we mentioned before, the Mizar verifier generates a couple of XML files. Naturally, we
proposed also corresponding extensions to the grammar of .wsx and .msx files. In .wsx file,
each occurrence of the unfolding construction generates the <Unfolding> element within
which we put the description of the list of used references.
<Item kind =" Unfolding " position ="20\11" endposition ="20\33" >

<Unfolding >
<Definition - Reference position ="20\28" nr ="2" spelling =" RELAT_1 "

number ="3"/ >
<Local - Reference position ="20\33" idnr ="5" spelling =" Lm1 "/>

</Unfolding >
</Item >

The attribute position stores the position of the unfolding keyword; the attribute
endposition stores the position of the last reference used. The element Unfolding contains
the list of all references used in the unfolding item. The elements Definition-Reference
and Local-Reference keep information about a reference to a definition and a local state-
ment, respectively. This information is later passed to .msx files, where references to local

ITP 2023
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Table 2 Top 17 of used expansions of definitions (only over 100 hits each).

Rk. Definition Symbol Usage Rk. Definition Symbol Usage
1. TARSKI:def 3 c= 13293 10. RELAT_1:def 3 c= 139
2. XBOOLE_0:def 10 = 2792 11. LATTICE3:def 8 >=_than 132
3. FUNCT_2:def 8 = 361 12. ALGSTR_0:def 16 r-compl 129
4. FUNCT_1:def 4 one-to-one 332 13. STRUCT_0:def 1 empty 127
5. XBOOLE_0:def 7 misses 209 14. BVFUNC_1:def 12 ’<’ 125
6. PBOOLE:def 2 c= 183 15. RELAT_1:def 2 = 119
7. LATTICE3:def 9 <=_than 183 16. MEMBERED:def 14 = 115
8. FUNCT_1:def 11 = 179 17. MEMBERED:def 8 c= 106
9. ALGSTR_0:def 11 r-compl 150 Total 33475

statements are disambiguated and then propagated to files representing deeper layers of
information processed by the verifier. These changes do not directly interfere with the work of
ordinary Mizar users as they can just avoid unfolding; however, for those using intermediate
representation files [2, 6, 7, 10, 12], they are critical.

4 Experiments

The usefulness of our extension of the Mizar system was tested on the whole MML. To
facilitate experiments we implemented generated reports on all definitional expansions
performed during the verification of processed articles; the results are printed out into an XML
file filename.den, where filename is the name of a given article. Each entry (within the
root element Positions) in .den files is of the form: <Position name="" nr="" line=""
col=""/> matching name and number of unfolded definition together with the starting
position. This convinced us how often definitional expansions were effectively used and how
many times each definition was expanded while processing each article. The total number of
expansions is 33475 and the top 17 expanded definitions are presented in Table 2. The most
often expanded definition is TARSKI:def 3, which is the definition of the inclusion of sets,
with XBOOLE_0:def 10 (the definition of the equality of sets expressed as the conjunction of
two appropriate inclusions) as the second. These 17 primary positions sum up to total 18674,
which shows that over half of all the expansions is represented in the table, i.e. the rest of
dependencies make rather flat hierarchy. It should be compared with aditional 1997 explicit
references for TARSKI:def 3 and 1707 – for TARSKI:2 (which is just extensionality of sets).
Similarly, XBOOLE_0:def 10 was called 1516 times. Most of them can be also changed to
unfolding in this new implementation, making roughly ca. 5200 new uses of expansions.

As mentioned in Section 2, the Mizar verifier tries to expand definitions according to the
order of filenames in the environment directive definitions, on last-come-first-serve basis
(still, randomness could be accepted if notions overloading is only exceptional), so as our
first experiment we sorted items in this environment directive according to the list mml.lar
reflecting processing order of MML [9]. As a result we got 65 errors within 30 articles: even
this most obvious, genetic ordering, causes serious problems: such clashes should be resolved
in order to obtain a kind of canonical precedence. Further tests show that this is much too
fragile – but as the frequent technique of obtaining your own environment declaration is just
to copy it from some similar ones, the randomization is not the question of pure accident.
To test the aforementioned system fragility, as another experiment we shuffled filenames in
the definitions environment directive and put them in a random order. The experiment
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was repeated: after each shuffling, all articles were verified2. Based on these results, we can
observe that the order in which files are listed in the definitions environment directive
definitely plays an important role. Previously, authors had to quite carefully construct the
list of imports of definitions; with this new extension, they are allowed to indicate which
definition should be expanded at given stages of proofs without paying special attention to
the order in which definitions were imported.

5 Conclusions

The current version of the Mizar system (8.1.12) naturally supports building proofs according
to logical structures of statements being proven. It also gives opportunity to modify them a
bit using so-called definitional expansions using appropriate definitions among all accessible
ones. However, there is a limitation caused by the order in which the definitions need to
be imported. Our experiments show that the ordering of environment directives essentially
matters; e.g. there are two substantial clashes well-known for authors: interchanging RELAT_1
and FUNCT_1 or placing STRUCT_0 before fundamental classical (i.e., those based on pure set
theory) part of the MML. Decades ago, the Mizar accomodator allowed to specify which
single theorems should be imported (this made accomodator files just smaller and memory
efficient), similar solution could be also feasible in the case of definitional expansions. In
this work we developed a more practical workaround of that limitation: an extension of the
Mizar checker which allow authors to precisely indicate according to which definitions proofs
are being constructed. It seems to work well particularly in the case of notions with several
redefined definienses. In some sense, the proposed implementation enriches the paradigm
of declarative proof language, offering procedural elements. This is rather unusual for the
system, but as the Mizar project turns fifty in 2023, maybe this justifies the need for some
further experiments in this new direction.
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