
Automated Theorem Proving for Metamath
Mario Carneiro #

Carnegie Mellon University, Pittsburgh, PA, USA

Chad E. Brown
Czech Technical University in Prague, Czech Republic

Josef Urban #

Czech Technical University in Prague, Czech Republic

Abstract
Metamath is a proof assistant that keeps surprising outsiders by its combination of a very minimalist
design with a large library of advanced results, ranking high on the Freek Wiedijk’s 100 list. In
this work, we develop several translations of the Metamath logic and its large set-theoretical
library into higher-order and first-order TPTP formats for automated theorem provers (ATPs). We
show that state-of-the-art ATPs can prove 68% of the Metamath problems automatically when
using the premises that were used in the human-written Metamath proofs. Finally, we add proof
reconstruction and premise selection methods and combine the components into the first hammer
system for Metamath.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Higher order logic; Theory of computation → Logic and verification

Keywords and phrases Metamath, Automated theorem proving, Interactive theorem proving, Formal
proof assistants, proof discovery

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.9

Supplementary Material Software: https://github.com/ai4reason/mm-atp-benchmark
Software: https://github.com/digama0/mm-hammer

Funding This work was partially supported by the European Regional Development Fund under the
Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/0000466 (CB, JU), Amazon Research
Awards (CB, JU), the Czech MEYS under the ERC CZ project POSTMAN no. LL1902 (CB), and
the EU ICT-48 2020 project TAILOR no. 952215 (JU).
Mario Carneiro: Supported by the Hoskinson Center for Formal Mathematics at CMU.

1 Introduction

Metamath [20] is a formal system developed by Norman Megill in 1990. Its largest database,
set.mm1, has 40338 theorems in ZFC set theory, including a diverse range of topics including
analysis, topology, graph theory, number theory, Hilbert spaces, and it continues to grow
steadily due to its small but active community. In the space of theorem prover languages, it
is one of the simplest, by design.

Metamath is one of the last formal proof systems with a large mathematical library
that have not yet been translated to today’s automated theorem provers (ATPs) [23]. Such
translations between ITPs and ATPs are one of the main parts of hammer systems [4], which
have become popular in the recent years, especially in the Isabelle community [21, 22, 3, 18, 8].
Hammer systems today exist also for the Coq [7, 9], HOL [10, 15], and Mizar [27, 16, 14]
proof assistants. The goal of this work is to provide the first such ATP translation for
Metamath, and to do the first evaluation of the potential of state-of-the-art ATP systems on

1 https://github.com/metamath/set.mm

© Mario Carneiro, Chad E. Brown, and Josef Urban;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mcarneir@andrew.cmu.edu
https://orcid.org/0000-0002-0470-5249
mailto:josef.urban@gmail.com
https://doi.org/10.4230/LIPIcs.ITP.2023.9
https://github.com/ai4reason/mm-atp-benchmark
https://github.com/digama0/mm-hammer
https://github.com/metamath/set.mm
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Automated Theorem Proving for Metamath

the translated Metamath library. This also results in a new large mathematical benchmark
for ATP systems. We also build other components of the first full Metamath hammer here,
such as proof reconstruction and premise selection [1].

The rest of the paper is structured as follows. Section 2 provides a brief summary of
Metamath. In Section 3, we describe a translation of Metamath to HOL via the Metamath
Zero (MM0) system. This is then used as an input to several versions of translation to
the higher-order TPTP (TH0) format [11] in Section 4. We then describe an alternative
translation to first-order class theory in Section 5. Section 6 describes the resulting large
new benchmark of higher-order and first-order ATP problems obtained by the translation,
and Section 7 provides the first evaluation of higher-order and first-order ATPs on the
benchmark. We show that with higher time limits, the ATP systems can jointly prove 68%
of the problems when using the premises provided in the human written Metamath proofs.
This is a very encouraging result, both for the development of hammers for Metamath, and
for the developers of ATP systems. In section 8 we discuss how IVY proofs are reconstructed
to Metamath, and section 9 has some interesting examples of theorems the provers were able
to get.

2 Metamath

Development in Metamath is generally facilitated by a proof assistant, and unlike many
theorem provers there is no proof assistant that has a monopoly on the job; the most common
proof assistants in use are mmj2 by Mel O’Cat and MM-PA which is bundled with the
original metamath.exe verifier by Norman Megill. A .mm Metamath file does not contain
proof scripts, but rather it is a textual format for complete and fully explicit proof objects.
This makes it very attractive as a data source, because very little is required to parse and
validate the theorems from the file.

The name “Metamath” comes from “metavariable mathematics,” because the core concept
is the pervasive use of metavariables over an object logic. For example, theorem ax6e2 asserts
⊢ ∃x x = y, but x and y are metavariables ranging over variables in FOL. Depending on
whether x and y are taken to be the same or different FOL variables, we get two α-equivalence
classes of FOL theorems from this single Metamath theorem: ⊢ ∃u u = v asserts that there
exists an element equal to some fixed free variable v, and ⊢ ∃u u = u asserts that there
exists an element equal to itself. These are both true statements, and the original Metamath
theorem includes both of these as substitution instances.

This ability for a Metamath theorem to encode multiple α-equivalence classes of FOL
theorems is known in the Metamath community as “bundling,” and it poses a problem for
translation to plain FOL or HOL.

3 Translating Metamath to HOL via MM0

Metamath Zero [5] is a formal system developed by M. Carneiro with a logic somewhat
intermediate between Metamath and HOL. It positions itself as an interchange language
between other proof systems, and in particular the MM0 toolchain3 implements a translation
from Metamath to MM0 that addresses exactly this bundling issue. MM0 requires that all

2 https://us.metamath.org/mpeuni/ax6e.html
3 https://github.com/digama0/mm0

https://us.metamath.org/mpeuni/ax6e.html
https://github.com/digama0/mm0


M. Carneiro, C. E. Brown, and J. Urban 9:3

theorems are fully unbundled, meaning that a theorem like ax6e has to be split into two
theorems:

ax6e: ⊢ ∃x x = y

ax6e_b: ⊢ ∃x x = x

Each theorem now has a straightforward rendering as a theorem in FOL.
Another problem that the translator addresses is parsing of math expressions. In

metamath, the native representation of statements is as sequences of constant and variable
tokens, so a verifier does not truly need to know how to break the statement into formula
constructors – this is encoded as part of the proof itself. In MM0, the native representation
instead uses trees of expression constructors, which is a better fit for traditional ATPs.
So ax6e would actually be translated as (wex x (wceq (cv x) (cv y))) which now encodes
the parse tree of ∃x x = y (including the invisible cv coercion from set variables to class
expressions).

The MM0 toolchain also has a translator from MM0 to HOL, in a lisp-based format. The
main mismatch at this level is that MM0 variables represent open terms, and so they have
to be transformed into higher order variables to match HOL semantics. For example, the
Metamath theorem axi4:4 ⊢ (∀x φ → φ) is translated to the MM0 theorem:

axi4 {x : setvar} (φ : wff x): (wi (wal x φ) φ)

where the binders encode that x is a first order set variable and φ is a second order wff
variable that is allowed to depend on x.5 It is translated to the following HOL theorem:6

axi4 : ∀ (φ : setvar → wff) (x : setvar). (wi (wal (λx : setvar. φ x)) (φ x))

This is written in lisp concrete syntax as:

(theorem "axi4"
(for ("ph" ("setvar" "wff")))
(for)
(for ("x3" "setvar"))
("wi"

("wal" (fn ("x3" "setvar") ("ph" "x3")))
("ph" "x3"))

("sp" (fn ("x3" "setvar") ("ph" "x3")) "x3"))

The three (for) blocks are for introducing binders for the second order variables, then the
hypotheses (of which there are none in this example), and finally the first order variables,
and then the type of the theorem as above. The last expression, (sp (λx : setvar. φ x)x), is
the proof, encoded as a lambda calculus term. (The proof in this case is short because axi4
is just an alias of theorem sp, but usually this will include many theorem applications.)

By chaining all these translations on set.mm we obtain a set.lisp file containing
statements and complete proofs for every theorem in set.mm.

4 https://us.metamath.org/mpeuni/axi4.html
5 Note that “wff” is a common abbreviation for “well-formed formula.”
6 Names of costructors that return wffs begin with the letter w. For example, wi is the wff constructor for

implication and wal is the wff constructor for universal quantification (over sets).

ITP 2023

https://us.metamath.org/mpeuni/axi4.html


9:4 Automated Theorem Proving for Metamath

4 Translating Metamath in HOL to TH0

From the higher-order representation of set.mm we have several options for how to create TH0
problems for automated theorem provers. We consider specifically three versions (denoted as
v1, v2 and v3 below) of this last part of the translation. To describe the difference between
these three versions, we consider a few example theorems from set.mm.

4.1 Translation v1
Each set.mm theorem consists of a finite list of premises7 (wffs) and a conclusion (a wff).
The premises and conclusion may depend on certain variables ranging over wffs, classes
and sets. Wff variables and class variables may depend on sets and these dependencies are
made explicit in the higher-order translation of set.mm. Set variables may also be locally
bound (while variables representing wffs and classes are global to the theorem). In the source
higher-order logic (after translating set.mm as above and before translating to TH0) there
are three base types: wff, class and setvar. We also have function types α → β as usual.
There are a variety of constructors for wffs and classes. For the examples we only need these
few, given here with their source higher-order types:

wi : wff → wff → wff (implication)
wa : wff → wff → wff (conjunction)
wb : wff → wff → wff (equivalence)
w3a : wff → wff → wff → wff (tertiary conjunction)
wceq : class → class → wff (equality on classes)
wcel : class → class → wff (membership on classes)
wal : (setvar → wff) → wff (universal quantification)
wsb : (setvar → wff) → (setvar → wff) (substitution)
cab : (setvar → wff) → class (class abstraction)8

In set.mm a set variable can be used as a class. After translating to higher-order, we need
a corresponding way to coerce a set variable to be a class. This is given by sv of type
setvar → class.

When translating to TH0, we can use the builtin type o ($o in ASCII) for wff and the
builtin type ι ($i in ASCII) for setvar. Also, we can use the type ι → o for class. So the
translated types (for all versions of the translations) are as follows:

wi : o → o → o

wa : o → o → o

wb : o → o → o

w3a : o → o → o → o

wceq : (ι → o) → (ι → o) → o

wcel : (ι → o) → (ι → o) → o

wal : (ι → o) → o

wsb : (ι → o) → ι → o

cab : (ι → o) → ι → o

sv : ι → ι → o

7 Here the words premise and conclusion are used in the meaning of antecedent and succedent of a sequent.
In particular, premise does not mean here “another toplevel fact used in the proof” (premise selection
terminology).

8 This is a constructor that returns a class. Names of such constructors usually begin with c.



M. Carneiro, C. E. Brown, and J. Urban 9:5

There are over 1200 other constructors we will not explicitly mention here. There are no
constructors (even among the unmentioned ones) returning ι, so that when translating we
can always assume terms of type ι are variables.

Consider the theorem sylan9eq.9 The theorem depends on two wff variables φ and ψ

and three class variables A, B and C. The theorem has two premises: wi φ (wceq A B)
and wi ψ (wceq B C). The conclusion of the theorem is wi (wa φ ψ) (wceq A C). In the v1
translation this theorem is translated into the closed proposition

∀ (φ ψ : o) (A B C : ι → o). wi φ (wceq A B) → wi ψ (wceq B C) → wi (wa φ ψ) (wceq A C).

This closed proposition is, of course, not provable in isolation. When creating the TH0
problem we examine the set.mm proof to determine the axioms and previous theorems used
in the proof. In the case of sylan9eq two previous results are used: syl2an10 and eqtr.11 These
two previous results can be assumed to have been translated earlier to yield the following
two closed propositions:

syl2an : ∀ (φ ψ ξ θ τ : o). wi φ ψ → wi τ ξ → wi (wa ψ ξ) θ → wi (wa φ τ) θ
eqtr : ∀ (A B C : ι → o). wi (wa (wceq A B) (wceq B C)) (wceq A C)

The TH0 problem given by v1 translation of sylan9eq declares syl2an and eqtr (in the form
shown above) as axioms and declares the v1 translation of the theorem (as shown above)
as the conjecture. (The reader can easily check that the conjecture follows from the two
axioms.)

We next consider the theorem axi4. This example has no premises and one wff variable φ
and one set variable x. In this case, the wff φ has a dependence on a set variable and so
has type ι → o (as opposed to o in the previous example). The conclusion of the theorem
is wi (wal (λx.φ x)) (φ x). The v1 translation quantifies over φ and x to create the closed
proposition ∀φ : ι → o.∀x : ι.wi (wal (λx.φ x)) (φ x). The set.mm proof uses one previous
result, called sp,12 which the v1 translation of is precisely the same as the closed proposition
above, making the TH0 theorem proving problem trivial (the single axiom is the same as the
conjecture).

4.2 Translation v2

Since wi, wa and wceq are intended to correspond to implication, conjunction and equality
(on classes), we also created translations that make use of this intention. Translation v2
behaves as v1 except that for 10 constructors (corresponding to true, false, implication, con-
junction, equivalence, negation, disjunction, equality, universal quantification and existential
quantification) are translated using their intended meaning. In particular wi φ ψ translate
as φ′ → ψ′ (where φ′ is the v2 translation of φ and ψ′ is the v2 translation of ψ). Likewise,
wa φ ψ and wb φ ψ translate as φ′ ∧ ψ′ and φ′ ↔ ψ′. Similarly, wceq A B translates to
A′ = B′ where A′ and B′ are the v2 translation of A and B. For the universal quantifier,
wal (λx. φ) is translated to ∀x. φ′ where φ′ is the v2 translation of φ.13

9 https://us.metamath.org/mpeuni/sylan9eq.html
10 https://us.metamath.org/mpeuni/syl2an.html
11 https://us.metamath.org/mpeuni/eqtr.html
12 https://us.metamath.org/mpeuni/sp.html
13 We can assume the argument is of the form λx.φ by η-expansion.

ITP 2023

https://us.metamath.org/mpeuni/sylan9eq.html
https://us.metamath.org/mpeuni/syl2an.html
https://us.metamath.org/mpeuni/eqtr.html
https://us.metamath.org/mpeuni/sp.html


9:6 Automated Theorem Proving for Metamath

4.3 Translation v3
Translation v3 behaves as v2 except that 11 more constructors are translated using their
intended meaning, including w3a, wsb and cab. The v3 translation of w3a φ ψ ξ is φ′ ∧ψ′ ∧ ξ′

where φ′, ψ′ and ξ′ are the v3 translations of φ, ψ and ξ. The v3 translation of wsb (λx. φ) y
is (λx. φ′) y which β-reduces to φ′x

y .14 This corresponds to substituting y for x in the
(translation of the) formula φ. A term of the form cab (λx. φ) is meant to return the class
{x | φ}. Since classes are predicates of type ι → o and membership of a set in a class
corresponds to application of the predicate to the set, the v3 translation of cab (λx. φ) y is
simply taken to be φ′x

y , treating it essentially the same way as wsb. Using η-reduction, we
can also say wsb (λx. φ) and cab (λx. φ) v3 translate to λx. φ′.

The v2 and v3 translations of the conjecture for sylan9eq are both

∀ (φ ψ : o) (A B : ι → o). (φ → A = B) → (ψ → B = C) → φ ∧ ψ → A = C.

The two TH0 problems (for v2 and v3) also include the translation of the two dependencies
syl2an and eqtr as axioms, though these are no longer needed for the proof.

4.4 More Examples
The v2 and v3 translations of the conjecture for axi4 are both

∀ (φ : ι → o) (x : ι). (∀x. φ x) → φ x.

Again, the dependency is also translated and included in as an axiom in the TH0 problem,
though the axiom is no longer needed to prove the conjecture.

To see the distinction between the v2 and v3 translations, we briefly consider three more
small examples: rp_simp2,15 sbt16 and abbi2i.17 The three translations of the conjecture for
rp_simp2 are as follows:

v1: ∀ (φ ψ ξ : o). wi (w3a φ ψ ξ) ψ
v2: ∀ (φ ψ ξ : o). w3a φ ψ ξ → ψ

v3: ∀ (φ ψ ξ : o). φ ∧ ψ ∧ ξ → ψ

The three translations of the conjecture for sbt are as follows:
v1 and v2: ∀ (φ : ι → ι → o). (∀x y : ι. φ x y) → ∀ y : ι. wsb (λz.φ z y) y
v3: ∀ (φ : ι → ι → o). (∀x y : ι. φ x y) → ∀y : ι. φ y y

The three translations of the conjecture for abbi2i are as follows:
v1: ∀ (φ : ι → o) (A : ι → o). (∀x : ι. wb (wcel (cv x) A) (φ x)) → wceq A (cab (λx.φx))
v2: ∀ (φ : ι → o) (A : ι → o). (∀x : ι. (wcel (cv x) A) ↔ (φ x)) → A = cab (λx.φx)
v3: ∀ (φ : ι → o) (A : ι → o). (∀x : ι. (wcel (cv x) A) ↔ (φ x)) → A = (λx.φx)

4.5 Why three translations?
The translations v1-v3 represent increasingly “deep” interpretation of the Metamath formulas.
One might wonder why we are considering all of them, instead of just using the best one –
clearly giving the prover more information is a good idea. (And as 7 will show, this is largely
correct.) However, there are three complicating factors that make it not a completely one
sided tradeoff:

14 We can assume the second argument is a variable y since it has type ι.
15 https://us.metamath.org/mpeuni/rp-simp2.html
16 https://us.metamath.org/mpeuni/sbt.html
17 https://us.metamath.org/mpeuni/abbi2i.html

https://us.metamath.org/mpeuni/rp-simp2.html
https://us.metamath.org/mpeuni/sbt.html
https://us.metamath.org/mpeuni/abbi2i.html


M. Carneiro, C. E. Brown, and J. Urban 9:7

If the prover is given more information, it has more options, and this can cause it to run
away and prove the wrong things.
Also following from the previous point, the prover will be more “creative” with the more
deeply embedded proofs, performing more normalization and often resulting in longer
proofs than if it is forced to play by Metamath rules.
Most pertinently for our hammer system, the deeper translations require more of the
prover’s mechanisms to be translatable back to Metamath proofs, and since only the sim-
pler mechanisms have reconstruction implemented for them, using the deeper translations
can cause the reconstruction rate to decrease, even though the ATP has a higher success
rate, since it will come up with proofs outside the translatable fragment.

5 Translating Metamath in HOL to First-Order Class Theory

We additionally translated the higher-order representation of set.mm into first-order theorem
proving problems by interpreting propositions and terms as classes. This allows us to compare
the performance of first-order and higher-order ATPs on problems coming from a common
source. In addition we use the first-order prover Prover9 [19] to obtain IVY proof objects
which we use to reconstruct Metamath proofs.

Recall that the type of cab in the HOL representation is (setvar → wff) → class. In the
resulting TH0 for the v1 and v2 translations terms with cab at the head could always be
assumed to be of the form cab (λx. φ) (by η-expansion if necessary). We do not have such term
level binders in first-order terms, so we must find an alternative method to handle such binders.
Every occurrence of a wff or class will be under n setvar binders, binding x0, . . . , xn−1 ∈ V ,
where V is the class of all sets. Instead of making the binders explicit in the logic, we
translate a wff φ in context x0, . . . , xn−1 as the class {((x0, . . . , xn−1), ∅) | φ} (i.e., the class
of all n-tuples of sets for which φ holds, with an associated dummy value of ∅). Likewise
we translate a class A in context x0, . . . , xn−1 as the class {((x0, . . . , xn−1), y) | y ∈ A}. The
operator cab takes a wff in context x0, . . . , xn−1, xn to a class in context x0, . . . , xn−1, where
n need not be known in advance. In particular we take cab(B) to be the class

{((x0, . . . , xn−1), xn) | n ∈ ω, ((x0, . . . , xn−1, xn), ∅) ∈ B}.

For example, suppose we have a HOL version of a Metamath term of the form cab (λxn. φ) in
a context x0, . . . , xn−1. We can translate φ in context x0, . . . , xn−1, xn to obtain a first-order
term φ′ representing the class {((x0, . . . , xn−1, xn), ∅) | φ′}. We then translate cab (λxn. φ)
simply to be the first-order term cab(φ′), corresponding to the class

{((x0, . . . , xn−1), xn) | ((x0, . . . , xn−1, xn), ∅) ∈ φ′}.

The distinction between sets and proper classes is not useful as we will generally
be concerned with sets in a context of a certain length. For example, the proper class
{((x0, x1), y) | y ∈ x1} can be considered a set in a context of length 2 since if x0, x1 ∈ V

are fixed, then {y | y ∈ x1} is a set. We say a class A is a set in a context of length
n if {y | ((x0, . . . , xn−1), y) ∈ A} is a set for every x0, . . . , xn−1 ∈ V . Note that a class
can be a set in a context of different lengths. For example, the empty class is a set in a
context of length n for every n ∈ ω. Consider the Metamath wff wtru (corresponding to
the true wff). This will be translated to a first-order constant wtru intended to be the class
{((x0, . . . , xn−1), ∅) | x0, . . . , xn−1 ∈ V }. Note that this is both a proper class and a set in a
context of length n for every n ∈ ω.

ITP 2023



9:8 Automated Theorem Proving for Metamath

In general Metamath constructors with functional arguments may change the length of
the context, as cab does. However, most operations do not change the length of the context.
For example, wa(φ,ψ) in context x0, . . . , xn−1 is simply wa(φ′, ψ′) where φ and ψ are the
translations of φ and ψ in context x0, . . . , xn−1. The intended semantics of wa(B,C) is

{((x0, . . . , xn−1), ∅) | ((x0, . . . , xn−1), ∅) ∈ B ∧ ((x0, . . . , xn−1), ∅) ∈ C}.

Note that if φ′ is a class {((x0, . . . , xn−1), ∅) | φ}, ψ′ is a class {((x0, . . . , xn−1), ∅) | ψ} and
wa(φ′, ψ′) is the class {((x0, . . . , xn−1), ∅) | φ ∧ ψ}. As with cab, wa does not depend on the
length of the context n.

As a consequence of treating setvar binders in this way, we must decide how to translate
the (now implicitly) bound variables as first-order terms. We do this by simply having
a constant vari

n for each i < n, intended to correspond to the variable xi in the context
x0, . . . , xn−1. Semantically, vari

n is the class {((x0, . . . , xn−1), y) | y ∈ xi}.
Since many wff and class variables depend on a context of set variables, we also include

functions evalm
n of arity m+ 1. The intention is that the first argument of evalm

n is a class
(intended to be in context x0, . . . , xm−1) and the next m arguments are sets in a context of
length n (intended to be in context x0, . . . , xn−1). Since no Metamath constructor yields a
set, the only sets available in context x0, . . . , xn−1 are each xi (represented in first-order by
the constant vari

n and possibly some universal first-order variables intended to range over
sets. Each first-order variable Y intended to range over sets will occur as cv(Y ) (the coercion
sending sets to classes). We consider a slightly different semantics of cv in the first-order
class theory translation than the higher-order case. For a set Y , we take cv(Y ) to be the
class

{((x0, . . . , xn−1), y) | n ∈ ω, x0, . . . , xn−1 ∈ V, y ∈ Y }.

That is, cv lifts a set to a class in an arbitrary context (with no dependence on the set
variables in the context).

The result of applying evalm
n to m+ 1 arguments is a class (intended to be in context

x0, . . . , xn−1) obtained by composition. In particular, we define evalm
n as

evalm
n (B,A0, . . . , Am−1) =

{(x0, . . . , xn−1, z) | ∃y0, . . . , ym−1 ∈ V. (y0, . . . , ym−1, z) ∈ B

∧ (∀y. y ∈ y0 ⇔ (x0, . . . , xn−1, y) ∈ A0)
∧ · · ·
∧ (∀y. y ∈ ym−1 ⇔ (x0, . . . , xn−1, y) ∈ Am−1)}.

Note that if some Ai were not a set in a context of length n, then evalm
n (B,A0, . . . , Am−1) = ∅

since a corresponding yi ∈ V would not exist. This is never relevant in practice as the only
arguments to evalm

n after the first argument are of the form vari
n or cv(Y ), as stated above.

In case we have a Metamath wff variable φ that depends on m set variables, then
occurrences of φ in the higher-order representation will be applied to m arguments. To make
this first-order we simply choose n to be the length of the context in which the wff occurs
and translate as evalm

n (φ′, A0, . . . , Am−1) where φ′ is a first-order variable corresponding to
φ and Ai is the first-order term obtained by translating the arguments of φ.

Some special identities are easy to verify given the semantics described above, e.g.,

evalm
n (vari

m, A0, . . . , Am−1) = Ai

and

evalm
n (wa(B,C), A0, . . . , Am−1) = wa(evalm

n (B,A0, . . . , Am−1), evalm
n (C,A0, . . . , Am−1))



M. Carneiro, C. E. Brown, and J. Urban 9:9

where we assume each Ai is a set in a context of length n. Some first order problems resulting
from the translation only become provable if such identities are included. However, for now
we have primarily focused on the problems solvable without such identities included.

As a final step to obtain a first-order atomic proposition, we apply a unary predicate p
to a first-order term φ′ (the translation of a Metamath wff φ in an empty context). The
intention is that p(A) should be true precisely if ((), ∅) ∈ A.

The hypotheses and conclusion of a Metamath axiom or theorem may have universally
bound set variables. To translate these to terms we use a unary function alln. The intended
semantics of alln(A) is

{((x0, . . . , xn−1), ∅) | ∀xn ∈ V. ((x0, . . . , xn−1, xn), ∅) ∈ A}.

Again for some translated problems to be theorems we would need to include certain properties
of alln, e.g.,

∀Y. p(Y ) ⇔ ∀X. p(eval1
0(Y, cv(X))).

In practice we omit these extra properties for now.
We again consider the example theorem sylan9eq. In the first-order version the two

wff variables φ and ψ and the two class variables A and B all range over classes (and
hence are represented simply by first-order variables). The two premises translate to first-
order terms terms wi(φ,wceq(A,B)) and wi(ψ,wceq(B,C)). which can then be used as
arguments to p to obtain atomic propositions. The conclusion translates to the first order
term wi(wa(φ,ψ),wceq(A,C)). Combining the premises with the conclusion and quantifying
over the variables yields the first-order sentence

∀φ ψ A B C. p(wi(φ,wceq(A,B))) → p(wi(ψ,wceq(B,C))) → p(wi(wa(φ,ψ),wceq(A,C))).

As before the sentence is a consequence of syl2an and eqtr which translate to the first-order
sentences

∀ φ ψ ξ θ τ. p(wi(φ,ψ)) → p(wi(τ, ξ)) → p(wi(wa(ψ, ξ), θ)) → p(wi(wa(φ, τ), θ))

and

∀A B C. p(wi(wa(wceq(A,B),wceq(B,C)),wceq(A,C))).

We also reconsider the theorem axi4. This translates to the first-order statement

∀φ x. p(wi(wal(eval1
1(φ, var0

1)), eval1
0(φ, x))).

Again the proof uses sp which translates to the same first-order statement (making the
theorem proving problem trivial).

6 Benchmark

We use the translations to TPTP described in Sections 4 and 5 to create higher-order and
first-order ATP problems. This is implemented in Lisp, as a program that reads the HOL
Lisp representation of the MM0 (Section 3) version of set.mm as its input, and produces the
corresponding ATP problem for each Metamath theorem proved in set.mm .

ITP 2023



9:10 Automated Theorem Proving for Metamath

The version of set.mm we used corresponds to the git repo with a commit from June 24,
2022.18 There are 40338 theorems with proofs in this version of set.mm. The translation to
MM0 increases the number of theorems to 40556 (218 extra theorems) since some theorems
also have α-degenerate versions that are used in their degenerated form later in the library.
For example, the Metamath set.mm theorem ax7v is x = y → x = z → y = z where x and y
must be distinct variables. The MM0 version expands this into three versions:

ax7v: x = y → x = z → y = z

ax7v_b (an α-degenerate): x = y → x = x → y = x

ax7v_b1 (another α-degenerate): x = y → x = y → y = y

There are also three corresponding TH0 problems (in each of v1, v2 and v3).
The axioms of each TH0 problem are determined by the named facts (proof-external

facts, premises) used in the MM0 proof. Note that when generating the problem for a given
theorem we already have the TH0 formulas corresponding to the previous facts. Note also
that the translation from Metamath to MM0 already distinguished between α-degenerates.
While a Metamath proof may have depended on ax7v, its MM0 proof may depend on ax7v
and one of its α-degenerates, say ax7v_b. In that case the TH0 problem would include
axioms corresponding to ax7v and ax7v_b (but not ax7v_b1).

In the end we obtain 40556 TH0 problems for each of v1, v2 and v3.19 This corresponds
precisely to the 40556 MM0 theorems obtained by translating set.mm. To this we also add
the first-order version produced by the translation described in Section 5.

7 Initial ATP Evaluation

7.1 Higher-order Evaluation
We first evaluate three top-performing20 higher-order ATPs on the three higher-order versions
of the problems using several values for timeout. Only one full evaluation is done on v1 of
the problems, since we consider the encoding suboptimal. Indeed, E-HO 2.6 solves 77.65%
(20352 vs 11456) more problems on v2 with v1 adding only 0.23% (46) more solutions to
v2. All our experiments are performed on a server with 36 hyperthreading Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30GHz cores and 256 GB of RAM. We use the following ATP systems:

E prover version 2.6 [25, 24], run both in its default portfolio (auto-schedule) mode
and with several strategies developed previously by strategy invention systems [26, 13]
targeting ITP libraries [16, 12].
Vampire version 5980 [17, 2], using mainly default (casc2020) higher-order portfolio. We
have also briefly tested some Vampire strategies in a standalone mode.
Zipperposition version CASC20 [6, 28], using its default CASC’20 portfolio. We have also
tried several other Zipperposition settings.

For most of the experiments we have used a time limit of 60s. We have also used initially
a lower 10s time limit, and later also higher time limits, especially to see the performance of
the portfolio-based systems. The highest time used for an evaluation on the full dataset was
280s, and we have increased it to 600s and 1200s in several cases to see the improvement on
unsolved problems by E, Vampire and Zipperposition. Of the 40556 problems the ATPs can
in total solve 27436, i.e., 67.65%. The detailed results of the complete runs of the systems
are shown in Table 1. Table 2 shows the top-5 greedy cover including incomplete runs done
with high time limits on unsolved problems only.

18 Specifically the commit d75c0dbe.
19 The benchmark is publicly available at https://github.com/ai4reason/mm-atp-benchmark .
20 https://www.tptp.org/CASC/J11/WWWFiles/DivisionSummary1.html

https://github.com/ai4reason/mm-atp-benchmark
https://www.tptp.org/CASC/J11/WWWFiles/DivisionSummary1.html


M. Carneiro, C. E. Brown, and J. Urban 9:11

The highest performance is achieved by Zipperposition which in 280s solves 62.68%
(25420) of the v3 problems, and 61.53% (24959) of the v2 problems. This (v2) drops to
57.99% (23518) when using half of the time only, i.e. 140s. Vampire solves 58.01% (23555)
of the v3 problems in 280s which is a surprisingly good performance given the 2022 CASC
results,21 where Vampire loses more than 25% on Zipperposition (367 vs 460 problems
solved in the CASC THF category). Note that none of the ATP developers have yet seen
our benchmark and thus could not develop targeted ATP strategies on the problems, as is
typically done for TPTP and CASC. Vampire also gains considerably by going from v2 to
v3 and by increasing the time limit (the latter likely thanks to its large portfolio mode). It
solves only 45.57% (18482) of the v2 problems in 60s, which increases to 52.08% (21123) of
the v3 problems in 60s, and to 56.65% (22976) v3 problems in 120s. Furthermore, Vampire
gains from running its strongest strategies with higher time limits: 7 of the strategies run
separately for 60s on v3 add together 443 problems, raising Vampire’s performance to 23998
problems (in general in 240s + 7*60s = 660s).

E prover outperforms Vampire on v2 in 60s (21001 solved by E vs 18482 by Vampire),
and even more so in 10s (20352 vs 17160). Surprisingly, E’s performance is lower on v3
compared to v2 (20799 vs 21001 in 60s). The performance however does not increase much
with higher time limits as in the case of Vampire, indicating that Vampire makes better
use of multiple strategies. We have however only evaluated the official E version 2.6, which
seems to have been improved a lot very recently by E version 3.0 in the latest 2022 CASC
results. We plan to evaluate E 3.0 when it is officially released.

Table 1 The complete runs of the systems on the benchmark, ordered by performance.

System mode version time (s) solved
Z portfolio v3 280 25420
Z portfolio v2 280 24959
V portfolio v3 280 23555
Z portfolio v2 140 23518
V portfolio v3 120 22976
V portfolio v3 60 21123
E portfolio v2 60 21001
E portfolio v3 60 20799
E portfolio v2 10 20352
E strat. f17 v3 120 19782
E strat. f17 v2 10 19624
V portfolio v2 60 18482
Z fo-complete-basic v2 10 17295
V portfolio v2 10 17160
Z ho-pragmatic v2 10 16115
E portfolio v1 10 11456

7.2 First-order runs
We also evaluate the first order translation, by running Vampire, E and Prover9 on these
problems. Vampire proves 15938 of them, while E and Prover9 solve 15136 and 14693
respectively. The Vampire performance can be compared to its 60s performance on the v2
higher-order problems (18482). This likely again demonstrates the efficiency of the v2 and
v3 higher-order translations, because practically none of the standard logical connectives are

21 See footnote 20.

ITP 2023



9:12 Automated Theorem Proving for Metamath

Table 2 The top 5 methods in the greedy sequence. Note that we use different (and also high)
time limits and that the high-time runs are only done on previously unsolved problems.

System mode version time (s) added sum
Z portfolio v3 280 25420 25420
V portfolio v3 600 960 26380
V portfolio v3 1200 415 26795
E portfolio v3 600 279 27074
Z portfolio v2 280 124 27198

mapped in a shallow way to their first-order logical counterparts in this first-order translation.
Because of that, all these problems are also Horn, and they are also quite small due to the
minimized premises. This is likely the reason why all the three ATPs perform similarly here,
with Vampire and E unable to benefit from their strategies for large problems with large
non-Horn clauses. The systems are also not very complementary, with E adding 148 and
Prover9 adding 110 problems to Vampire. Prover9 adds 505 problems to E.

7.3 Premise Selection Experiments

7.3.1 Higher-order runs
We evaluate Vampire also on the large (chainy) versions of the higher-order v3 problems,
using a 60s time limit. This emulates the hammer-style reasoning with the whole library that
exists before a particular theorem was stated. Using its LTB (large-theory batch division
of the CASC competition) portfolio, Vampire solves 8509 v3 problems, while its hol mode
solves only 4013 v3 problems. This is relatively few compared to the performance on the
benchmark with preselected premises.

Vampire uses SInE as its default premise selector. A number of learning-based premise
selection methods typically improve on SInE if enough data about previous proofs are
available to train on. For simplicity of use and comparison with other standard hammers we
have decided to use here a fast implementation of the distance weighted k-nearest neighbor
(k-NN), parameterized by several values of k (10, 20, 40, 80, 120, 160, 240) that typically
work well with current ATPs. The first evaluation is done chronologically, by training k-NN
incrementally on the human-written proofs as the library grows in time. This means that
we always allow k-NN to see all the facts and proofs that precede the fact for which it is
predicting the premises, but none of the facts and proofs that follow after that.

We use again the standard higher-order portfolio of Vampire and 60s time limit for each
of the values of k. The results are shown in Table 3. The performance peaks at around 12k
proved problems for the values of k = 120, 160, 80. This is more than 40% better than the
best SInE result above (8509). All seven k-NN predictions solve together 14787 problems (in
general in 7 minutes), with the top three most orthogonal slices (120, 240, and 20) solving
14113 (in general in 3 minutes).

Table 3 Vampire on k-NN premise selection slices.

Premises 10 20 40 80 120 160 240

V-thf v3 9112 10078 11060 11863 12043 11997 11582
V-fof v1 2600 4239 6294 8366 9416 9875 10352



M. Carneiro, C. E. Brown, and J. Urban 9:13

7.3.2 First-order runs
To get a version that can be reconstructed in Metamath, we also evaluate Vampire on the
premise selection slices of the large (chainy) first-order versions of the problems. The results
for the 7 standard slices are again shown in Table 3. Unlike in the thf-v3 version, Vampires
benefits here from increasingly large slices, so we add also slices with 480 and 960 premises
to the fof-v1 premise selection. These slices solve 10726 and 10593 problems respectively,
adding many new solutions. In total, the 9 first-order slices solve 12373 problems, with
the top 4 most complementary slices (480, 960, 80, and 240) solving 12089 problems. This
implies a 30% performance in the first-order v1 hammering setting, which we currently use
for the first version of the proof reconstruction.

8 Proof Reconstruction

While Vampire has impressive solving capabilities, we were not able to get it to produce a
proof object which was sufficiently detailed for our purposes, so we instead turned to the
IVY proof format used by Prover9. Prover9 is not as powerful, but we can still use Vampire
as a more precise relevance filter by using the lemmas from the proof it produces as input to
Prover9, and process the resulting IVY proof.

IVY is a resolution-style proof format for doing classical reasoning, so it is not a priori
obvious how to reconstruct these terms into a Metamath proof without a deep embedding.
However, our input clauses and the conjecture are all Horn clauses (that is, they have at
most one non-negated literal), and this makes all the difference.

IVY proofs consist of the following kind of proof steps:
input steps refer to one of the hypotheses, except that instead of using ∀x⃗.

−−−−−−→
Ai(x⃗) → B(x⃗),

the quantifiers are removed and the clauses are turned into disjunctions, as in B(v⃗) ∨∨
i ¬Ai(v⃗), with the literals possibly reordered.
Because these inputs appear in the same order as they were given to the checker, they
are easy to identify.
The conjecture is negated, so it turns into multiple inputs and the variables are
skolemized: ∀x⃗.

−−−−−−→
A′

i(x⃗) → B′ becomes A′
i(c⃗) for each i, plus ¬B′(c⃗).

instantiate steps refer to a previous step p :
∨

i Ci plus a substitution mapping {vi 7→ ti}
and results in a proof of

∨
i(Ci[vi 7→ ti]).

resolve steps specify p :
∨

i Ci ∨P and q :
∨

i Di ∨¬P (where P may appear in the middle
of the disjunction but is identified by a path), and results in a proof of

∨
i Ci ∨

∨
i Di.

propositional steps prove an arbitrary clause Q from previous step p : P where P → Q

is a propositional tautology.
IVY also supports new_symbol, flip, and paramod steps but these never appear in
reconstructed proofs.

The key observation is that IVY never leaves the realm of Horn clauses in the proof. This
is not syntactically a requirement – proofs can in principle involve arbitrary propositions –
but we can see why it might happen with this kind of input:

All the inputs are Horn clauses.
instantiate or resolve on Horn clauses yield more Horn clauses.
While propositional steps can yield non-Horn clauses in principle, this is mainly used
for clause simplification, and there is a unique best clause that the solver will want to
generate here, namely the input clause with duplicate hypotheses removed. That is, this
is used only for simplifying ¬A ∨ ¬A ∨B to ¬A ∨B.
The fact that the clauses have this restricted form is likely the reason why we do not
observe the more advanced kinds of steps.

ITP 2023



9:14 Automated Theorem Proving for Metamath

So our strategy for reconstruction is essentially to interpret these as proofs in minimal
logic or terms in the simply typed lambda calculus, where (

∨
i ¬Ai) ∨ B is interpreted as

(
∧

i Ai) → B and
∨

i ¬Ai is interpreted as (
∧

i Ai) → F. The proof steps all have associated
lambda terms:

Hypothesis inputs are Hi(v⃗) : (
∧

i Ai(v⃗)) → B(v⃗)
The conjecture is thm : B′(c⃗) → F
instantiate(p, {vi 7→ ti}) is just p[vi 7→ ti]
For resolve(p, q): if p :

∧
i Ci → P and q : (

∧
i Di) ∧ P → A or q : (

∧
i Di) ∧ P → F,

then resolve(p, q) := λ−→ci ,
−→
di . q(

−→
di , p(−→ci )).

For propositional steps we spot the duplicates and generate a term like λx y. p(x, x, y).
Because the final result is a proof of false, we get a closed term of type F after translation,
and we can normalize it to eliminate all the lambdas. Since the only constructor for F in
this grammar is thm, the result will be of the form thm(p), where p is a proof structured
out of applications of Hi to a substitution and a list of subproofs, which is exactly the form
expected by Metamath proofs. So we strip the thm node and the result is a well formed
proof.

8.1 Proof Objects

Table 4 shows the longest IVY and Metamath proof objects obtained in the experiments.
This is for IVY measured by the number of proof steps, while for Metamath these are lines
of the reconstructed proof.

Table 4 Length of the longest proof objects in IVY steps and Metamath lines.

Problem mercolem6 tgbtwnconn1lem1 hdmap14lem9 isoas lclkrlem2a
IVY 674 480 392 375 316
Problem mercolem6 mercolem2 merlem5 mercolem7 minimp_sylsimp
Metamath 5660830 849 77 50 45

An outlier here is mercolem6, which is one lemma in the proof that Meredith’s axiom

((φ → ψ) → (⊥ → χ) → θ) → (θ → φ) → τ → η → φ

is complete for propositional logic. Prover9 is able to return a proof with only 674 lines,
but it balloons to a massive 5 660 830 lines after Metamath reconstruction, over 7 times the
size of set.mm. The reason for this due to the normalization process described in section
8. Each Metamath proof step is exactly and only an application of a previous theorem,
with substitutions for the variables, and then proofs for the hypotheses. That is, in IVY
terminology we are structurally required to perform instantiate steps only on the leaves of
the proof.

What happened in this proof is that Prover9 found a useful lemma, which has a long
proof, and then applied it many times with different instantiations, and the Metamath proof
is forced to replicate the subproof many times in order to push the instantiations to the
leaves. This is essentially an artificial restriction caused by our implicit requirement that
the hammer should generate one proof, rather than a sequence of lemmas leading up to the
proof. In actual practice a user would split the proof at this useful lemma and refer to it. In
fact, the name mercolem6 indicates that this is lemma 6 of something, so this technique is
already being used here.



M. Carneiro, C. E. Brown, and J. Urban 9:15

Future versions of the hammer may include this kind of lemma generation, but we decided
not to pursue it since it is extremely rare. Most of the time the cost of extracting these
narrow lemmas is higher than the proof savings for applying them.

9 Examples

Three similar examples Zipperposition and E can prove in the v3 representations are the
set.mm theorems amgm2d22, amgm3d23 and amgm4d24 comparing arithmetic and geometric
means. The first theorem states that for positive reals A and B,

(A ·B) 1
2 ≤ A+B

2 .

The next two theorems state

(A ·B · C) 1
3 ≤ A+B + C

3
and

(A ·B · C ·D) 1
4 ≤ A+B + C +D

4
for positive reals A, B, C and (in the last case) D. All three theorems are proven by making
use of a lemma amgmlem25 giving the property

(ΣMF )
1

|A| ≤ ΣCF

|A|

where A is a finite set, F is a function from A to positive reals, and ΣQ is performs a binary
operation from a given monoid Q to the images of F . In this case C is the complex field
(thought of as its additive group here) and so ΣC is ordinary summation. However, M is
the multiplicative group of C and so ΣM in the usual Π operator performing finitely many
multiplications. In order for an ATP to prove the examples above, it must instantiate with
appropriate values of A and F in the assumption amgmlem, essentially giving the appropriate
n-tuple (for n ∈ {2, 3, 4}). In this case the n-tuples are represented as words and special
theorems gsumws226, gsumws327 and gsumws428 give equations between applying ΣQ to an
appropriate length word and the summation of the “characters.” Applying these theorems
when proving amgm2d, amgm3d and amgm4d leads to the generation of the appropriate
n-tuple (word) being constructed by the ATP via unification.

It is worth noting Zipperposition, E and Vampire could also prove the v3 problems
corresponding to gsumws2, gsumws3 and gsumws4. By contrast, none of the ATPs could
prove the vital lemma amgmlem. Also, none of the ATPs could prove amgmw2d29, a
generalized version of amgm2d stating

AP ·BQ ≤ A · P +B ·Q

for positive reals A, B, P and Q such that P +Q = 1.

22 https://us.metamath.org/mpeuni/amgm2d.html
23 https://us.metamath.org/mpeuni/amgm3d.html
24 https://us.metamath.org/mpeuni/amgm4d.html
25 https://us.metamath.org/mpeuni/amgmw2d.html
26 https://us.metamath.org/mpeuni/gsumws2.html
27 https://us.metamath.org/mpeuni/gsumws3.html
28 https://us.metamath.org/mpeuni/gsumws4.html
29 https://us.metamath.org/mpeuni/amgmw2d.html

ITP 2023

https://us.metamath.org/mpeuni/amgm2d.html
https://us.metamath.org/mpeuni/amgm3d.html
https://us.metamath.org/mpeuni/amgm4d.html
https://us.metamath.org/mpeuni/amgmw2d.html
https://us.metamath.org/mpeuni/gsumws2.html
https://us.metamath.org/mpeuni/gsumws3.html
https://us.metamath.org/mpeuni/gsumws4.html
https://us.metamath.org/mpeuni/amgmw2d.html


9:16 Automated Theorem Proving for Metamath

A different example Zipperposition and E can prove is zringunit30. This states A is a
unit of the ring of integers if and only if A is an integer with norm 1 (i.e., A is −1 or 1). A
previous result used in the proof is gzrngunit31 which states the units of the ring of Gaussian
integers is precisely those with norm 1. None of the ATPs were able to prove gzrngunit.

Several other interesting ATP proofs are available on our web page.32 This includes E’s
higher-order proof of theorem xmulneg133 which has 127 steps in Metamath and takes 18131
given clause loops in 30 seconds to E.34 It proves for extended reals that a product with a
negative is the negative of the product:

xmulneg1 $p |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) )

E also proves the matinv theorem in 12 seconds and 13052 given clause loops, which takes a
73-step proof in Metamath.35 The theorem states that the inverse of a matrix is the adjunct
of the matrix multiplied with the inverse of the determinant of the matrix if the determinant
is a unit in the underlying ring:

matinv.a $e |- A = ( N Mat R ) $.
matinv.j $e |- J = ( N maAdju R ) $.
matinv.d $e |- D = ( N maDet R ) $.
matinv.b $e |- B = ( Base ‘ A ) $.
matinv.u $e |- U = ( Unit ‘ A ) $.
matinv.v $e |- V = ( Unit ‘ R ) $.
matinv.h $e |- H = ( invr ‘ R ) $.
matinv.i $e |- I = ( invr ‘ A ) $.
matinv.t $e |- .xb = ( .s ‘ A ) $.
matinv $p |- ( ( R e. CRing /\ M e. B /\ ( D ‘ M ) e. V ) ->

( M e. U /\ ( I ‘ M ) = ( ( H ‘ ( D ‘ M ) ) .xb ( J ‘ M ) ) ) )

Further impressive ATP proofs collected by us include theorems about integrals,36 triangle
inequality,37 measure,38 sums of vector spaces,39 etc. These proofs typically take over one
hundred steps in Metamath.

10 Hammer Tool

The mm-hammer tool is publicly available from our GitHub repository40. It packages the
theorem proving, proof reconstruction and premise selection methods described above for the
Metamath users. We provide there also an installer script that installs all the prerequisites
(including Prover9 and Vampire).

11 Conclusion

We have developed the first translations of the Metamath set.mm library to the formats used
by state-of-the-art higher-order and first-order automated theorem provers. Based on them,
we have constructed several versions of a large new benchmark of 40556 mathematical ATP

30 https://us.metamath.org/mpeuni/zringunit.html
31 https://us.metamath.org/mpeuni/gzrngunit.html
32 http://grid01.ciirc.cvut.cz/~mptp/mm_prf/
33 https://us.metamath.org/mpeuni/xmulneg1.html
34 http://grid01.ciirc.cvut.cz/~mptp/mm_prf/mmset12407_xmulneg1.p
35 https://us.metamath.org/mpeuni/matinv.html
36 https://us.metamath.org/mpeuni/ditgsplit.html
37 https://us.metamath.org/mpeuni/isxmet2d.html
38 https://us.metamath.org/mpeuni/sibfinima.html
39 https://us.metamath.org/mpeuni/mapdlsm.html
40 https://github.com/digama0/mm-hammer

https://us.metamath.org/mpeuni/zringunit.html
https://us.metamath.org/mpeuni/gzrngunit.html
http://grid01.ciirc.cvut.cz/~mptp/mm_prf/
https://us.metamath.org/mpeuni/xmulneg1.html
http://grid01.ciirc.cvut.cz/~mptp/mm_prf/mmset12407_xmulneg1.p
https://us.metamath.org/mpeuni/matinv.html
https://us.metamath.org/mpeuni/ditgsplit.html
https://us.metamath.org/mpeuni/isxmet2d.html
https://us.metamath.org/mpeuni/sibfinima.html
https://us.metamath.org/mpeuni/mapdlsm.html
https://github.com/digama0/mm-hammer


M. Carneiro, C. E. Brown, and J. Urban 9:17

problems based on set.mm . The initial evaluation of the ATPs is very encouraging. The
strongest higher-order system (Zipperposition) proves 62.68% of the problems in 280s, and
57.99% of the problems in 140s. Even when using low (hammer-friendly) time limits, the
higher-order ATPs are very useful, with E proving 50.18% of the problems in 10s. These are
very encouraging results for providing ATP-based automation for the Metamath authors.

We have also developed the first version of a full hammer tool for Metamath and made it
publicly available to the Metamath community. This includes mainly a proof reconstruction
tool that imports the Prover9/IVY proof objects into Metamath. The tool already replays all
15k proofs that Prover9 can find when using human-based premises extracted from Metamath.
Another component of the hammer is a real-time pipeline that translates Metamath user
problems into first-order formats, and runs premise selectors and a portfolio of large-theory
Vampires on the problems, followed by running Prover9/IVY on the Vampire-minimized
problems when successful. The first version of the tool proves 30% of the Metamath theorems
when running the ATPs on four premise selections in parallel for 60 seconds.

References

1 Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning,
52(2):191–213, 2014. doi:10.1007/s10817-013-9286-5.

2 Ahmed Bhayat and Giles Reger. A combinator-based superposition calculus for higher-order
logic. In IJCAR (1), volume 12166 of Lecture Notes in Computer Science, pages 278–296.
Springer, 2020.

3 Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending Sledgeham-
mer with SMT solvers. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE,
volume 6803 of LNCS, pages 116–130. Springer, 2011. doi:10.1007/978-3-642-22438-6_11.

4 Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Ham-
mering towards QED. J. Formalized Reasoning, 9(1):101–148, 2016. doi:10.6092/issn.
1972-5787/4593.

5 Mario Carneiro. Metamath zero: Designing a theorem prover prover. In Intelligent Computer
Mathematics: 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31,
2020, Proceedings, pages 71–88, Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/
978-3-030-53518-6_5.

6 Simon Cruanes. Extending Superposition with Integer Arithmetic, Structural Induc-
tion, and Beyond. Theses, École polytechnique, September 2015. URL: https://hal.
archives-ouvertes.fr/tel-01223502.

7 Lukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory.
J. Autom. Reason., 61(1-4):423–453, 2018.

8 Martin Desharnais, Petar Vukmirović, Jasmin Blanchette, and Makarius Wenzel. Seventeen
provers under the hammer, 2022. URL: https://matryoshka-project.github.io/pubs/
seventeen.pdf.

9 Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds,
and Clark W. Barrett. Smtcoq: A plug-in for integrating SMT solvers into coq. In Rupak
Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume
10427 of Lecture Notes in Computer Science, pages 126–133. Springer, 2017. doi:10.1007/
978-3-319-63390-9_7.

10 Thibault Gauthier and Cezary Kaliszyk. Premise selection and external provers for HOL4.
In Certified Programs and Proofs (CPP’15), LNCS. Springer, 2015. doi:10.1145/2676724.
2693173.

ITP 2023

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/978-3-642-22438-6_11
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1007/978-3-030-53518-6_5
https://doi.org/10.1007/978-3-030-53518-6_5
https://hal.archives-ouvertes.fr/tel-01223502
https://hal.archives-ouvertes.fr/tel-01223502
https://matryoshka-project.github.io/pubs/seventeen.pdf
https://matryoshka-project.github.io/pubs/seventeen.pdf
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1145/2676724.2693173
https://doi.org/10.1145/2676724.2693173


9:18 Automated Theorem Proving for Metamath

11 Allen Van Gelder and Geoff Sutcliffe. Extending the TPTP language to higher-order logic
with automated parser generation. In Ulrich Furbach and Natarajan Shankar, editors, IJCAR,
volume 4130 of LNCS, pages 156–161. Springer, 2006. doi:10.1007/11814771_15.

12 Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua, and Roland
Zumkeller. A revision of the proof of the Kepler conjecture. Discrete & Computational
Geometry, 44(1):1–34, 2010. doi:10.1007/s00454-009-9148-4.

13 Jan Jakubův and Josef Urban. BliStrTune: hierarchical invention of theorem proving strategies.
In Yves Bertot and Viktor Vafeiadis, editors, Proceedings of the 6th ACM SIGPLAN Conference
on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages
43–52. ACM, 2017. doi:10.1145/3018610.3018619.

14 Jan Jakubuv, Karel Chvalovský, Zarathustra Amadeus Goertzel, Cezary Kaliszyk, Mirek
Olsák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban. Mizar 60 for mizar
50. CoRR, abs/2303.06686, 2023. doi:10.48550/arXiv.2303.06686.

15 Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: Online ATP service for HOL Light.
Mathematics in Computer Science, 9(1):5–22, 2015.

16 Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. Journal of Automated Reasoning,
55(3):245–256, 2015. doi:10.1007/s10817-015-9330-8.

17 Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages 1–35. Springer, 2013.
doi:10.1007/978-3-642-39799-8_1.

18 Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. MaSh:
Machine learning for Sledgehammer. In Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie, editors, ITP 2013, volume 7998 of LNCS, pages 35–50. Springer, 2013.
doi:10.1007/978-3-642-39634-2_6.

19 William McCune. Prover9 and Mace4, 2005–2010. URL: http://www.cs.unm.edu/~mccune/
prover9/.

20 Norman D. Megill and David A. Wheeler. Metamath: A Computer Lan-
guage for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019.
http://us.metamath.org/downloads/metamath.pdf.

21 Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses. J.
Autom. Reasoning, 40(1):35–60, 2008. doi:10.1007/s10817-007-9085-y.

22 Lawrence C. Paulson and Jasmin C. Blanchette. Three years of experience with Sledgehammer,
a practical link between automated and interactive theorem provers. In Geoff Sutcliffe, Stephan
Schulz, and Eugenia Ternovska, editors, Workshop on the Implementation of Logics (IWIL),
volume 2 of EPiC, pages 1–11. EasyChair, 2010. Invited talk. URL: http://www.easychair.
org/publications/paper/62805.

23 John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning (in
2 volumes). Elsevier and MIT Press, 2001. URL: https://www.sciencedirect.com/book/
9780444508133/handbook-of-automated-reasoning.

24 Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp, and
Andrei Voronkov, editors, LPAR, volume 8312 of Lecture Notes in Computer Science, pages
735–743. Springer, 2013. doi:10.1007/978-3-642-45221-5_49.

25 Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher, stronger: E 2.3. In
Pascal Fontaine, editor, Automated Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, volume 11716 of Lecture
Notes in Computer Science, pages 495–507. Springer, 2019. doi:10.1007/978-3-030-29436-6_
29.

26 Josef Urban. BliStr: The Blind Strategymaker. In Georg Gottlob, Geoff Sutcliffe, and
Andrei Voronkov, editors, Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi,
Georgia, October 16-19, 2015, volume 36 of EPiC Series in Computing, pages 312–319. Easy-
Chair, 2015. URL: http://www.easychair.org/publications/paper/BliStr_The_Blind_
Strategymaker, doi:10.29007/8n7m.

https://doi.org/10.1007/11814771_15
https://doi.org/10.1007/s00454-009-9148-4
https://doi.org/10.1145/3018610.3018619
https://doi.org/10.48550/arXiv.2303.06686
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39634-2_6
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/s10817-007-9085-y
http://www.easychair.org/publications/paper/62805
http://www.easychair.org/publications/paper/62805
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
https://doi.org/10.29007/8n7m


M. Carneiro, C. E. Brown, and J. Urban 9:19

27 Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service for Mizar
formalizations. J. Autom. Reasoning, 50:229–241, 2013. doi:10.1007/s10817-012-9269-y.

28 Petar Vukmirovic, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin,
and Sophie Tourret. Making higher-order superposition work. In CADE, volume 12699 of
Lecture Notes in Computer Science, pages 415–432. Springer, 2021.

ITP 2023

https://doi.org/10.1007/s10817-012-9269-y

	1 Introduction
	2 Metamath
	3 Translating Metamath to HOL via MM0
	4 Translating Metamath in HOL to TH0
	4.1 Translation v1
	4.2 Translation v2
	4.3 Translation v3
	4.4 More Examples
	4.5 Why three translations?

	5 Translating Metamath in HOL to First-Order Class Theory
	6 Benchmark
	7 Initial ATP Evaluation
	7.1 Higher-order Evaluation
	7.2 First-order runs
	7.3 Premise Selection Experiments
	7.3.1 Higher-order runs
	7.3.2 First-order runs


	8 Proof Reconstruction
	8.1 Proof Objects

	9 Examples
	10 Hammer Tool
	11 Conclusion

