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Abstract
There are several ways to formally represent families of data, such as lambda terms, in a type theory
such as the dependent type theory of Coq. Mathematical representations are very compact ones
and usually rely on the use of dependent types, but they tend to be difficult to handle in practice.
On the contrary, implementations based on a larger (and simpler) data structure combined with a
restriction property are much easier to deal with.

In this work, we study several families related to lambda terms, among which Motzkin trees,
seen as lambda term skeletons, closable Motzkin trees, corresponding to closed lambda terms, and
a parameterized family of open lambda terms. For each of these families, we define two different
representations, show that they are isomorphic and provide tools to switch from one representation
to another. All these datatypes and their associated transformations are implemented in the Coq
proof assistant. Furthermore we implement random generators for each representation, using the
QuickChick plugin.
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1 Introduction

Choosing the most appropriate implementation of mathematical objects to perform computa-
tions and proofs is challenging. Indeed, efficient (well-suited for computations) representations
are often difficult to handle when it comes to proving properties of these objects. Conversely,
well-suited representations for proofs often have fairly poor performances when it comes to
computing. The simplest example is the implementation of natural numbers. Using a unary
representation, proofs (especially inductive reasoning) are easy to carry out but computing
is highly inefficient. Using a binary representation makes computations faster, however it is
more difficult to use reasoning principles such as the induction principle on natural numbers.

In the field of λ-calculus, representations that are closest to mathematics are usually
implemented using dependent types. This makes them easily readable and understandable
by mathematicians. However it is rather challenging and requires a strong background in
functional programming and theorem proving to handle them smoothly. Representations
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11:2 Pragmatic Isomorphism Proofs Between Coq Representations

based on a larger type (a non-dependent one) and a restriction property are easier to handle
in practice, but less intuitive. In addition, one needs to take extra care to make sure that the
combination of the larger type and the restriction property exactly represents the expected
objects.

Overall there is no perfect representation for a given mathematical object. To overcome
this challenge, we propose to deal with several different isomorphic representations of families
of mathematical objects simultaneously. To do that, we present a rigorous methodology to
partially automate the construction of the transformation functions between two isomorphic
representations and prove these transformations correct. We apply these techniques to some
families of objects related to λ-calculus, namely closable Motzkin trees, uniquely closable
Motzkin trees and m-open λ-terms.

Our first examples revisit an article of Bodini and Tarau [3] in which they define Prolog
generators for closed lambda terms and their skeletons seen as Motzkin trees, efficient
generators for closable and uniquely closable skeletons and study their statistical properties.
Our contributions are to formalize in Coq these different notions, prove the equivalence
of several definitions that underlie the generators designed by Bodini and Tarau, and
write random generators to be used with QuickChick [12]. We then extend the discourse
to a parameterized family of open λ-terms, named m-open λ-terms. All the considered
representations, transformations between isomorphic representations and isomorphism proofs
are formalized1 in the Coq proof assistant [2, 7]. We propose some generic tools to help
setting up the correspondence between two isomorphic types more easily. We hope such a
methodology could be reused to deal with other families of objects, having different and
isomorphic representations.

Related Work. Dealing with various isomorphic representations of the same mathematical
objects is a common issue in computer science. Research results span from theoretical
high-level approaches such as homotopy type theory [19] or cubical type theory [5] to more
pragmatic proposals such as ours. In the context of formal specifications and proofs about
mathematical concepts, several frameworks have been proposed to deal with several types and
their transformation functions. A seminal work on changing (isomorphic) data representation
was implemented by Magaud [14] as a plugin for Coq in the early 2000s. In this approach, the
transformation functions were provided by the user and only the proofs were ported. Here,
we aim at helping the programmer to write the transformation functions as well as their
proofs of correctness. In [6], Cohen et al. focus on refining from abstract representations,
well-suited for reasoning, to computationally well-behaved representations. In our work,
both representations are considered of equal importance, and none of them is preferred.
Finally, our work is closely related to the concept of views, introduced by Wadler in [20] and
heavily used in the dependently-typed programming language Epigram [16]. In this approach,
operations are made independent of the actual implementation of the types they work on.
Pattern-matching on an element of type A can be carried out following the structure of the
type B provided A and B are isomorphic types. The correspondence functions we shall
implement in this article provide an example of a concrete implementation of views.

Regarding random generators and enumerators, Paraskevopoulou et al. [17] recently
proposed a new framework, on top of the QuickChick testing tool for Coq. It allows to
automatically derive such generators by extracting the computational contents from inductive
relations.

1 The Coq code is available at https://archive.softwareheritage.org/browse/origin/https://
github.com/alaingiorgetti/postTYPES2022.

https://archive.softwareheritage.org/browse/origin/https://github.com/alaingiorgetti/postTYPES2022
https://archive.softwareheritage.org/browse/origin/https://github.com/alaingiorgetti/postTYPES2022
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Paper Outline. In Sect. 2, we present a general methodology and interfaces to capture all
the features of two representations of a given family of objects, and to switch easily from one
representation to the other. In Sect. 3, we show how our approach applies to representations
of closable Motzkin trees – that are the skeletons of closed λ-terms – and to representations
of uniquely closable Motzkin trees. In Sect. 4, we adapt our approach to the parameterized
family of m-open λ-terms. In Sect. 5, several applications of the presented isomorphic types
are exposed. In Sect. 6, we draw some conclusions and present some promising perspectives.

2 Specifying Families Using Two Different Representations

As we shall see with examples related to pure λ-terms, a family of mathematical objects can
usually be defined formally in two different but equivalent ways: either using an inductive
datatype, possibly dependent, or using a larger non dependent datatype, together with a
restriction property. In this section, we summarize which elements are required to specify
the two datatypes and their basic properties. We then show how to derive the isomorphism
properties automatically. One of these isomorphism properties can always be derived
automatically, using a generic approach based on a functor, whereas the other one, which
relies on a proof by induction on the data, is carried out using Ltac. In the examples
presented in this article, the types have at most one level of dependency. Even if the Ltac
code is as generic as possible, it may not generalize well when the level and complexity of
the dependencies increase.

2.1 Types
A restricted type (T,is_P) is a dependent pair defined by a type T : Type, called its base
type, and a predicate is_P : T → Prop, called its restriction or filter. The restricted
type (T,is_P) is intended to represent the inhabitants of T satisfying the restriction is_P.
For practical reasons, these two objects are encapsulated together as a record type rec_P
isomorphic to the Σ-type {x : T | is_P x}.

Record rec_P := Build_rec_P {
P_struct :> T;
P_prop : is_P P_struct

}.

In addition to this practical type, we assume that we also have another possibly dependent
type P for the same family of objects. This type is usually closer to the way mathematicians
would define such objects. However, it may be less convenient to handle in practice (e.g.
when proving in a proof assistant such as Coq) and thus we shall prefer using the larger type
T and the restriction is_P rather than the type P when programming operations and proving
lemmas on such a family.

2.2 Transformations and Their Properties
Once the datatypes T and P and the filter is_P are defined, we build the expected isomorphisms
as two transformation functions rec_P2P (from rec_P ≡ {x : T | is_P x} to P) and P2rec_P
(from P to rec_P ≡ {x : T | is_P x}). The first function rec_P2P can be defined as follows,
with an auxiliary function T2P : ∀ (x:T), is_P x → P transforming any element x : T
that satisfies is_P into an element of P.

Definition rec_P2P m := T2P (P_struct m) (P_prop m).

TYPES 2022



11:4 Pragmatic Isomorphism Proofs Between Coq Representations

To define the reverse transformation P2rec_P, we first implement a function P2T from P to T
and then prove that the image of any x by P2T satisfies the predicate is_P, i.e. we prove the
following lemma:

Lemma is_P_lemma: ∀ v, is_P (P2T v).

Then the transformation P2rec_P can be defined as follows:

Definition P2rec_P (x:P) : rec_P := Build_rec_P (P2T x) (is_P_lemma x).

2.3 Partial Automation of Specification and Proofs
In order to automate some parts of the process, we provide an abstract definition of the
minimum requirements for the two involved types, as shown in the module type declaration
(a.k.a. interface or signature) family reproduced in the following code snippet.

Module Type family.
Parameter T : Set.
Parameter is_P : T → Prop.
Parameter P : Set.
Parameter T2P : ∀ (x:T), is_P x → P.
Parameter P2T : P → T.
Parameter is_P_lemma : ∀ v, is_P (P2T v).
Parameter P2T_is_P :
∀ (t : T) (H : is_P t), P2T (T2P t H) = t.

Parameter proof_irr :
∀ x (p1 p2:is_P x), p1 = p2.

End family.

We assume that we have the type T and a restricting predicate is_P as well as the type
P. We also provide two conversion functions T2P and P2T, together with two proofs: a proof
is_P_lemma that is_P holds for all images (P2T v) of the inhabitants v of P, and a proof
P2T_is_P that for all inhabitants t : T satisfying the predicate is_P, P2T is a left inverse
of T2P.

Then, the roundtrip lemma P2rec_PK stating that P2rec_P is a left inverse for rec_P2P
can be proved automatically using the functor equiv_family, reproduced in the following
code snippet.

Module Type equiv_sig (f:family).
Import f.
Parameter rec_P : Type.
Parameter rec_P2P : rec_P → P.
Parameter P2rec_P : P → rec_P.
Parameter P2rec_PK : ∀ x: rec_P, P2rec_P (rec_P2P x) = x.
End equiv_sig.

Module equiv_family (Import f:family) <: equiv_sig(f).
Record rrec_P := Build_rrec_P {

P_struct :> T;
P_prop : is_P P_struct

}.

Definition rec_P := rrec_P.

Definition rec_P2P m := T2P (P_struct m) (P_prop m).
Definition P2rec_P (x:P) : rec_P := Build_rrec_P (P2T x) (is_P_lemma x).
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Lemma P2rec_PK : ∀ x: rec_P, P2rec_P (rec_P2P x) = x.
Proof.

unfold rec_P2P, P2rec_P; intros; simpl.
generalize (is_P_lemma (T2P (P_struct x) (P_prop x))).
rewrite P2T_is_P.
intros; destruct x; simpl in *.
rewrite (proof_irr _ P_prop0 i).
reflexivity.

Qed.
End equiv_family.

The proof of P2rec_PK is generic and only relies on the components of the module f which
has type family.

The proof of the other roundtrip lemma rec_P2PK cannot be derived abstractly using a
functor. Indeed, the argument of this lemma is an element m of the inductively-defined type
P. Therefore no proof can be carried out before we have an explicit definition of P. Once this
definition is provided, the proof of the second lemma is rather straightforward and can be
automated using some Ltac constructs. Although the Ltac proof is not generic, it works easily
for all examples provided in this paper. We believe that this could be generalized to arbitrary
datatypes by using some meta-programming tools such as Coq-elpi [10] or MetaCoq [18].

In the next subsection, we shall extend our interface and build a new functor to automat-
ically generate some random generators for the two representations P and {x : T | is_P x} at
stake.

2.4 Random Generators
Property based testing (PBT) has become famous in the community of functional languages.
Mainly popularized by QuickCheck [4] in Haskell, PBT is also available in proof assistants. In
Coq, the random testing plugin QuickChick [12] allows us to check the validity of executable
conjectures with random inputs, before trying to write formal proofs of these conjectures.
QuickChick is mainly a generic framework providing combinators to write testing code, in
particular random generators, and also to prove their correctness.

Our general framework also provides guidelines to develop random generators for all
the datatypes under study. Generators, either user-defined or automatically derived by
QuickChick, have a type G Ty where Ty is the type of the generated values and G is an
instance of the Coq Monad typeclass. They are usually parameterized by a natural number n
that controls their termination (called fuel in the Coq community). It may also serve as a
bound on the depth of the generated values, even if it is not always guaranteed.

Let us assume that a random generator of values of type T, named gen_T : nat → G T,
is available. We are interested in providing a generator for each datatype: (i) a generator
of values of type T satisfying the property is_P, (ii) a generator of values of type rec_P
embedding a value of type T and a proof that the latter satisfies the property is_P, (iii) a
generator of values of type P. Thanks to QuickChick and the bijections we have previously
defined, they can be obtained quite easily, using three new functors explained below. All
these generators come in a sized version, i.e. they are parameterized with a natural number
which is randomly chosen, when used with a QuickChick test command.

The first functor we propose, generators_family1, allows the definition of the random
generator gen_filter_P which implements the strategy generate and test. It can be obtained
when are available an executable version of the predicate is_P, named is_Pb, and a proof of
decidability of is_P, named is_P_dec. A value default_P of the considered family - which
is guaranteed by a proof default_is_P - is also required.

TYPES 2022



11:6 Pragmatic Isomorphism Proofs Between Coq Representations

Module Type family_for_generators1 (Import f : family).
Import f.
Module facts := equiv_family (f).
Parameter is_Pb : T → bool.
Parameter is_P_dec : ∀ x:T, is_P x ↔ is_Pb x = true.
Parameter gen_T : nat → G T.
Parameter default_P : T.
Parameter default_is_P : is_Pb default_P = true.

End family_for_generators1.

Module generators_family1 (f : family) (g : family_for_generators1 f).
Import f.
Import g.
Import g.facts.

Definition filter_max := 100.
Fixpoint gen_filter_P_aux nb n :=
match nb with
| 0 ⇒ returnGen default_P
| S p ⇒ do! val ← gen_T n;

if is_Pb val then returnGen val
else gen_filter_P_aux p n

end.
Definition gen_filter_P : nat → G T := gen_filter_P_aux filter_max.

End generators_family1.

The random generator gen_filter_P randomly produces a value val of type T thanks
to gen_T and checks whether is_Pb val is true, in which case it outputs val. Otherwise, it
discards the value and tries again. If the maximum number of tries filter_max is reached,
it yields the provided default value default_P.

The next two functors can be used to derive a random generator for one family representa-
tion from that of the alternative representation. When the random generator gen_P of values
of type P is available, using the functor generators_family3 shown below, we can obtain a
random generator of values of type rec_P, i.e. a value of type T and a proof that it satisfies
the property is_P (thanks to the functions and lemmas derived using equiv_family). The
functor generators_family2 (omitted here) does the opposite job.

Module Type family_for_generators3 (Import f : family).
Parameter gen_P : nat → G P.

End family_for_generators3.

Module generators_family3 (Import f : family)
(Import g : family_for_generators3 f)
(Import facts : equiv_sig f).
Definition gen_rec_P n : G rec_P :=
do! p ← gen_P n;
returnGen (P2rec_P p).

End generators_family3.

In the next section, we shall see how to instantiate our framework with two different
representations of closable Motzkin trees and uniquely closable Motzkin trees, to automatically
prove the equivalence between the representations and to automatically derive random
generators.
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3 Two Instances: Closable Motzkin Trees and Uniquely Closable
Motzkin Trees

This section presents two simple examples of infinite families of objects with two representa-
tions in Coq. These examples are presented as applications of our formal framework, including
formal proofs of isomorphisms between representations and the design of their corresponding
random generators. Whereas our methodology applies to any pair of isomorphic datatypes,
we have chosen to focus our applications primarily on data families related to the λ-terms
from the pure (i.e., untyped) λ-calculus.

Let us briefly recall that the λ-calculus is a universal formalism to represent computations
with functions. A (pure) λ-term is either a variable (x, y, . . . ), an abstraction λx.t, that
binds the variable x in the λ-term t, or a term of the form t u for two λ-terms t and u. The
term λx.t represents a function of the variable x. The term t u represents an application of
the function (represented by) t to the function (represented by) u. A variable x in free in the
term t if it is not bound in t (by some λx). A closed term is a term without free variables.
Terms are considered up to renaming of their bound variables.

The two examples come from a study for the efficient enumeration of closed λ-terms, by
Bodini and Tarau [3], that starts from binary-unary trees, a.k.a. Motzkin trees, that can be
seen as skeletons of λ-terms. For self-containment, all the definitions and properties of this
study that are formalized here are kindly reminded to the reader.

A Motzkin tree is a rooted ordered tree built from binary, unary and leaf nodes. Thus
the set of Motzkin trees can be seen as the free algebra generated by the constructors v, l
and a of respective arity 0, 1 and 2. Their type in Coq, named motzkin, is the following
inductive type.
Inductive motzkin : Set :=
| v : motzkin
| l : motzkin → motzkin
| a : motzkin → motzkin → motzkin.

3.1 Closable Motzkin Trees
The skeleton of the λ-term t is the Motzkin tree obtained by erasing all the occurrences of
the variables in t. A Motzkin tree is closable if it is the skeleton of at least one closed λ-term.
As in [3], we define a predicate for characterizing closable Motzkin trees:
Fixpoint is_closable (mt: motzkin) :=

match mt with
| v ⇒ False
| l m ⇒ True
| a m1 m2 ⇒ is_closable m1 ∧ is_closable m2
end.

This predicate only requires the presence of at least one occurrence of the unary node on
each rooted path of the Motzkin tree. For instance, the tree l (a v (l v)) is closable (it is
the skeleton of the closed λ-term λx.x(λy.y)), whereas the tree a (l v) v is not closable.

Bodini and Tarau proposed a grammar generating closable Motzkin trees [3, Section 3],
that we adapt in Coq as an inductive type, named closable.
Inductive closable :=
| La : motzkin → closable
| Ap : closable → closable → closable.

TYPES 2022
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Table 1 Two instances of the Module Type family and the functor equiv_family repres-
enting closable Motzkin trees and uniquely closable Motzkin trees. Statements required in the
functor Module Type family (upper part of the array) are proven automatically. The roundtrip
statement rec_P2PK (last line of the array), which corresponds to rec_closable2closableK and
rec_ucs2ucsK does not belong to the functor but can be proven automatically in both settings.

Abstraction Closable Skeletons Uniquely Closable Skeletons
T motzkin motzkin
is_P is_closable is_ucs
P closable ucs
T2P motzkin2closable motzkin2ucs
P2T closable2motzkin ucs2motzkin
is_P_lemma automatically proved using Ltac
P2T_is_P automatically proved using Ltac
proof_irr proof_irr_is_closable proof_irr_is_ucs

rec_P automatically derived in the functor
rec_P2P automatically derived in the functor
P2rec_P automatically derived in the functor
P2rec_PK automatically derived in the functor

rec_P2PK automatically proved using Ltac

For example, La (a v (l v)) is the closable term corresponding to the Motzkin tree
l (a v (l v)).

To prove that there is a bijection between closable Motzkin trees specified using the type
rec_closable and inductive objects whose type is closable, using our approach, we simply
need to provide two functions motzkin2closable and closable2motzkin.

Fixpoint motzkin2closable (m : motzkin) : is_closable m → closable :=
match m as m0 return (is_closable m0 → closable) with
| v ⇒ fun H : is_closable v ⇒ let H0 := match H return closable with end in H0
| l m0 ⇒ fun _ : is_closable (l m0) ⇒ La m0
| a m1 m2 ⇒ fun H : is_closable (a m1 m2) ⇒

match H with
| conj Hm1 Hm2 ⇒ Ap (motzkin2closable m1 Hm1) (motzkin2closable m2 Hm2)
end

end.

Fixpoint closable2motzkin c :=
match c with
| La m ⇒ l m
| Ap c1 c2 ⇒ a (closable2motzkin c1) (closable2motzkin c2)
end.

Because it involves dependent pattern matching, defining directly motzkin2closable as
a function is not immediate. However it is easily carried out interactively as a lemma, in a
proof-like manner, using the tactic fix.

The transformation functions and the isomorphism properties between the two types
closable and rec_closable can then be automatically generated, as summarized in the
second column of Table 1.
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3.1.1 Random Generators
Random generators for closable and rec_closable have been used to test the different
lemmas before proving them, for example the roundtrip lemma rec_closable2closableK,
which is an instance of the pattern rec_P2PK. Corresponding QuickChick commands can be
found in our formal development.

The generator for Motzkin trees, gen_motzkin, required by any of the other generators,
is obtained automatically, thanks to QuickChick:

Derive (Arbitrary, Show) for motzkin.

In the context of closable Motzkin trees, the gen_closable generator associated to the
tailored simple inductive type closable can be easily obtained using QuickChick. Thanks to
the functor generators_family3, we can derive the random generator of values of the corres-
ponding restricted type, as it is illustrated by the following snippet of code, where closable is
an instance of the family, and fact_cl is defined as the module equiv_family (closable).

Module gen_closable3 : family_for_generators3 (closable).
Definition gen_P := gen_closable.
End gen_closable3.

Module V3 := generators_family3 closable gen_closable3 facts_cl.

To test the motzkin2closable function (T2P in the family interface), we need a generator
that produces closable Motzkin trees. It is not relevant to use the previously defined generator
which we have derived from that of closable values and thus obtained using, as a main
ingredient, the function under test itself. For that purpose, the generator gen_filter_P
obtained by applying the functor generators_family1 can be useful, however such a
generator usually discards many values to produce the required ones. A handmade generator,
as gen_closable_struct defined below, is usually preferred.

As a representative of this kind of custom generators, we expose its code in the following
code snippet and explain it.

Fixpoint gen_closable_struct_aux (k : nat) (n : nat) : G motzkin :=
match n with
| 0 ⇒ match k with

0 ⇒ returnGen default_closable
| _ ⇒ returnGen v
end

| S p ⇒
match k with
0 ⇒ oneOf [

(returnGen default_closable);
(do! mt ← gen_closable_struct_aux (S k) p; returnGen (l mt));
(do! mt0 ← gen_closable_struct_aux k p; do! mt1 ← gen_closable_struct_aux k p;

returnGen(a mt0 mt1)) ]
| _ ⇒ oneOf [

(returnGen v);
(do! mt ← gen_closable_struct_aux (S k) p; returnGen (l mt));
(do! mt0 ← gen_closable_struct_aux k p; do! mt1 ← gen_closable_struct_aux k p;

returnGen(a mt0 mt1)) ]
end

end.

Definition gen_closable_struct : nat → G motzkin := gen_closable_struct_aux 0.

TYPES 2022
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We first define an intermediate function that uses the additional parameter k denoting the
number of l constructors at hand. So, if both k and n are equal to 0, the generator emits the
default value (here l v, stored in default_closable). If n is 0 but at least one l is available,
then the generator produces the leaf v. When n is not 0, again we have two treatments
depending on whether we have already introduced the constructor l or not. In both cases,
the generator picks one of the several ways to produce a value – thanks to oneOf, and thus
either stops with a value (resp. l v or v), recursively produces a closable Motzkin tree which
is used to build a resulting unary Motzkin tree, or recursively generates two closable Motzkin
trees used to produce a binary Motzkin tree. The final custom generator is obtained using
the previous intermediate function with k equal to 0.

We recommend testing that this generator does produce Motzkin trees which are closable,
as follows:

QuickCheck (sized (fun n ⇒ forAll (gen_closable_struct n) is_closableb)).
(* +++ Passed 10000 tests (0 discards) *)

To define the proof-carrying version of the custom generator, we follow a similar scheme
but also produce a proof that the produced value mt is closable, i.e. a term of type
is_closable mt. We use the Program facility which allows us to produce certified programs
and generates proof obligations. Here these proof obligations are automatically solved.

3.2 Uniquely Closable Motzkin Trees
A Motzkin tree is uniquely closable if there exists exactly one closed λ-term having it as its
skeleton.

We first define a predicate is_ucs for characterizing uniquely closable skeletons. This
predicate specifies that a Motzkin tree is uniquely closable if and only if there is exactly one
unary node on each rooted path.

Fixpoint is_ucs_aux m b :=
match m with
| v ⇒ b = true
| l m ⇒ if b then False

else is_ucs_aux m true
| a m1 m2 ⇒ is_ucs_aux m1 b ∧ is_ucs_aux m2 b
end.

Definition is_ucs m := is_ucs_aux m false.

This Coq predicate corresponds to the second Prolog predicate uniquelyClosable2 intro-
duced by Bodini and Tarau [3, Section 4], after a first Prolog predicate uniquelyClosable1
using a natural number to count the number of λ binders above each leaf, instead of a
Boolean flag as here. A Coq formalization of this other characterization of uniquely closable
Motzkin trees, and a formal proof of their equivalence, are presented in Section 5.4.

We then define an inductive type ucs that also represents uniquely closable Motzkin
trees.

Inductive ca :=
| V : ca
| B : ca → ca → ca.

Inductive ucs :=
| L : ca → ucs
| A : ucs → ucs → ucs.
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Even though we use the abbreviations ca for ClosedAbove and ucs for UniquelyClosable,
these types exactly correspond to Haskell datatypes given in [3]. For instance, the Motzkin
tree l (a v v) and the corresponding ucs term L (B V V) represent uniquely closable
skeletons. The closable tree l (a (l v) v) is not uniquely closable, because it is the
skeleton of two closed λ-terms, namely λx.(λy.y)x and λx.(λy.x)x.

Using the same infrastructure as for closable Motzkin trees, the transformation functions
and the isomorphism properties between the two types ucs and rec_ucs can be automatically
generated, as summarized in the last column of Table 1.

We proceed in the same way for random generators. Using QuickChick, the generator
gen_ucs is automatically derived from the definition of the inductive types ca and ucs. The
user-defined generator gen_ucs_struct is very close to gen_closable_struct. Similarly
we use Program to define the one producing values and proofs.

4 Pure Open λ-Terms in De Bruijn Form

Let us now address the questions of formal representations and random generation of pure
open λ-terms modulo variable renaming. The definitions in this section are not present in
Bodini and Tarau’s work [3].

To get rid of variable names, we adopt de Bruijn’s proposal to replace each variable in a
λ-term by a natural number, called its de Bruijn index [8]. When a de Bruijn index is not
too high, it encodes a variable bound by the number of λ’s between its location and the λ

that binds it. Otherwise, it encodes a free variable. We consider de Bruijn indices from 0, to
ease their formalization with the Coq type nat for natural numbers. For instance, the term
λ.(1 (λ.1)) in de Bruijn form represents the term λx.(y (λz.x)) with the free variable y.

4.1 Types
The tree structure of open λ-terms in de Bruijn form can be represented by unary-binary
trees whose leaves are labeled by a natural number. They are the inhabitants of the following
inductive Coq type lmt (acronym for labeled Motzkin tree).

Inductive lmt : Set :=
| var : nat → lmt
| lam : lmt → lmt
| app : lmt → lmt → lmt.

However the property of being closed cannot be defined by induction on this definition of
λ-terms. Indeed, if the term λ t is closed, then the term t is not necessarily closed, it can also
have a free variable. The more general property of m-openness overcomes this limitation:
for any natural number m, the λ-term t is said to be m-open if the term λ . . . λ t with m

abstractions before t is closed. Whereas the “m-open” terminology is recent [1], the notion
has been studied since 2013, by Grygiel and Lescanne [11,13].

With the following definition, (is_open m t) holds iff the labeled Motzkin tree t encodes
an m-open λ-term. This function call indeed visits the tree t and counts (from m) the number
of λs (constructor lam) traversed so far. At each leaf (constructor var) it checks that its de
Bruijn indice i is lower than this number m of traversed abstractions.

Fixpoint is_open (m: nat) (t: lmt) : Prop :=
match t with
| var i ⇒ i < m
| lam t1 ⇒ is_open (S m) t1
| app t1 t2 ⇒ is_open m t1 ∧ is_open m t2
end.
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For instance, the tree lam (app (var 0) (lam (var 1))) is 0-open (its skeleton is the
closable term l (a v (l v))), whereas the tree lam (app (var 1) (lam (var 1))) is
1-open, but not 0-open.

Because of the extra parameter m, the formal framework presented in Sect. 2 must
be adapted and we propose a new module type param_family together with a functor
equiv_param_family to automatically prove one of the roundtrip lemmas. The other one
can be easily proved correct using the same sequences of Ltac constructs as for the non
dependent case.

The following record type parameterized by m is such that (rec_open m) describes m-open
terms. As previously, the first field stores the datum, here a labeled Motzkin tree (i.e., T is
lmt), and the second field stores a proof that it is m-open.

Record rec_open (m:nat) : Set := Build_rec_open {
open_struct :> lmt;
open_prop : is_open m open_struct

}.

It is however more natural to describe m-open terms with a dependent type (open m)
enclosing the condition i < m at leaves, as follows.

Inductive open : nat → Set :=
| open_var : ∀ (m i:nat), i < m → open m
| open_lam : ∀ (m:nat), open (S m) → open m
| open_app : ∀ (m:nat), open m → open m → open m.

4.2 Transformations and Their Properties
In order to switch from one representation to the other whenever needed, we provide two
functions rec_open2open m and open2rec_open m, and Coq proofs for two roundtrip lemmas
justifying that they are mutual inverses.

From the Record Type to the Dependent Type. The function rec_open2open m from
the record type (rec_open m) to the dependent type (open m) is defined by

Definition rec_open2open (m : nat) (r : rec_open m) :=
lmt2open (open_struct m r) m (open_prop m r).

where lmt2open is the following dependent recursive function.

Fixpoint lmt2open (t:lmt) : ∀ m:nat, is_open m t → open m :=
match t as u return (∀ m0 : nat, is_open m0 u → open m0) with
| var n ⇒ fun (m0 : nat) (H : is_open m0 (var n)) ⇒ open_var m0 n H
| lam u ⇒ fun (m0 : nat) (H : is_open m0 (lam u)) ⇒

open_lam m0 (lmt2open u (S m0) H)
| app u w ⇒

fun (m0 : nat) (H : is_open m0 (app u w)) ⇒
match H with
| conj H0 H1 ⇒ open_app m0 (lmt2open u m0 H0) (lmt2open w m0 H1)
end

end.

It is rather difficult to define this function directly. We choose to develop it as a proof,
as advocated by McBride [15], in an interactive manner, letting Coq handle the type
dependencies. Once the term is built, we simply revert the proof and declare it directly as a
fixpoint construction to make it look like a function, more readable and understandable for
humans than a proof script.



C. Dubois, N. Magaud, and A. Giorgetti 11:13

From the Dependent Type to the Record Type. The process to define the inverse function
open2rec_open m from the dependent type (open m) to the record type (rec_open m) is
rather different, and can be decomposed as follows. First of all, a function (open2lmt m)
turns each dependent term t of type open m into a labeled Motzkin tree.

Fixpoint open2lmt (m:nat) (t : open m) : lmt :=
match t with
| open_var m i _ ⇒ var i
| open_lam m u ⇒ lam (open2lmt (S m) u)
| open_app m t1 t2 ⇒ app (open2lmt m t1) (open2lmt m t2)
end.

Then we prove automatically, using the same Ltac constructs as for the previous examples,
the following lemma that states that the function open2lmt m always outputs an m-open
term.

Lemma is_open_lemma : ∀ m t, is_open m (open2lmt m t).

Once this lemma is proved, we can derive automatically the transformation open2rec_open,
by using the functor equiv_param_family.

Definition open2rec_open m t := Build_rec_open m (open2lmt m t) (is_open_lemma m t).

As we did in the previous sections, we then need to prove a lemma open2lmt_is_open
which relates the functions open2lmt and lmt2open, without taking into account the restric-
tion property.

Lemma open2lmt_is_open : ∀ m t H, open2lmt m (lmt2open t m H) = t.

Both lemmas are part of the interface param_family for a parametric family, extending the
interface family. Thus, applying the appropriate functor, we automatically derive a proof of
the first roundtrip lemma:

Lemma open2rec_openK : ∀ m r, open2rec_open m (rec_open2open m r) = r.

The proof of the second roundtrip lemma proceeds by induction on x of type open m. It is
immediately proven using the Ltac constructs proposed in the previous sections.

Lemma rec_open2openK : ∀ m x, rec_open2open m (open2rec_open m x) = x.

4.3 Random Generators
The required generator gen_lmt is automatically derived by QuickChick from the definition
of the inductive type lmt. The custom generators for λ-terms satisfying the open m property,
with or without proofs, are written following the same canvas as before. The generator
corresponding to the inductive type open is no longer derived automatically by QuickChick, in
particular because proofs have to be inserted when using the open_var constructor. However
it is easy to define it manually.

4.4 Characterization of Open λ-Terms From Their Skeleton
This subsection presents definitions and formal proofs relating Bodini and Tarau’s skeletons
for λ-terms (Section 3) with m-open λ-terms introduced in this section, not present in Bodini
and Tarau’s work.
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The skeleton of a λ-term is the Motzkin tree obtained by erasing the labels at its leaves.

Fixpoint skeleton (t: lmt) : motzkin :=
match t with
| var _ ⇒ v
| lam t1 ⇒ l (skeleton t1)
| app t1 t2 ⇒ a (skeleton t1) (skeleton t2)
end.

This function (specified by toMotSkel in [3]) connects Motzkin trees without labels (Sect. 3)
and Motzkin trees with labels defined in this section.

As the skeleton function cannot be inverted functionality, we define a pseudo-reverse,
from Motzkin trees without labels to labeled Motzkin trees, as the following family of
inductive relations (label m), for all natural numbers m.

Inductive label : nat → motzkin → lmt → Prop :=
| Lvar : ∀ m i, i < m → label m v (var i)
| Llam : ∀ m mt t, label (S m) mt t → label m (l mt) (lam t)
| Lapp : ∀ m mt1 mt2 t1 t2, label m mt1 t1 → label m mt2 t2
→ label m (a mt1 mt2) (app t1 t2).

The label-removing function skeleton and the label-adding relation label can be used
together as follows, to define a second characterization of m-open λ terms among labeled
Motzkin trees t.

Definition skeleton_open (m:nat) (t:lmt) : Prop := label m (skeleton t) t.

The proof of the following equivalence with the first characterization (is_open, introduced
in Section 4) is straightforward.

Lemma skeleton_is_open_eq : ∀ m t, skeleton_open m t ↔ is_open m t.

An m1-open λ-term is also an m2-open λ-term for all m2 ≥ m1.

Lemma label_mon : ∀ m1 mt t, label m1 mt t → ∀ m2, m1 ≤ m2 → label m2 mt t.

Consequently, for any labeled Motzkin tree t, there is a minimal natural number m such that
t is an m-open λ-term. It can be computed for instance by the following function.

Fixpoint minimal_openness (t : lmt) : nat :=
match t with
| var i ⇒ i+1
| lam t ⇒ match minimal_openness t with S m ⇒ m | _ ⇒ 0 end
| app t1 t2 ⇒ max (minimal_openness t1) (minimal_openness t2)
end.

The function skeleton and the relation label are pseudo-inverses in the sense of the following
two lemmas.

Lemma label_skeletonK : ∀ t : lmt, label (minimal_openness t) (skeleton t) t.

Lemma skeleton_labelK : ∀ m : nat, ∀ mt : motzkin, ∀ t : lmt,
label m mt t → skeleton t = mt.

The lemmas label_skeletonK and skeleton_is_open_eq jointly establish that the
labeled Motzkin tree t is a (minimal_openness t)-open λ-term.

Lemma lmt_minimal_openness : ∀ t : lmt, is_open (minimal_openness t) t.
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Finally, it is easy to prove by induction that minimal_openness t indeed computes the
smallest openness m such that t is an m-open λ-term.
Lemma minimality : ∀ t : lmt, ∀ m : nat, is_open m t → m ≥ minimal_openness t.

5 Use Cases

In this section we use the previous examples of types to formalize all the propositions in
Bodini and Tarau’s work [3] that are related to Motzkin trees and pure λ-terms.

5.1 Another Definition for Closable Skeletons
Bodini and Tarau [3, section 3] first defined closable skeletons with a Prolog predicate –
named isClosable – whose adaptation in Coq is
Fixpoint isClosable2 (mt: motzkin) (V: nat) :=

match mt with
| v ⇒ V > 0
| l m ⇒ isClosable2 m (S V)
| a m1 m2 ⇒ isClosable2 m1 V ∧ isClosable2 m2 V
end.

Definition isClosable (mt: motzkin) := isClosable2 mt 0.

For each λ binder this function increments a counter V (starting at 0). Then it checks at
each leaf that its label is strictly positive. This definition is slightly more complicated than
that of the Coq predicate is_closable presented in Sect. 3. We have proved formally that
both definitions are equivalent:
Lemma is_closable_isClosable_eq : ∀ (mt: motzkin), is_closable mt ↔ isClosable mt.

The two implications of this equivalence are proved by structural induction and thanks to
the following two lemmas, themselves proved by structural induction.
Lemma isClosable2_S : ∀ m n, isClosable2 m n → isClosable2 m (S n).
Lemma isClosable_l : ∀ m, isClosable (l m).

We can notice that this proof is simpler than expected: Although the generalization
isClosable2 is required to define the predicate isClosable, the proof avoids the effort to
invent generalizations to isClosable2 of the predicate is_closable and the equivalence
lemma. Similarly, after “packing” the predicate isClosable in the following record type, it
was possible to define and prove isomorphism with the algebraic datatype closable without
having to generalize the record and the datatype to isClosable2.
Record recClosable : Type := Build_recClosable {

Closable_struct : motzkin;
Closable_prop : isClosable Closable_struct

}.

5.2 Two Definitions for the Size of Terms
Bodini and Tarau [3, Proposition 1] state the following proposition to justify that two different
size definitions lead to the same sequence of numbers of closed λ-terms modulo variable
renaming, counted by increasing size.
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▶ Proposition 1. The set of terms of size n for size defined by the respective weights 0, 1
and 2 for variables, abstractions and applications is equal to the set of terms of size n + 1 for
size defined by weight 1 for variables, abstractions and applications.

This proposition holds not only for all Motzkin trees (without labels), but also for closable
ones, labeled ones, and for m-open λ-terms. Since we proposed two Coq types for closable
Motzkin trees and for m-open λ-terms, we formalize Proposition 1 by six propositions in
Coq, all of the form
Proposition proposition1X : ∀ t : X, size111X t = size012X t + 1.

with X in {motzkin, rec_closable, closable, lmt, rec_open, open}, and with adequate
functions size111X and size012X, not detailed here, defining both sizes for each type.
More precisely, thanks to the coercion (P_struct :> T) in the record types, the functions
size*rec_P are not defined, but advantageously replaced by the functions size*T. Here, *
is either 111 or 012 and (T,P) is either (motzkin,closable) or (lmt,open). For record types,
the proposition then takes the following form:
Proposition proposition1rec_P : ∀ t : rec_P, size111T t = size012T t + 1.

This proposition is a straightforward consequence of the corresponding proposition on the
type T (named proposition1T, according to our naming conventions). This mechanism
being similar for all record types, it can easily be mechanized.

The situation is very different with – potentially – dependent types (named P in our
general framework), if we forbid ourselves to use their isomorphism with a record type to
prove their proposition (named proposition1P, according to our naming conventions). Here,
the propositions for P in {closable,open} are proved by structural induction and linear
arithmetic, because the latter suffices to inductively define the size functions. However, the
general situation may be arbitrarily more complex, so no general mechanization can be
considered.

5.3 Characterization of Closable Motzkin Trees
This section and the next one present two propositions from Bodini and Tarau’s work [3]
that cannot be formalized with the single unlabeled notion of skeleton introduced in that
work, but also require a formalization of λ-terms with labels for their variables, such that
the one introduced in Section 4 of the present paper.

The first of these two propositions is the following characteristic property for closable
Motzkin trees [3, Proposition 2].

▶ Proposition 2. A Motzkin tree is the skeleton of a closed λ-term if and only if it exists at
least one λ-binder on each path from the leaf to the root.

After defining a closed λ-term as a 0-open λ-term, we can state Proposition 2 in Coq, as
follows.
Definition is_closed t := is_open 0 t.
Proposition proposition2 : ∀ mt : motzkin,

(∃ t : lmt, skeleton t = mt ∧ is_closed t) ↔ is_closable mt.

This formalization is close to the text of Proposition 2. It relies on the base type
motzkin and the restriction is_closable. A formulation of this proposition with the type
rec_closable or closable would be useless, because these more precise types already
include the closability property characterized by the proposition.

The proof of this proposition is straightforward.
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5.4 Characterization of Uniquely Closable Motzkin Trees
Bodini and Tarau propose the following characteristic property for uniquely closable Motzkin
trees [3, Proposition 4].

▶ Proposition 3. A skeleton is uniquely closable if and only if exactly one lambda binder is
available above each of its leaf nodes.

The predicates is_ucs and is_ucs_aux presented in Section 3.2 correspond to the Prolog
predicate uniquelyClosable2 of [3, Section 4] and to the characteristic property “exactly
one lambda binder is available above each of its leaf nodes” of Proposition 4 of [3]. Therefore,
proving Proposition 3 consists in showing that this property is equivalent to the definition
“We call a skeleton uniquely closable if it exists exactly one closed lambda term having it as
its skeleton.” [3, page 6], which gives the following Coq code.

Proposition proposition4: ∀ mt : motzkin,
(∃! t, skeleton t = mt ∧ is_closed t) ↔ is_ucs mt.

However, this proposition cannot be proved directly, because (is_closed t) is a special
case of (is_open m t), which is parametrized by a natural number m, while (is_ucs mt)
is a special case of of (is_ucs_aux mt b), which is only parameterized by a Boolean b.
The rest of this section addresses this issue by generalizing the proposition to any natural
number m, using a characterization (ucs1_aux mt m) parametrized by this integer and put
in correspondence with (is_ucs_aux mt b).

The following predicates ucs1_aux and ucs1 adapt in Coq the Prolog predicate named
uniquelyClosable1 in [3].

Fixpoint ucs1_aux (t:motzkin) (n:nat) : Prop :=
match t with
| v ⇒ (1 = n)
| l m ⇒ ucs1_aux m (S n)
| a m1 m2 ⇒ ucs1_aux m1 n ∧ ucs1_aux m2 n
end.

Definition ucs1 (t:motzkin) := ucs1_aux t O.

We then use the predicate ucs1_aux to state a generalization of Proposition 3 to any
openness m, then the predicate ucs1 to state its specialization when m = 0, which is a
variant of Proposition 3.

Lemma proposition4ucs1_aux : ∀ (mt : motzkin) (m : nat),
(∃! t, skeleton t = mt ∧ is_open m t) ↔ ucs1_aux mt m.

Corollary proposition4ucs1: ∀ mt : motzkin,
(∃! t, skeleton t = mt ∧ is_closed t) ↔ ucs1 mt.

Independently, we can prove that the two charaterizations of uniquely closable Motzkin
trees are equivalent.

Lemma ucs1_is_ucs_eq : ∀ mt : motzkin, ucs1 mt ↔ is_ucs mt.

As usually when formalizing pen-and-paper proofs, we get more precise statements
and more detailed proofs. For example, we formally proved Proposition 1 in [3] as four
propositions, corresponding to four distinct data families.
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6 Conclusions and Perspectives

We have presented a framework to define and formally prove isomorphisms between Coq
datatypes, and to produce random generators for them. After applying it to several examples
related to lambda term families, we have formalized in Coq a large subset of the computational
and logical content of Bodini and Tarau’s paper [3] about pure λ-terms. Although our work
is clearly dealing with Coq representations, our technique could be useful to other proof
assistant tools and could be developed for example in Isabelle/HOL or Agda.

Technically, our present approach using interfaces allows us to automatically derive only
one of two round-trip properties, that state that the considered transformations are inverse
bijections. The other one, which proceeds by induction on the type P, cannot be generated
automatically by a functor, however, we can prove it automatically using some advanced
tactic combinations using Ltac. In the near future, we plan to investigate in more details
whether using external tools like MetaCoq [18] or elpi [10] and Coq-elpi [10] would increase
the genericity of our approach compared to simply relying on Ltac.

Our framework obviously applies to other formalization topics. It was inspired by previous
work, including one on Coq representations of permutations and combinatorial maps [9]. We
plan to complete this work and revisit it using this structuring framework. The proofs of
isomorphisms presented in this paper were elementary because the two types in bijection
were very close to one another. In the more general case of two different points of view on
the same family (e.g., permutations seen as injective endofunctions or products of disjoint
cycles), isomorphisms can be arbitrarily more difficult to prove.
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