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Abstract
Modern operating systems are typically built around a trusted system component called the kernel
which amongst other things is charged with enforcing system-wide security policies. Crucially,
this component must be kept isolated from untrusted software at all times, which is facilitated by
exploiting machine-oriented notions of separation: private memories, privilege levels, and similar.

Modern proof-assistants are typically built around a trusted system component called the kernel
which is charged with enforcing system-wide soundness. Crucially, this component must be kept
isolated from untrusted automation at all times, which is facilitated by exploiting programming-
language notions of separation: module-private data structures, type-abstraction, and similar.

Whilst markedly different in purpose, in some essential ways operating system and proof-assistant
kernels are tasked with the same job, namely enforcing system-wide invariants in the face of unbridled
interaction with untrusted code. Yet the mechanisms through which the two types of kernel protect
themselves are significantly different.

In this paper, we introduce Supervisionary, the kernel of a programmable proof-checking system
for Gordon’s HOL, organised in a manner more reminiscent of an operating system than a typical
LCF-style proof-checker. Supervisionary’s kernel executes at a relative level of privilege compared
to untrusted automation, with trusted and untrusted system components communicating across a
limited system call boundary. Kernel objects, managed on behalf of user-space by Supervisionary,
are referenced by handles and are passed back-and-forth by system calls. Unusually, Supervisionary
has no “metalanguage” in the LCF sense, as the language used to implement the kernel, and the
language used to implement automation, need not be the same. Any programming language can be
used to implement automation for Supervisionary, providing the resulting binary respects the kernel
calling convention and binary interface, with no risk to system soundness. Lastly, Supervisionary
allows arbitrary programming languages to be endowed with facilities for proof-checking. Indeed,
the handles that Supervisionary uses to denote kernel objects may be thought of as an extremely
expressive form of capability – in the computer security sense of that word – and can potentially be
used to enforce fine-grained correctness and security properties of programs at runtime.

2012 ACM Subject Classification Theory of computation → Higher order logic; Theory of computa-
tion → Automated reasoning; Theory of computation → Logic and verification; Software and its
engineering → Operating systems

Keywords and phrases Proof assistant design, operating systems, HOL, LCF, Supervisionary, system
description, capabilities

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.1

Supplementary Material Software (Source Code): https://github.com/DominicPM/supervisionary
archived at swh:1:dir:7478757cd08c06735cf3a1a056246d0200100c45

Acknowledgements We would like to thank Nick Spinale for many insightful conversations regarding
Supervisionary, and Nathan Chong and two anonymous referees for their helpful feedback on earlier
drafts of this paper.

1 All work done whilst employed within the Systems Research Group, Arm Research, Cambridge.

© Dominic P. Mulligan;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 1; pp. 1:1–1:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominic.p.mulligan@gmail.com
https://dominicpm.github.io
https://orcid.org/0000-0003-4643-3541
https://doi.org/10.4230/LIPIcs.TYPES.2022.1
https://github.com/DominicPM/supervisionary
https://archive.softwareheritage.org/swh:1:dir:7478757cd08c06735cf3a1a056246d0200100c45;origin=https://github.com/DominicPM/supervisionary;visit=swh:1:snp:9ee859626b9cd6b6c433d400286973fdac8f5d1b;anchor=swh:1:rev:e6e250d156871352da671f95c3d4d49b41c2f5d9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 All Watched Over by Machines of Loving Grace

(Trusted) kernel

...

libc libc libc

Process 1 Process 2 Process N

EL1

EL0

Figure 1 A schematic of the typical system organization of a commodity operating system and
its associated user-space. The kernel (in green) executes at a relative level of privilege, enforced by
hardware, compared to processes executing in user-space (red) – we follow the Arm convention and
show the kernel executing at EL1 and user-space at EL0. The two communicate across a system call
boundary (dashed line) using system calls (black arrows). User-space programs are typically written
making use of an abstraction library, such as libc (blue), to abstract over this kernel interface.

1 Introduction

This paper studies the intersection of operating system design and implementations of the
foundations of mathematics. Research into the confluence of these two topics is, admittedly,
a rather moribund affair at the moment. Nevertheless, with this paper we hope to convince
the reader that probing the intersection of these two areas is potentially very interesting
by introducing Supervisionary, a programmable proof-checking system for Gordon’s HOL.
This system has a novel system design, with some interesting properties, and moreover some
interesting consequences. We first, however, begin with a scene-setting overview of common
principles in operating system design and implementation.

1.1 On operating systems
Most commodity operating systems – that is, Microsoft Windows and Unix-derivatives2 – fit
a common pattern and are architected around a relatively self-contained, trusted component
typically called the system kernel [35].

The kernel is the sole component that can interface unfettered with all system resources,
including devices and other system hardware. Untrusted user-space applications make use of
kernel interfaces in order to make use of a device or any other system resource managed by
the kernel. As a result, the kernel is essentially a “pinch point” for gating access to system
resources. The kernel also introduces a process abstraction in user-space and is responsible
for ensuring the confidentiality and integrity of concurrently-executing processes, each of
which are mutually mistrusting. The kernel is therefore the key component responsible for
enforcing system-wide security policies, and essentially forms the “root of all trust” within
a computing system. It is therefore imperative that the kernel is itself isolated sufficiently
from user-space software at all times, lest this role be undermined by a malefactor.

The kernel self-isolates by co-operating with its host hardware. In support of this,
mainstream microprocessors have, over the years, accreted a variety of now-familiar security
features that an operating system kernel can use to defend itself from prying or interference.
These include exception levels or privilege rings, as they are variously called, depending on
the instruction set architecture, and which introduce a notion of privilege into the system.

2 Commodity here is used to guard against pedantic quibbling over research operating system designs –
like exokernels [9] and other oddities – which arguably do not fit this pattern.
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Here, software executing at higher-privilege – in our case, an operating system kernel3 – gains
permission to program sensitive system registers, adjust hardware operating frequencies and
voltages, and generally control how the system operates. Moreover, software executing at a
higher-level of privilege can “peer in” and potentially modify the runtime state of software
executing at a relatively lower-level of privilege, for example reading data from, or writing
data to, a buffer within the memory space of an untrusted user-space process.

Modern microprocessors also provide a form of memory management built around page
tables (see e.g. [3]). These data structures have a dual role: primarily, they are used for
the virtualisation of system memory via address translation, granting user-space software
the illusion that it owns the entire physical address space of the machine, presenting a
virtual address space to user-space programs. This translation process induces a notion of
ownership of pages of physical memory within the system, with a page of physical memory
“owned” by a principal – either the operating system, a user-space process, or both – if it is
mapped in to that principal’s address space. Moreover, page tables are also used for storing
the metadata attributes of pages of memory, including read-write-execute permissions. By
correctly initialising and managing these tables the kernel can keep its own code and data
structures isolated – in a kernel-private memory area – that only it can access, safe from
prying or interference by untrusted user-space. As a result, for systems software on modern
computers, isolation is enforced by a mix of low-level machine mechanisms: separate address
spaces, private memory regions, and machine-enforced privilege checks on executing software.

To make itself useful, the kernel exposes a limited interface, used by user-space to request
intercession by the kernel on its behalf – for example by granting user-space access to some
device, the filesystem, a socket, or some other system resource under kernel management.
Dealing in generalities, to do this, the kernel exposes a suite of largely synchronous system
calls which can be invoked by user-space programs with dedicated machine instructions
provided by the microprocessor – see Figure 1 for a diagrammatic schematic, for example. On
Arm platforms, with which the author is most familiar, these instructions induce a processor
exception, forcing a context switch which flips the flow of control into the kernel’s system
call handler, before eventually returning the flow of control back to the calling user-space
program. From user-space’s point-of-view, system calls therefore have the appearance and
effect of very CISC-like machine instructions, with the operating system kernel essentially
presenting itself to user-space as silicon by other means, extending the user-space fragment
of the instruction set architecture of the microprocessor with new macro instructions.

Note that for this two-way dance to work, user-space and the kernel must work together
by adopting a series of joint conventions. These include a calling convention describing
how arguments and results are passed back-and-forth across the system call interface, and
a binary interface detailing how system calls are identified, how errors are reported back
to user-space, and other miscellanea.4 To help programmers adhere to these conventions,
the operating system typically provides an abstraction layer to user-space, which on Unix
variants typically takes the form of the system’s C library, libc. Generally, this is just a
convenience, and user-space software may invoke system calls directly if wanted by invoking
the correct machine instruction and adhering to the appropriate calling convention.5

3 Note that Cloud hosting as a viable business proposition essentially rests on this trick being repeated
again, with a hypervisor sat in a position of privilege compared to an operating system kernel – executing
out of an even higher exception level – and enforcing separation betwixt operating system instances.

4 For more detail on the role of the system ABI, its other aspects, and its very real effects on the semantics
of executing programs, see this [18] outrageously well-written yet criminally under-cited overview.

5 This is the case on Linux, though does not hold universally on all Unix derivatives. For example Apple’s
MacOS and some BSD Unix variants generally consider the programming interface of the system C
library as the interface of the kernel, proper, in some cases preventing any user-space code other than
the system’s libc library from invoking system calls directly, as a security mechanism.

TYPES 2022
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Figure 2 A schematic of the system organisation of a typical LCF-style proof assistant. The trusted
kernel (green) is linked against untrusted automation (red) existing within the same metalanguage
process (dotted line) and communicate with each other using the kernel’s API (leftmost black arrow).
External tools existing as separate processes (blue), must communicate with a shim layer written in
the proof assistant’s metalanguage to access the kernel (rightmost black arrow).

However, crucially, it is generally not the case that the operating system kernel and
untrusted user-space applications must be written in the same programming language for
this all to work. Whilst most operating system kernels are written in C, or a C-language
derivative, user-space programs can be written in a variety of languages, and are also
commonly composed of multiple libraries, written in different programming languages, linked
together. Despite this, all are able to make use of system resources exposed by the kernel’s
system call interface by ensuring that they adhere to the calling convention and binary
interface expected by the kernel. In this respect, for commodity operating systems, the
C-language may have prominence as a favoured language of system implementation, but
by-and-large it is not special or given an unduly prominent status by the kernel itself.

1.2 On programmable proof-checkers
Most modern proof-assistants – for example, systems in the wider HOL family [27, 14, 33],
Coq [15], Matita [4], NuPRL [2], and similar – fit a common pattern and are architected
around a relatively self-contained, trusted component typically called the system kernel.

The system kernel is the sole component that can authenticate claims as legitimate
theorems of the implemented logic. Untrusted automation, residing outside of the kernel,
must “drive” the kernel to derive a theorem on its behalf. The kernel is therefore the
component responsible for ensuring system-wide soundness, and represents the “root of
all trust” within the system. It is therefore imperative that the kernel is able to isolate
itself sufficiently from untrusted automation at all times. This kernel-centric method of
system organisation is known as the LCF approach after Milner’s eponymous system [11].
See Figure 2 for a diagrammatic representation.

Most modern proof-assistants tend to be written in a metalanguage which serves as the
implementation language for both the kernel and the majority of the untrusted automation
that modern proof-assistants provide to users. This metalanguage is typically a strongly-typed
functional programming language, for example an ML derivative such as OCaml or SML [22],
and which offers strong modularity and abstraction features. The kernel exploits these
programming language features to hide its own data structures from untrusted automation
and expose a carefully limited API for proof-construction and manipulation. Notably, in an
LCF-style system, the only mechanism automation has for constructing an authenticated
theorem is by using this API, with the inference rules of the logic exposed as a suite of smart
constructors manipulating an abstract type of theorems. The kernel is therefore a “pinch
point” for any proof-construction activity within the system.
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Untrusted automation and the system kernel are linked together, and reside side-by-side
in the same process when the proof-assistant is executed. As a result, system soundness
ultimately rests on the soundness of the implementation metalanguage’s type-system –
specifically its ability to correctly isolate module-private data structures and enforce type
abstraction. Moreover, for systems that use ephemeral proof construction, and lack an
explicit notion of serialised proof-representation such as a proof-term or similar, the system
metalanguage is unique amongst all programming languages in that it is the only language
capable of interfacing directly with the kernel which is, after all, “just” a module written
written in that language like any other. Whilst an external tool, or automation written
in another programming language, can interface with the kernel, it must do so indirectly,
making use of a shim layer written in the system metalanguage.

1.3 Introducing the Supervisionary system
As the text above intimates, the role of the kernel in both an operating system and in
a proof-assistant is – at least in an abstract sense – the same: both components must
enforce system-wide invariants in the face of unbridled interaction with untrusted code; both
components also act as the “root of all trust” for their respective systems; both components
act as “pinch points” that untrusted code cannot help interact with if it wishes to engage
in some kernel-gated activity. Consequently, both types of kernel need to correctly isolate
their data structures and runtime state from interference by untrusted code. However, the
two mechanisms through which this self-isolation is enforced are different: for operating
system kernels6 self-isolation is enforced using machine-oriented mechanisms; for LCF-style
proof-assistants, self-isolation is enforced using programming language-oriented mechanisms.

In this paper we introduce Supervisionary, the kernel of a novel programmable proof-
assistant for Gordon’s HOL.7 Supervisionary’s design has more in common with a typical
operating system than comparable implementations of HOL. Specifically, the Supervisionary
kernel executes at a relative level of privilege compared to untrusted automation, which can
be thought of as executing as a process in something akin to Supervisionary’s version of
“user-space”. The trusted kernel, and untrusted user-space, communicate across a system call
boundary which is carefully designed in order to maintain system soundness.

One consequence of this design is that the Supervisionary kernel immediately takes on a
different character to an LCF kernel. All of the paraphernalia of a typical HOL implementation
– type-formers, types, constants, terms, and theorems – are managed as kernel objects kept
safely under the management of the kernel itself, in kernel-private memory areas. These
kernel objects are never exposed directly to user-space, rather, they are manipulated by the
Supervisionary kernel on user-space’s behalf. Handles – which can be thought of as pointers,
indexing Supervisionary’s private memories – are used by a user-space process to identify
kernel objects that the kernel should manipulate or query.

Notably, Supervisionary is also not implemented in a typed functional programming
language, as is typical of most programmable proof-assistants, but is rather implemented in the
decidedly unsafe systems programming language, Rust [17]. Note that this decision introduces
no risk to system soundness, as Supervisionary’s soundness ultimately rests on the continued
separation of kernel-private data from Supervisionary’s analogue of user-space – using privilege

6 Barring unikernels, or library operating systems, like Mirage [20, 21]. If we are really pushing this analogy
note that unikernels are in some respects quite similar to LCF-style proof-assistants in this regard,
having their kernel linked with untrusted “user-space” and separated using programming language
features like modules, rather than privilege and memory isolation.

7 Many of the ideas presented henceforth are logic-independent. Though we have chosen to use HOL the
ideas presented herein can be applied to a wide variety of other logics and type theories with relatively
straightforward changes.

TYPES 2022
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and private memories – and not on the type system of the implementation programming
language. Moreover, as user-space and kernel communicate across a defined system call
interface, untrusted user-space may also be written in any programming language capable of
producing code that is binary-compatible with the Supervisionary kernel. Supervisionary
therefore has no “metalanguage” in the LCF sense, but rather an implementation language,
with automation potentially written in multiple languages – maybe even a mix.

For ease of implementation and use Supervisionary is implemented as a WebAssembly [12]
(Wasm henceforth) host. We extend a Wasm virtual machine with new system calls that
perform a context switch into Supervisionary, which has its own memory isolated from
the memory of the executing user-space Wasm process running under its supervision, and
inaccessible to it. This separation is only one way: the kernel can “peer in” to the runtime
state of a running Wasm process and read from, or write to, its private memories. This
decision means we may experiment with the fundamental ideas behind Supervisionary –
namely isolating the kernel using private memory areas, the split between kernel- and user-
space, a kernel system call interface – without becoming bogged down in extraneous detail
associated with the booting ceremony of a real machine, for example. Moreover, we harness
work on porting compiler and linker toolchains, allowing our user-space to be written in any
programming language with a toolchain capable of targeting Wasm. Supervisionary’s design
will be fully described in Section 3.

Lastly, and more speculatively, Supervisionary’s handles can be passed around a program,
between different programs executing concurrently or sequentially under Supervisionary’s
management, or between the user-space program and the kernel. Whilst this property is not
unique to Supervisionary – values of the abstract type of theorems may also be passed around
within any LCF-style system, for example – the objects which these handles denote need not
be necessary truths of pure mathematics, but can be contingent truths, themselves functions
of the runtime state of the program itself, or of the Supervisionary kernel. Handles to these
theorems act as a form of capability, in the computer security sense of that word. This
property is unique to Supervisionary, as it rests on Supervisionary’s dual status as a proof-
assistant kernel, capable of generating and checking theorems, and an extension of a general
purpose virtual machine, capable of executing arbitrary programs. Here, Supervisionary
exploits its status as a “pinch point” that user-space cannot help pass through in order to
have any sort of computational effect, to force user-space to pass a handle denoting a theorem
that proves that it is acting correctly, per some system-wide policy. Some ideas of how this
idea could develop are discussed later, in Section 4.

2 Implemented logic

Supervisionary implements a variant of Gordon’s HOL [10], a classical higher-order logic.
This can be intuitively understood as Church’s Simple Theory of Types [7] extended with
ML-style top-level polymorphism. We introduce the basics of this logic here, introducing
just enough material that the unfamiliar reader can follow the rest of the paper.

We fix a denumerable set of type variables and use α, β, γ, and so on, to range arbitrarily
over them. We work with simple types generated by the following recursive grammar:

τ, τ ′, τ ′′ ::= α | f(τ, . . . , τ ′)

Here f is a type-former which has an associated arity – a natural number indicating the
number of type arguments that it expects. If all type-formers within a type are applied to a
number of types matching their arity we call the type well-formed – that is, arities introduce
a trivial or degenerate form of kinding for types. We will only ever work with well-formed
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r : τ
Γ ⊢ r = r

Γ ⊢ r = s

Γ ⊢ s = r

Γ ⊢ r = s Γ′ ⊢ s = t

Γ ∪ Γ′ ⊢ r = t

ϕ ∈ Γ
Γ ⊢ ϕ

Γ ⊢ ⊥ ϕ : bool
Γ ⊢ ϕ

Γ ⊢ r = s Γ′ ⊢ t = u

Γ ∪ Γ′ ⊢ r t = s u

Γ ⊢ r = s xτ /∈ fv(Γ)
Γ ⊢ λxτ .r = λxτ .s Γ ⊢ ⊤

Γ ⊢ ϕ Γ′ ⊢ ψ

Γ ∪ Γ′ ⊢ ϕ ∧ ψ

Γ ⊢ ϕ ∧ ψ

Γ ⊢ ϕ

Γ ⊢ ϕ ∧ ψ

Γ ⊢ ψ

Γ ∪ {ϕ} ⊢ ψ ϕ : bool
Γ ⊢ ϕ −→ ψ

Γ ⊢ ϕ −→ ψ Γ′ ⊢ ϕ

Γ ∪ Γ′ ⊢ ψ

Γ ⊢ ϕ ψ : bool
Γ ⊢ ϕ ∨ ψ

Γ ⊢ ψ ϕ : bool
Γ ⊢ ϕ ∨ ψ

Γ ⊢ ϕ = ψ Γ′ ⊢ ϕ

Γ ∪ Γ′ ⊢ ψ

Γ ⊢ ϕ ∨ ψ Γ′ ∪ {ϕ} ⊢ ξ Γ′′ ∪ {ψ} ⊢ ξ

Γ ∪ Γ′ ∪ Γ′′ ⊢ ξ

Γ ⊢ ϕ −→ ψ Γ′ ⊢ ψ −→ ϕ

Γ ∪ Γ′ ⊢ ϕ = ψ

Γ ⊢ ∃xτ .ϕ Γ ∪ {ϕ[xτ := yτ ]} ⊢ ψ yτ /∈ fv(ψ) ∪ fv(Γ) ∪ {xτ }

Γ ⊢ ψ

Γ ⊢ ϕ = ψ Γ′ ⊢ ψ

Γ ∪ Γ′ ⊢ ϕ

Γ ∪ {ϕ} ⊢ ⊥ ϕ : bool
Γ ⊢ ¬ϕ

Γ ⊢ ¬ϕ Γ′ ⊢ ϕ

Γ ∪ Γ′ ⊢ ⊥

Γ ⊢ ∀xτ .ϕ r : τ
Γ ⊢ ϕ[xτ := r]

Γ ⊢ ϕ[xτ := r]
Γ ⊢ ∃xτ .ϕ

Γ ⊢ ϕ xτ /∈ fv(Γ)
Γ ⊢ ∀xτ .ϕ

s : τ ′ r : τ
Γ ⊢ (λxτ .s)r = s[xτ := r]

Γ ⊢ ∃xτ .ϕ

Γ ⊢ ϕ(ϵxτ .ϕ)

f : τ ⇒ τ ′ xτ /∈ fv(f)
Γ ⊢ λxτ .(f x) = f

Γ ⊢ ϕ r : τ
Γ[xτ := r] ⊢ ϕ[xτ := r]

Γ ⊢ ϕ

Γ[α := τ ] ⊢ ϕ[α := τ ]

Figure 3 The Natural Deduction relation for Gordon’s HOL.

types in Supervisionary. We write tv(τ) for the set of type-variables appearing within a type,
and write τ [α := τ ′] for the type substitution replacing all occurrences of α with τ ′ in the
type τ . From the outset we assume two primitive type-formers built-in to the logic itself and
necessary to bootstrap the rest of the material: bool, the type-former of the Boolean type
and also the type of propositions, with arity 0, and − ⇒ −, the type-former of the HOL
function space, with arity 2. Note we will abuse syntax and also write bool for the type of
Booleans and propositions, and also write τ ⇒ τ ′ for the function space type.

For each well-formed type τ we assume a countably infinite set of variables and constant
symbols. We use xτ , yτ , zτ , and so on, to range over the variables associated with type τ ,
and similarly use Cτ , Dτ , Eτ , and so on, to also range over the constants associated with
type τ . With these, we recursively define terms of the explicitly-typed λ-calculus, as follows:

r, s, t ::= xτ | Cτ | rs | λx:τ .r

Note that there is an “obvious” simple-typing relation on terms, which is presented in Figure 4.
We write r : τ to assert that a derivation tree rooted at r : τ and constructed according to
the rules in Figure 4 exists, or more intuitively, that r has type τ . We call any term with a
type well-typed; we will only ever work with well-typed terms in Supervisionary. Also, we
call a term with type bool a formula and use ϕ, ψ, ξ, and so on, to suggestively range over
terms that should be understood as being formulae in the rest of the paper. We work with

TYPES 2022
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xτ : τ Cτ : τ
r : τ ⇒ τ ′ s : τ

rs : τ ′

r : τ ′

λxτ .r : τ ⇒ τ ′

Figure 4 The typing relation on terms.

terms identified up-to α-equivalence, write fv(r) for the set of free variables of the term r,
write r[xτ := t] for the usual capture-avoiding substitution on terms, and write r[α := τ ] for
the recursive extension of the type substitution action to terms.

As with type-formers, from the outset we assume a collection of typed constants needed
to boostrap the rest of the logic, summarised in the table below:

= α ⇒ α ⇒ bool
⊤, ⊥ bool

¬ bool ⇒ bool
∧, ∨, −→ with type bool ⇒ bool ⇒ bool

∀, ∃ (α ⇒ bool) ⇒ bool
ϵ (α ⇒ bool) ⇒ α

Most of the constants above are the familiar logical constants and connectives of first-order
logic, lifted into our higher-order setting, and are introduced without further explanation.
Only the ϵ constant – Hilbert’s description operator [23], a form of choice – may be unfamiliar.
In HOL, this can be used to “select”, or “choose” an element of a type according to some
predicate, and is otherwise undefined if no such element exists. Note therefore that all
HOL types are inhabited by at least one element, with the term ϵxτ .⊥ inhabiting every
type. We adopt conventional associativity, fixity, and precedence levels when rendering terms
using these constants, writing ϕ −→ ψ instead of (−→ ϕ)ψ, for example, and also suppress
explicit type substitutions required to make terms involving polymorphic types well-typed,
for example writing ∀xτ .ϕ instead of ∀[α := τ ](λxτ .ϕ).

We call a finite set of formulae a context, ranged arbitrarily over by Γ, Γ′, Γ′′, and so on.
We write Γ[xτ := r] and Γ[α := τ ] for the pointwise-lifting of the capture-avoiding substitution
and type substitution on terms to contexts, and write fv(Γ) for the set

⋃
{fv(r) | r ∈ Γ}. We

introduce a dyadic Natural Deduction relation betwixt contexts and formulae using the rules
in Figure 3, and write Γ ⊢ ϕ to assert that a derivation tree rooted at Γ ⊢ ϕ and constructed
according to the rules presented in this figure exists.

Note that our Natural Deduction relation can be simplified following the equational treat-
ment of the quantifiers and connectives discovered by Quine and Henkin, and implemented in
the HOL Light proof assistant [14], a point we touch on later in Section 5. We prefer a more
explicit treatment here, closer to a standard textbook presentation of Natural Deduction.

3 The Supervisionary kernel state

Supervisionary’s kernel manages a series of heaps, or private memories, in addition to other
bits of book-keeping data. These heaps contain kernel objects, of various kinds: type-formers,
types, constants, terms, and theorems. These follow the progression of the different kinds of
HOL objects and their interdependencies, as introduced in Section 2.



D. P. Mulligan 1:9

0x0

0x1

0x2

Type-former heap
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Arity: 0

Arity: 2

Arity: 1

Arity: 0

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

...

Type heap

T: V, N: 0

T: V, N: 1

T: F, A: [0x0,0x0]

Figure 5 Entries within the Supervisionary kernel’s type heap referencing entries within the
type-former heap. Cross-hatched heap cells are as-yet unallocated by the kernel. The cell allocated
at address 0x2 in the type heap is tagged with the F tag, indicating it is a type-former applied to a
list of argument types, and points-to the cell at address 0x1 in the type-former heap, with arity 2.
Two copies of the type stored in the cell with address 0x0, containing a type-variable with name 0,
are used as the argument of the type-former to produce a complete, well-formed type. Adopting
the convention that type-variable α is at 0x0 in the type heap, and the function-space type-former
− ⇒ − is at 0x1 in the type-former heap, then this represents an encoding of the type α ⇒ α.

3.1 The type-former heap
The most foundational of all of the heaps is the heap of type-formers, which is manipulated and
queried using a series of dedicated system calls. Each cell within the heap is either unallocated
or allocated and, in the latter case, contains a natural number arity for a type-former, encoded
as an unsigned 64-bit machine word. New type-formers are registered within the heap by
invoking a dedicated system call from user-space – TypeFormer.Register – which takes as
input the arity of the type-former and in response allocates a fresh cell, returning the address
of the cell back to user-space as the output of the system call. This address is the handle to
the new type-former kernel object, now under management by the Supervisionary kernel,
and must be used by user-space to refer to this object henceforth. For example, a handle
can be passed to the system call TypeFormer.IsRegistered system call to test whether a
handle denotes a registered type-former. Alternatively, the TypeFormer.Resolve system
call can be used to dereference a handle, in order to obtain an arity, providing that it does
indeed denote a registered type-former, otherwise returning a defined error code.

Note that type-formers are essentially “named” by their handle: there may be many
type-formers with the same arity registered with the kernel, and the particular meaning of
any type-former is largely a convention of user-space, outside the purview of Supervisionary.
Two primitive type-formers, pre-registered in the type-former heap on system boot, are
however exceptions to this rule and hold special significance for the kernel. These are the
bool type-former, registered at address 0x0 with arity 0, and the function-space type-former
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⇒, registered at address 0x1, with arity 2. The existence of these type-formers must be
understood by user-space, as they form part of the Supervisionary system interface, similar to
how the distinguished file handles stdout and stdin are part of the POSIX system interface
and must be understood by user-space and kernel alike to support file I/O.

3.2 The type heap
Building atop the heap of type-formers is the heap of types, queried and manipulated using
another series of system calls, with the interface for working with types much more complex
than that for type-formers. As a result, it is only summarised here.

Recalling Section 2, types are either a type-variable or a combination of a type-former
applied to a list of types. All entries within the type heap are therefore tagged indicating
whether they are a type-variable or a combination. Type-variable entries contain one datum:
the name of the type-variable, an unsigned 64-bit machine word. Combination entries also
contain a pointer into the type-former heap, indicating which type-former is being applied,
and contain a list of pointers back into the type heap itself, identifying the type arguments of
the combination. Figure 5 shows a schematic diagram of dependencies between cells within
the two heaps, wherein we use V to tag type-variables and F to tag combinations.

Supervisionary also boots with some entries in the type heap pre-registered, corresponding
to common or useful types used to boostrap the rest of the logic. These include the Boolean
type, bool, common type variables – α and β, for example – as well as larger, more complex
types such as the type of the polymorphic equality, α ⇒ α ⇒ bool. The handles for all of
these pre-registered entities must likewise be understood by user-space.

Further derived types, built from primitive objects or otherwise, may be built using
Type.Register.Variable and Type.Register.Combination system calls for constructing
basic types. The first takes as input only a 64-bit machine word – the name of the variable –
and immediately registers a new type in the type heap, returning the newly-allocated handle.
On the other hand, Type.Register.Combination takes as input a handle pointing-to a
registered type-former in the type-former heap and a list of handles pointing back into the
type heap. The system call fails if any of these handles dangle, or denote an object of the
wrong kind, or if a list of type handles is presented with a length differing from the registered
arity of the type-former. Lists of handles are passed to system calls by passing a base pointer,
denoting the beginning of the list (or rather, array) with an explicit length. Substitutions,
for the Type.Substitution system call, which performs a type-substitution, are passed as
two lists: one for the domain of the substitution, another for the range.

It is sometimes convenient to test the structure of a type pointed-to by a handle. This
can be done using system calls like Type.Test.Combination which takes a handle and
returns a Boolean value indicating whether the corresponding type is a combination. A
family of “splitting” system calls – Type.Split.Variable, for example – can also be used to
deconstruct a type. This takes a handle and returns the name of the variable pointed-to by
the handle, if it is indeed a type-variable. Similar functions also exist for type combinations,
and allow user-space to “pattern match” on types.

A system call, Type.Variables, also exists for computing the type-variables appearing
within a term. Implementing this as a system call is a challenge as the number of variables
to be returned – and hence the size of buffer that user-space needs to set aside to hold
them, and which Supervisionary will write into – is unpredictable. To resolve this, the kernel
exposes another system call, Type.Size, which computes the size of a type which bounds the
number of variables appearing within a type. By querying this, user-space can first allocate
sufficient memory within its own address space to hold the set of type-variables before calling
Type.Variables with a pointer to the base of the allocated buffer.
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Obviously, the Supervisionary kernel must be careful in its management of its heaps, and
this topic becomes pressing now we have introduced two heaps with dependencies between
them. In particular, Supervisionary maintains a series of kernel invariants which hold
immediately out of boot and must be preserved by all system calls. One key invariant is the
idea that heaps only ever grow monotonically, and allocated entries are immutable. Once
an object is allocated into the heap it cannot be removed or modified in any way, lest we
introduce an unsoundness, for example by modifying the bool type, or the truth constant, ⊤,
or something similarly catastrophic. Moreover, heaps should always remain inductive, in the
sense that their cells do not contain any dangling pointers that do not point-to allocated
cells in the same or other heaps. Essentially, this latter property forces the various objects
under Supervisionary’s management to correctly follow the grammar of types and terms
introduced in Section 2, with larger objects being gradually “built up” out of smaller ones.

3.3 The constant and term heap
Building on the heap of types is the heap of constants, keeping track of registered term
constants. Again, this is pre-provisioned with a series of primitive constants, corresponding to
the logical constants and connectives, at boot-time. The system call interface for constants is
similar to that for type-formers, exposing just three system calls for registering new constants,
dereferencing handles, and testing whether a handle denotes a registered constant.

Another, further heap – the heap of terms – is also used to construct and manipulate
terms, with heap cells tagged with whether they represent a variable, constant, application, or
lambda-abstraction, in a similar style to the tagging used for cells in the type heap. System
calls for constructing, testing, and pattern matching on terms are provided, similar to those
previously discussed within the context of other heaps. Further, new special-purposes system
calls, for example Term.Type.Infer allow user-space to infer the type of a registered term,
if any, whilst Term.Substitute performs a capture-avoiding substitution on a term. Note
that handles for terms actually denote α-equivalence classes of terms – at present, we use a
name-carrying syntax, but could implement this using De Bruijn indices or levels [8], leading
to a more efficient implementation.

3.4 The theorem heap
The final, and most important heap maintained by the Supervisionary kernel is the heap of
theorems. Every other Supervisionary heap exists to support this heap, and Supervisionary
considers a theorem proved only if it appears in this heap. Cells within the theorem heap
contain a sequent, a tuple consisting of an (ordered) set of handles of formulae, representing
the assumptions of the theorem, combined with a single handle for the theorem’s conclusion.

A theorem kernel object can be deconstructed using the Theorem.Split.Assumptions
and Theorem.Split.Conclusion system calls, to obtain the list of assumption and conclusion
of the theorem object, respectively. However, the only way that a new entry in the heap
of theorems can be constructed is by using one of a series of system calls corresponding to
an inference rule of the logic’s Natural Deduction relation, presented in Section 2, or of the
definitional principles of HOL. Taking the negation introduction system call, for example:

Γ ∪ {ϕ} ⊢ ⊥ ϕ : bool
Γ ⊢ ¬ϕ

We have a corresponding system call Theorem.Register.Negation.Introduction which
takes a handle pointing-to a sequent, Γ ∪ {ϕ} ⊢ ⊥, in the kernel’s theorem heap, and a handle
pointing-to a term, ϕ, in the kernel’s term heap, and returns a handle pointing-to a theorem,
Γ ⊢ ¬ϕ, also residing in the kernel’s theorem heap if all error checks pass for the inputs.
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Like terms, theorem handles point-to α-equivalence classes of theorem objects, wherein
two sequents are considered the same if their respective constituent handles point-to the same
α-equivalence classes of terms. Moreover, the Supervisionary kernel also enforces maximal
sharing in all of its kernel heaps, and an attempt to register an object that has already been
registered, up-to α-equivalence, does not allocate a new slot in the respective kernel heap, but
merely returns the existing handle to the object. These two decisions make some operations
within the Supervisionary kernel easier to implement, at the expense of slowing down the
registering of new objects. For example, we know that objects are α-equivalent when their
handles are identical. Moreover, in Theorem.Register.Negation.Introduction above, we
know that the formula ϕ is not in the context Γ ∪ {ϕ} if the second input handle, mentioned
above, does not appear in the list of handles representing the assumptions of the sequent.
Note that this would not be the case if we did not enforce maximal sharing: another handle
pointing-to the term ϕ may be present in the list of assumptions of the theorem, different
from the handle passed in from user-space, and this would force Supervisionary to have to
perform a “deep scan” of its heaps in trying to work out whether the two handles supposedly
pointed-to the same HOL formula. As a result of this sharing, Supervisionary’s heaps remain
inductive in the sense previously discussed, but recursively-defined objects represented within
them are not necessarily encoded as trees, but rather directed acyclic graphs.

Moreover, we previously mentioned that heaps must continue to grow monotonically at all
times, lest we inadvertently introduce an unsoundness into the system by allowing the HOL
bool type, or similar, to be redefined. However, note that this invariant could be weakened,
somewhat, by “working backwards” from the kernel’s theorem heap and removing objects
in other kernel heaps that are not referenced via a transitive points-to relation. Essentially
this would represent a form of mark-and-sweep garbage collection [31] wherein objects in
the kernel’s theorem heaps are root objects, with other objects deallocated if they are not
reachable from these roots. Care must be taken to ensure that the primitive kernel objects,
pre-provisioned into the heaps at system boot, can never be deallocated, even if currently
unreachable. Whilst possible, this garbage collection process is not at present implemented
in Supervisionary, as sharing compresses the heaps with no pressing need to remove objects
from them. Moreover, within the context of garbage collection, user-space cannot be sure
that a handle generated by the kernel, and previously denoting a registered kernel object, is
stable and now does not dangle, complicating the Supervisionary programming model.

3.5 Specifying kernel functions

Implementing and using the Supervisionary kernel is an extended exercise in heap and pointer
manipulation, and until now the kernel’s system calls were explained in an intuitive, informal
sense. To specify the behaviour of some of our kernel system calls, we therefore reach for an
existing tool used to specify pointer-manipulating programs: Separation Logic [30, 16].

Working abstractly, we represent handles as elements of the set N of natural numbers,
and use h, h′, h′′, and so on, to range over handles. For a fixed set A, we say that a
partial-function f : N⇀ A is finitely-supported when the set dom(f) = {x | f x defined} is
finite. We call such a finitely-supported partial map into a set A an A-heap. We write 0 for
an empty A-heap, and for two A-heaps f and g we write f ♯ g to assert that their domains
are disjoint, so dom(f) ∩ dom(g) = {}. This relation is symmetric and 0 ♯ g always, for any
g. Moreover, for two A-heaps f and g we can “glue them together”, using the function f ⊕ g,
to form a larger A-heap. This function is defined piecewise as:
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(f ⊕ g) x = f x if x ∈ dom(f)
(f ⊕ g) x = g x if x ∈ dom(g)
(f ⊕ g) x is undefined otherwise

Note that f ⊕ g is well-defined whenever f ♯ g. Finally, for a ∈ A, we write h 7→ a for the
singleton A-heap mapping h to a and remaining undefined at all other points.

We define types, constants, terms, and theorems by the following non-recursive grammars,
where m ranges over arbitrary natural numbers:

t, t′, t′′ ::= TyVar m | TyFm h (h1, . . . , hn)
C,C ′, C ′′ ::= TConst h h′

r, r′, r′′ ::= Var m h | Const h h′ | App h h′ | Lam m h h′

s, s′, s′′ ::= Seq (h1, . . . , hn) h

We call heaps over types a type-heap; similarly for constants, terms, and theorems. We also
call heaps over natural number arities a type-former heap.

Fix a set of kernel states K. We use k, k′, k′′, and so on, to range over kernel states,
each of which is a 5-tuple ⟨F, Ty, C, Tm, Th⟩ consisting of a type-former heap, a type heap,
a constant heap, a term heap, and a theorem heap respectively. We extend our notion of
disjointness to kernel states, and write k ♯ k′ to assert that all of the respective heaps in
kernel states k and k′ are disjoint. We further abuse notation and write 0 for the empty
kernel state consisting of five empty heaps, and k ⊕ k′ for the “gluing” of two kernel states
together, wherein each of the respective heaps in k and k′ are joined pointwise using ⊕. Note
that, again, k ⊕ k′ is well-defined whenever k ♯ k′.

We define assertions as sets of kernel states, use A, B, C, and so on, to range over them,
and write k ⊨ A to assert that k ∈ A. We pay especial attention to some particular assertions
of note that will be useful in specifying some of our system calls:

• ≡ {⟨0, 0, 0, 0, 0⟩}
A ⋆ B ≡ {k′′ | ∃k k′.k′′ = k ⊕ k′ and k ♯ k′ and k ⊨ A and k′ ⊨ B}

h 7→Aty a ≡ {⟨h 7→ a, 0, 0, 0, 0⟩}
h 7→Typ t ≡ {⟨0, h 7→ t, 0, 0, 0⟩}

We further define the standard logical constants and connectives as abbreviations for setwise
operations, writing ⊥ for {}, C ∧D for C ∩D, and ∃x.C x for

⋂
x . C x, for example.

Fix a set of values, V , consisting at least of handles and numeric error codes. System
calls e, f , g, and so on, are modelled as total functions from kernel states to kernel states
which also produce a value as a side-effect, that is e : K → V × K. Note that though a
kernel system call may fail – for example, if its inputs are in an unexpected form, or similar –
it should never crash, but rather return a specific error code back to the user-space program
and maintain the state of the kernel as it was before the system call was invoked. Crashes,
or kernel panics, are reserved for unrecoverable errors, for example the failure of an internal
invariant, or similar – the Supervisionary equivalent of a “blue screen of death”.

With this in mind, we define a Separation Logic triple as a three-place relation between
an assertion, a system-call, and a function from values to assertions by:

A ⊢ e ⊣ λr.B iff for any C if k ⊨ A ⋆ C and e k = ⟨v, k′⟩ then k′ ⊨ (λr.B)v ⋆ C
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With this, we specify the behaviour of the TypeFormer.Register system call as follows:

• ⊢ TypeFormer.Register(a) ⊣ λh.h 7→Aty a

Note that this specification correctly captures the fact that the call can never fail: it will
always return a handle pointing-to a new cell in the type-former heap, containing the required
arity, with no other effects on the kernel heaps.

Specifying system calls which manipulate types, constants, terms, or theorems is more
complex as we must assume that any handles contained within these structures point-to
allocated cells in an appropriate kernel heap. To do this, we use of a family of shape predicates
relating encodings of objects within the kernel’s heaps to the recursively-defined structures
of Section 2. Assuming a bijection V between natural numbers and type-variables, and a
bijection F between handles and type-formers, we inductively define the relation TYPE h τ :

h 7→T yp TVar m (V m α)
TYPE h α

h 7→T yp TyFm h′ (h1, . . . , hn) ⋆ h′ 7→Aty n ⋆ TYPE hi τi (1 ≤ i ≤ n, F h′ f)
TYPE h f(τ1, . . . , τn)

We omit comparable shape predicates for constants, terms, and theorems, as the pattern
should be clear. Note that the basic allocation functions for types, upon success, generate
kernel states wherein the TYPE relation holds. For example, assuming a correspondence,
V n α, between the natural number n and type-variable α:

• ⊢ Type.Register.Variable(n) ⊣ λh.TYPE h α

Similarly, we have:

h 7→Aty n ⋆ TYPE h1 τ1 ⋆ . . . ⋆ TYPE hn τn

⊢ Type.Register.TypeFormer(h, h1, . . . , hn) ⊣
λr.h 7→Aty n ⋆ TYPE h1 τ1 ⋆ . . . ⋆ TYPE hn τn ⋆ TYPE r f(τ1, . . . , τn)

Which also captures the fact that existing well-formed kernel heaps remain well-formed after
invocation of a system call, with shape predicate invariants formally capturing the kernel
invariants previously informally introduced.

3.6 Programming in user-space
The system call interface presents a very low-level, austere interface to user-space code. To
make programming Supervisionary less tedious, a utility library, similar in function to libc,
is provided to user-space in order to raise the level of abstraction above the raw system
call interface. This is provided as libsupervisionary, currently implemented only for
the Rust programming language, but could in theory be ported to the C-language, or any
other language that can be compiled to Wasm. Note that further layers, built on top of
libsupervisionary, can provide pretty-printing and parsing routines for types and terms,
automation, proof-state management, and other functions typical of a proof-assistant.

4 Future work

We now take a more speculative turn, discussing future work. The ideas presented in this
section are perhaps the most interesting consequence of Supervisionary’s design, and we
therefore dedicate a section solely to them.
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4.1 Capabilities on steroids
As described, Supervisionary is a proof-checking system implemented in an unusual way, but
also a virtual machine, capable of executing arbitrarily complex programs compiled to the
Wasm instruction set, from a variety of source programming languages.

However, at present, these Wasm programs are limited in the effects that they can make
on the system – specifically, the only effect that they can actually make, other than heating
the CPU, is to construct types, terms, and theorems, in Supervisionary’s various heaps, using
the series of system calls progressively introduced in Section 3. Programs executing under
Supervisionary are so-far incapable of opening files on the user’s machine, communicating
over sockets, or querying the system time, because Supervisionary does not provide any
system calls to allow a program to perform any of those activities. However, it could.

Specifically, Supervisionary could implement a system interface that provided all of the
system calls needed by “real” programs wishing to make some effect on a user’s machine. By
doing this, Supervisionary is transformed into a general-purpose virtual machine, akin to the
Java Virtual Machine, capable of executing arbitrary programs – calculators, simulations,
file search utilities, and so on – albeit with a bizarre set of extra system calls dedicated to
theorem proving. In short, by extending Supervisionary with system calls for querying and
manipulating the system state, Supervisionary is both a proof-assistant and a general-purpose
virtual machine – though these two facets of the system are kept separate.

These two families of system call need not be kept separated, however. Prior to allowing
a user-space program to open or read a file, Supervisionary could first demand that a (handle
to a) theorem is supplied to it as an extra argument to the file-open system call, fopen, for
example. Interestingly, because Supervisionary executes at a relative level of privilege, and
can “peer in” to the runtime state of a user-space program, the statement of this desired
theorem can be a function of the runtime state of the user-space program itself, of the runtime
state of the Supervisionary kernel, and also of the various arguments and other details of the
system call being invoked. This statement – which we will call the challenge – can be any
arbitrary formula written in HOL, and can be generated dynamically by the kernel, perhaps
in accordance with a global policy enforced by Supervisionary. A failure to produce a handle
to address a particular challenge causes the system call to fail, with a runtime failure.

For concreteness, suppose we fix HOL types wstate, kstate, and cstate, which you may
imagine as being record types capturing details of the runtime state of the executing Wasm
process, the runtime state of the Supervisionary kernel, and the details of the system
call being invoked. Supervisionary can dynamically reflect the actual runtime states of
the user-space program and kernel, and the invoked system call, into inhabitants of these
HOL types. Then, supposing our prevailing security policy, p, is a HOL function of type
wstate ⇒ kstate ⇒ cstate ⇒ bool, a challenge is obtained by dynamically applying p to the
reflected records, described above. Two particularly special security policies exist:

λwwstate.λkkstate.λccstate.⊥ and λwwstate.λkkstate.λccstate.⊤

When applied to a reflected runtime state, these two policies generate the challenges ⊥ and
⊤, respectively. The first policy is therefore the deny all policy, which essentially prevents a
user-space program from invoking any system call, and making any effect on the system state,
whilst the second is the allow all policy which can always be trivially satisfied by passing
the handle to HOL’s truth introduction theorem.8 Between these two extremal points are

8 Note that, if we allow arbitrary axioms to be introduced into the Supervisionary global theory, as many
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a variety of other interesting policies, however. For example, if we assume that our cstate
record contains a field cname of type cstate ⇒ string capturing the name of the system call
being invoked, then we may selectively prevent particular system calls from being executed
by a program. The following policy prevents any invocation of the fopen and fclose system
calls from succeeding, for example:

λwwstate.λkkstate.λccstate.cname c /∈ {fopen, fclose}

This policy is expressible using existing security mechanisms on mainstream operating systems:
modern Linux distributions use small eBPF programs to block programs from invoking
particular system calls at runtime, according to a security policy, for example. However,
the mechanism sketched above goes far beyond the expressivity of these existing systems as
correctness properties can also be captured by a policy, for example. Assume, for example,
that the cstate record also exposes a field cargs of type cstate ⇒ nat ⇒ option list word 8,
which returns the byte-representation of the nth argument passed to the invoked system
call. With this, and assuming HOL functions strbytes and intbytes for converting string and
machine word datatypes into byte lists, respectively, we can then express

λwwstate.λkkstate.λccstate.cname c = fwrite −→
cargs c 0 = Some (strbytes "foo.txt") −→

cargs c 1 = Some (intbytes (ϵiword 64.3i2 − 2i− 1 = 0))

preventing any write to a file unless the 64-bit machine word being written is some zero of
a particular polynomial. In particular, the policy above demonstrates an important point:
Supervisionary’s policies can use any aspect of HOL, quantifiers, choice, and all.

Until now, all examples have focussed on the cstate record which captures information
about the invoked system call. Other interesting policies can also be written in terms of the
runtime state of the Supervisionary kernel itself. This idea becomes especially interesting if
we extend the kernel with new structures recording aspects of a program’s execution. By
extending Supervisionary to keep a log of all system calls invoked thus far by a user-space
program – for example, exposing this log as a field wlog in the wstate record with type
wstate ⇒ nat ⇒ option event – we can capture trace properties of the executing program.
For instance, one may assert that system call invocations must be balanced in some way –
exactly one file may be opened at a time, and opening a second file first requires the program
close the other, for example – and also deeper properties, including adherence to a protocol.

One common security pattern deployed by software is gradual jailing, or shedding of
capabilities – for example, OpenBSD’s pledge system call allows a program to dynamically
shed the ability to further invoke particular classes of system call, gradually dropping
capabilities during a self-jailing phase. To offer a similar facility for Supervisionary, we
need to allow a program to dynamically strengthen the prevailing policy being enforced by
Supervisionary. Given the prevailing policy p we can allow the user-space program to self-jail
by switching to a new policy q if the program can prove to Supervisionary that the new
policy is more restrictive than the previous one, in the sense that:

∀wwstate.∀kkstate.∀ccstate.q w k c −→ p w k c

proof-assistants allow, then we need some form of taint tracking to ensure that challenges may only be
answered by theorems deduced without axioms.
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If we view Supervisionary’s policies as identifying sets of possible system behaviours, then the
user-space program must prove to Supervisionary’s satisfaction that the set of permissible
behaviours that may occur from now on are a subset of the behaviours that Supervisionary
was previously happy to accept. Note here that quantification is used in an essential way.

The material in this section has some similarity with an existing idea: proof-carrying
code [24]. In one model of proof-carrying code the operating system or virtual machine loader
is modified to check proof certificates bundled with binaries for adherence to some security
or correctness property, for example memory safety, before the binary is executed. Note,
however, that these certificates are constructed up front, in a separate step, and merely
checked by the operating system loader. In contrast, the ideas presented above are more akin
to proof-generating code, wherein the user-space program and Supervisionary work together
to dynamically come to an understanding that the runtime behaviour of the program adheres
to a prevailing policy. In effect, HOL is used as a lingua franca used to communicate demands
by, and intent of, the Supervisionary kernel and user-space program, respectively.

The ideas above also blur the lines between static and dynamic, or runtime, verification.
Supervisionary can be used like any other proof assistant, to statically establish properties of
models of software or hardware systems, or reason about necessary truths within the rarefied
domain of pure mathematics. However, it may also be used to dynamically check the runtime
behaviour of programs executing under its supervision, interestingly also using theorem
proving. Moreover, Supervisionary allows any program written in any programming language
to be endowed with support for theorem-proving, and reasoning about its own behaviour.
Indeed, a program executing on the Supervisionary virtual machine must be prepared to
explain its adherence to the system security or correctness policy in order to have any hope
of performing a side-effect. With Supervisionary, proof is no longer the exclusive domain of
dedicated programming languages like Agda [26] or Idris [6, 5], but can be extended to any
language merely by porting libsupervisionary.

4.2 Hardware-accelerated proof-checking
As noted earlier, from the perspective of user-space software a system call presents as a suite
of particularly CISC-like machine instructions with a rather unorthodox method of invocation.
Indeed, the combination of the Supervisionary system calls and the host Wasm instruction set
can be, itself, thought of as a new, derived instruction set extending Wasm, with strange new
domain-specific instructions for proof construction and management. Moreover, it should
be quite clear that there is nothing Wasm-specific about Supervisionary, and indeed Wasm
was chosen merely as a relatively pain-free way of experimenting with the core ideas behind
Supervisionary. Indeed, Supervisionary could have been implemented as real, privileged
systems software for an existing instruction set in a relatively straightforward manner.

As a result, the Supervisionary system call interface is already quite well-suited to
an implementation in hardware, perhaps as an extension of an existing instruction set
architecture like Arm AArch64 or RISC-V. The mechanism through which the Supervisionary
kernel isolates itself, via private memories, is rather “hardware like”, and maps nicely onto
existing hardware features, and whilst the present Supervisionary system call interface
makes extensive use of “pointer-like” handles to refer to kernel objects, on a real hardware
implementation these handles could literally be pointers into private memories, or similar.
Moreover, the system call interface itself is also further carefully designed to avoid arbitrarily
large recursive structures, difficult for an instruction set architecture to handle, from being
passed across the kernel system call boundary. We could therefore “push Supervisionary
down one layer” again, into the underlying instruction set implemented by hardware. With
this, the ideas presented in Subsection 4.1 take on a new light, as the system hardware is now
capable of expressing, and enforcing, arbitrarily complex security and correctness properties.
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5 Conclusions

5.1 Related work

The closest related work to Supervisionary is VeriML, an ML-like language extended with
limited dependent-types ranging over HOL terms and theorems [34]. Essentially, VeriML
“internalises” a typical HOL kernel implementation within a higher-order programming
language, promoting the abstract type of theorems – typically defined within the system
metalanguage – into a native type of the language that can be queried and modified with
new, dedicated, domain-specific expressions for theorem construction and manipulation.

Compared to a typical HOL kernel, VeriML essentially “pushes the kernel down one layer”
in the hierarchy of abstractions, moving the kernel from a library within the language to
a first-class programming language feature. However, Supervisionary “pushes” the kernel
even further, moving support for theorem proving out of the programming language and
into the underlying operating system – or, in our case, virtual machine. (And, as discussed
above, this “pushing” of the kernel down through the different layers of abstractions can
be taken to its logical conclusion, by pushing the kernel all the way into hardware.) Note,
however, that despite the general idea behind the two projects being essentially the same, the
two differ markedly in a myriad of design details which have some important consequences:
for example, automation in Supervisionary is inherently programming-language agnostic,
whereas VeriML is inherently tied to one particular language – VeriML itself.

Interestingly, some of the ideas used in Supervisionary can also be “pushed up one layer”
in the hierarchy of abstractions. Specifically, the Separation Logic specifications presented
in Subsection 3.5 can be re-interpreted as a series of local axioms describing the behaviour
of statements or expressions in a programming language for registering, manipulating and
querying type-formers, types, and other objects, in a series of heaps secreted from the user,
managed by the language’s runtime. Interestingly, the natural programming language that
one obtains from this exercise is imperative, in contrast to the functional VeriML. (To make
a more ergonomic programming language it would make sense for these expressions to be
modified so that they manipulate built-in recursive types of the programming language –
corresponding to HOL type-formers, types, constants, terms, and theorems – in a similar
fashion to VeriML, rather than make use of Supervisionary’s handles and its incremental
construction of recursive structures.)

In Subsection 4.1 we observed that Supervisionary’s handles can be reinterpreted as
capabilities, in the information security sense of that word. Note that capability machines are,
at the present time, having a minor renaissance, driven by the success of the CHERI capability
extensions for MIPS, Arm AArch64, and RISC-V [25]. Capabilities in hardware have a long
and storied history – dating at least to the Cambridge CAP machine developed in the 1970s –
and capability-based security has also previously been applied to programming languages and
software, including systems software like operating systems. Whilst contemporary operating
systems like seL4 [19] and other L4 derivatives have a security model built around capabilities,
perhaps the best well-known historical example of a capability-based operating system was
KeyKOS [29, 13] and its many derivatives, including EROS, the Extremely Reliable Operating
System [32]. However, despite this long history, the Supervisionary conception of capabilities
differs from other implementations as hardware-based capability systems like CHERI, are
relatively inexpressive, merely extending traditional pointer types with information on valid
memory regions within which they may point, and memory access permissions. This is
because existing hardware-based capability systems are optimised to prevent spatial and
temporal memory safety issues, inherent in the use of unsafe systems programming languages
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like the C-language, and derivatives, and must provide an easy “on ramp” allowing existing
software to adopt them. Supervisionary’s conception of capabilities differs, here, in being
more expressive, allowing complex security and correctness properties to be expressed, but
also much more intrusive, and much harder to make use of: software must be aware of the
prevailing security or correctness policy in force at the time, when trying to open a file for
example, in order to be able to correctly answer the “challenge”. Using a Supervisionary
capability to open a file may also require unbounded amounts of reasoning first, in order to
address the “challenge” posed by Supervisionary, which is not the case with other forms of
capability, which act as passive tokens of authority.

Lastly, Supervisionary, as an implementation of HOL, is closely related to several extant
systems in the wider HOL family: Isabelle/HOL, HOL4, HOL Light, Candle [1], and so
on. The kernels of all of these systems implement very similar logics, albeit with minor
modification. However, unlike the aforementioned systems, Supervisionary does not follow
the typical LCF-style of system organisation, nor is it written in an ML-derivative.

5.2 On trust
The current Supervisionary proof-checking kernel consists of approximately 6,600 lines of
Rust code, compared to approximately 3,100 lines of Standard ML in recent distributions
of the Isabelle framework. Whilst comparing linecounts between languages is an imperfect
science, the Supervisionary kernel is still clearly larger than one of the most complex extant
LCF-style implementations. Largely, this is because Supervisionary implements the HOL
Natural Deduction relation in full, providing introduction and elimination rules for all logical
constants, as observed in Section 2. Using a bare-bones implementation of HOL, based upon
equality, and then deriving introduction and elimination rules for all other logical constants
outside of the kernel, would be one way to shrink the kernel line count.

From the point-of-view of a Supervisionary user-space program the kernel is not the
only body of code that must be trusted. The implementation of libsupervisionary
– a mediation layer between kernel and user-space – must also be trusted in much the
same way that libc must also be implicitly trusted by user-space on Unix-derivatives. A
malicious libsupervisionary could present as interfacing with the kernel whilst maintaining
shadow copies of kernel state, never requesting that the kernel actually check a proof, for
example! This threat is not unique to Supervisionary – despite oft-repeated claims that the
kernel represents the entire system TCB, users of all interactive theorem proving systems
implicitly trust the system’s pretty-printer, for example, not to lie about what the system
has proved [28], despite this code typically residing outside of the kernel – though the
fact that there is a nuanced threat model here is perhaps more obvious, and pressing, as a
consequence of Supervisionary’s dual status as proof-checker and general-purpose virtual
machine. Minimising the system kernel size potentially comes at the cost of bloating other
code – for example, libsupervisionary – that must also be trusted by users wishing to
use the system for theorem proving tasks. However, the Supervisionary kernel may also
contain functionality – filesystems, timers, network sockets, and similar – related to the
Supervisionary general-purpose virtual machine and there is a danger that this code can be
used by a malefactor to exploit the kernel, perhaps undermining the Supervisionary capability
system by somehow deriving a contradiction in an empty context, or similar. On balance –
and focussing on security and consistency, rather than efficiency – the kernel size should be
minimised if possible, as this prevents security exploits and simply moves code that must
be trusted for theorem-proving purposes around, neither helping nor hindering the system’s
trust story in that respect.

TYPES 2022
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Lastly, the kernel can also be modularised – and is, in the Supervisionary implementation –
with all theorem-proving related material isolated inside its own module, all filesystem-related
material within its own module, and the two only interacting when strictly needed. Ironically,
this re-introduces the idea of protecting key system invariants using programming-language
modules and type-abstraction albeit this is never directly exposed to the user.

5.3 Closing remarks
We have presented Supervisionary, a kernel for an implementation of Gordon’s HOL. In con-
trast to most implementations of HOL, Supervisionary is not based on the LCF architectural
pattern, but is instead implemented in a style more reminiscent of a typical operating system,
making essential use of machine-oriented notions of separation to protect the system kernel
from untrusted automation.

The Supervisionary kernel – which is open-source, and developed in the open9 – is
implemented as a host for the Wasmi interpreter10 for Wasm. Interpretation means that
software executing under Supervisionary executes orders of magnitude slower than natively-
compiled code. However, the kernel is architected in a layered manner, with all important
kernel functionality implemented in a library that is independent of the execution engine
used and bound to the execution engine in a thin shim layer sitting between it and the core
kernel library. As a result, Supervisionary can be ported to more efficient Wasm execution
engines – the Wasmtime just-in-time compiler11, for example – relatively easily. This porting
has already started and will provide a significant increase in system performance, albeit at
the cost of bringing a state-of-the-art just-in-time compiler into the kernel.

The design of Supervisionary is interesting in its own right: it completely dispenses with
the typical metalanguage associated with an LCF-style proof-assistant, allowing automation
to be written in any programming language capable of respecting the Supervisionary kernel
binary interface and calling conventions. However, in our view the most interesting aspects
of Supervisionary are the consequences of its design, and the possibilities for future work.
These include adopting the Supervisionary kernel interface as the foundation of a hardware
implementation of HOL – wherein HOL’s inference rules are implemented as machine
instructions that modify private memories – and the use of Supervisionary as a general-purpose
virtual machine that uses its proof-checking abilities to “challenge” user-space programs
to explain their adherence to some system-wide security or correctness policy. Notably,
by moving this proof-checking capability into the operating system, or other privileged
system software, or even hardware, this capability becomes shared by all user-space software
executing within the system, not just software written in dedicated “verification aware”
programming languages. In a sense, mathematical truth becomes just another resource
protected by the operating system and system hardware.
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