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Abstract
Systems in which classical and intuitionistic logics coexist are called ecumenical. Such a system
allows for interoperability and hybridization between classical and constructive propositions and
proofs. We study Ecumenical STT, a theory expressed in the logical framework of the λΠ-calculus
modulo theory. We prove soudness and conservativity of four subtheories of Ecumenical STT with
respect to constructive and classical predicate logic and simple type theory. We also prove the weak
normalization of well-typed terms and thus the consistency of Ecumenical STT.
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1 Introduction

The λΠ-calculus modulo theory (λΠ / ≡) [3] is a logical framework in which diverse systems
– predicate logic, pure type systems [10], cumulative type systems [44], the ς-calculus [39],
Matching Logic and more – can be expressed as theories. Using a common language to
describe the logical foundations of various proof assistants allows more interoperability
between the currently impermeable libraries of formal proofs. Indeed, it is a valuable tool in
the design of translations [8, 43, 19, 24], the constitution of a common database of proofs
[12], or even the hybridization of their proofs [9].

In the zoology of proof assistants, there are many examples of classical systems (the HOL
family, PVS, etc) and constructive systems (Coq, Agda, Matita, etc). They rely on different
sets of axioms: for instance, the axiom of the excluded-middle ¬P ∨ P is used in classical
logic but not in intuitionistic logic [11]. These axioms define the meaning of logical symbols,
thus constructive and classical disjunctions have different meanings. This observation does
not only hold for disjunction and negation, but also for connectives that do not appear
in the excluded-middle axiom. For example Peirce’s formula ((P ⇒ Q) ⇒ Q) ⇒ P , the
equivalence (¬P ∨ Q) ⇔ (P ⇒ Q) and the de Morgan laws hold classically but not
intuitionistically. Using a unique symbol for two connectives with different significations
is unsatisfactory, thus we can attempt to design logical systems where intuitionistic and
classical symbols are written differently. Such logical systems are called ecumenical [38, 36].

An ecumenical expression of logic and of mathematics has many advantages. First, it
allows to use the expressivity of classical logic while explicitely keeping constructive properties.
For example, a program can be extracted from a proof of ∀x. ∃y. S(x, y) – where ∀ and ∃
are intuitionistic – even if the specification S(x, y) is classical, reflecting the fact that an
algorithm can both be effective and have a classical correctness proof. Second, intuitionistic
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4:2 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

and classical proofs coexisting in the same logical system can be stored in a common database
of formal proofs, while using two separate logical systems entails two separate databases – or
the loss of readily available constructive information.

In [6] is introduced theory U, which is a λΠ / ≡ theory in which all proofs of minimal,
constructive, classical, and ecumenical predicate logic, minimal, constructive, classical,
and ecumenical simple type theory with or without prenex polymorphism or predicate
subtyping, and the calculus of constructions be can expressed. More precisely, [6] includes a
presentation of the axioms of theory U and a proof of well-typedness and modularity of the
constructed theory. Many axioms and fragments of theory U have been studied in isolation
[26, 43, 13, 3], however some of these studies lack proofs of normalization, consistency,
soundness or conservativity with respect to appropriate reference systems. Some axioms of
theory U have not been studied together; notably, there is currently no proof of normalization
or consistency for the whole theory. In this paper, we study the ecumenical subtheory of
theory U, called Ecumenical STT, by reviewing existing results and establishing its soundness,
conservativity, normalization, and consistency.

Related work

Examples of first order ecumenical systems are found in sequent calculi [34, 22, 14, 33, 37] and
natural deduction [38, 36]. Some rely on double negation translations to define their classical
connectives and rules, as in [14] and to a lesser extent [38]. Another point of difference is
the way predicates and atoms are handled. In [38], there is a classical and an intuitionistic
copy of each predicate symbol. The system described in [14] avoids this split by relying
on total provability – the equivalence of provability in its classical fragment and in LK is
valid for sequents with empty contexts only. Ecumenical STT does not rely on copies of
predicates nor on total provability, as these features seem unsuitable for the specific purpose
of interoperability between proof systems. To our knowledge, none of the aforementioned
ecumenical systems are extended to the higher order.

The termination of rewriting systems being an important problem in logic and software
verification, there is a multitude of dedicated theoretical results and automatized tools.
Many are specific to first order rewriting [21, 32], or simply-typed theories [31, 5]. A few
are designed for higher order and/or dependently typed systems [30, 28, 7], which is the
framework of this paper. The existing tools using dependency pairs are currently unable to
conclude to the normalization of Ecumenical STT, thus we base our normalization proof on
models of λΠ / ≡ theories in variants of pre-Heyting algebras developed in [15].

Normalization is also a valuable, if not crucial tool to establish the conservativity of
λΠ / ≡ theories as shown in [10, 2]. The conservativity proofs lead in this paper use the
framework these aforementioned studies provide.

Outline

In Section 2 is presented the logical framework λΠ-calculus modulo theory (λΠ / ≡) and the
λΠ / ≡ theory of Ecumenical STT [6]. Some meta-theoretical properties of Ecumenical STT
are discussed in Section 3; notably we establish its weak normalization and the decidability
of type-checking in Section 3.2. Finally, the soundness and conservativity with respect to
appropriate reference systems – constructive and classical predicate logic and simple-type
theory – of four subtheories of Ecumenical STT are proven in Section 4 and Section 5. We
conclude as to the consistency of Ecumenical STT in Section 5.3.
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2 Expressing ecumenism in λΠ-calculus modulo theory

2.1 The λΠ-calculus modulo theory
The logical framework λΠ-calculus modulo theory (λΠ / ≡) [3], based on the Edinburgh
Logical Framework (LF) [25], is an extension of simply-typed lambda calculus with dependent
types and a primitive notion of computation via the definition of rewrite rules [42]. Formally,
λΠ / ≡ terms are defined inductively by

t, u, . . . = TYPE | KIND | x | c | λx : t. u | t u | (x : t) → u

where x belongs to an infinite set of variables V and c belongs to a finite or infinite set of
constants C. The terms TYPE and KIND are respectively the type of λΠ / ≡ types, and the
type of kinds, that is of λΠ / ≡ type families; both terms are called sorts and often denoted
by s. Dependent products, i.e. terms of the form (x : t) → u, allow the definition of indexed
type families. For example, the family of vectors indexed by their length n ∈ N can be
defined by declaring Vector : (n : N) → TYPE; in this context a vector of length 3 can be
declared by v : Vector 3. In the pathological case where the variable x does not appear free
in term u, we write (x : t) → u as a simple product t → u. We denote by fv(t) the set of
free variables of a term t, and (u/x)t the substitution of variable x by a term u in a term t.

A λΠ / ≡ theory is defined conjointly by a finite set of declarations Σ and a finite set of
rewrite rules R. A declaration is the assignment of a type T to a constant c ∈ C, denoted by
c : T . We denote respectively by const(Σ) and Λ(Σ) the set of constants assigned in signature
Σ and the set of terms written with the set const(Σ) of constants. A rewrite rule is a pair of
terms ℓ ↪→ r such that ℓ = c t1 . . . tn where c is a constant and t1, . . . , tn are terms. For
example, the rewrite rule Vector (n + 1) ↪→ NonEmptyVector assimilates all vector types of
strictly positive length to a constant type NonEmptyVector.

We denote by ↪→β the β-reduction. Given a set of rewrite rules R, the relation ↪→R

denotes the smallest relation closed by term constructors (λ-abstraction, application and
dependent product) and substitution containing R. Finally, we write ↪→βR for the union
↪→β ∪ ↪→R and ≡βR for the smallest equivalence relation containing ↪→βR .

Proofs in λΠ / ≡ are similar to LF proofs. However, the conversion rule allows to
assimilate types modulo ≡βR and not only modulo ≡β . Formally, typing contexts are finite
sets of variable assignments of the form x : T and are denoted in the following by Γ or ∆; the
empty context is written []. Typing judgments are written “ ⊢Σ,R Γ wf” and “Γ ⊢Σ,R t : T”,
where Γ is a typing context, t and T are terms of Λ(Σ), and “wf” stands for well-formed.
The typing rules of λΠ / ≡ in a theory Σ, R are represented in Figure 1.

2.2 Ecumenical STT and its subtheories
The following section describes the expression of first and higher order ecumenism in theory
U [6]. All associated declarations and rewrite rules are represented in Figure 2.

On Figure 2a is represented the base of the encoding. The type Set is the type of the
object-types of the encoded theories (for example the sorts of predicate logic and simple
types of STT). The symbol El embeds object-types into λΠ / ≡ types: an object-type T
and any one of its elements t can be manipulated as λΠ / ≡ objects while still being linked
by the typing relation t : El T . The type of propositions Prop and the embedding Prf of
propositions into the type of their proofs are similarly defined.

On Figure 2c are defined the constructive connectives and quantifiers of theory U; more
precisely they are declared and then defined by rewriting. As an example, the definition
of the implication is based on the Curry-De-Bruijn-Howard correspondance: the proofs of
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(empty)
⊢Σ,R [] wf

Γ ⊢Σ,R A : s
(decl)

⊢Σ,R Γ, x : A wf
⊢Σ,R Γ wf

(sort)
Γ ⊢Σ,R TYPE : KIND

⊢Σ,R Γ wf x : A ∈ Γ
(var)

Γ ⊢Σ,R x : A
⊢Σ,R Γ wf ⊢Σ,R A : s c : A ∈ Σ

(const)
Γ ⊢Σ,R c : A

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s
(prod)

Γ ⊢Σ,R (x :A) → B : s

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s Γ, x : A ⊢Σ,R t : B
(abs)

Γ ⊢Σ,R λx :A. t : (x :A) → B

Γ ⊢Σ,R t : (x :A) → B Γ ⊢Σ,R u : A
(app)

Γ ⊢Σ,R t u : (u/x)B

Γ ⊢Σ,R t : A Γ ⊢Σ,R B : s A ≡βR B
(conv)

Γ ⊢Σ,R t : B

Figure 1 Typing rules of λΠ / ≡ in theory Σ,R.

A⇒B are functions from proofs of A to proofs of B. We use a rewrite rule to identify the
corresponding types Prf(A⇒B) and Prf(A) → Prf(B). All other connectives and quantifiers
are defined à la Russel, mimicking the elimination rules of natural deduction; once again the
relevant types are identified by rewriting. Note that the quantifiers ∀ and ∃ bind a variable
from a sort in Set: we define them as taking as arguments an object-type a : Set and a
function from elements of a to propositions. We call Constructive Predicate Logic the λΠ / ≡
theory formed by

ΣcFO = { (C-decl) : C ∈ { Set,El, ι,Prop,⊤,⊥,¬,∧,∨,∀,∃ } }
and Rc

FO = { (C-red) : C ∈ { ⊤,⊥,¬,∧,∨,∀,∃ } }.
In Figure 2d are defined the classical connectives and quantifiers, using their constructive
counterpart and double negations, which is a frequent strategy to build ecumenical logics. We
begin by introducing a classical version of Prf, enabling us to add prenex double negations
whenever necessary. This definition has many advantages: we are able to add double negations
to isolated atomic formulas, which is a recurrent problem in the design of ecumenical systems,
without adding too much heaviness to our system. The classical connectives and quantifiers
are now defined using their constructive counterpart and internal double negations.

We call Ecumenical Predicate Logic the λΠ / ≡ theory formed by ΣeFO = ΣcFO∪{ (C-decl) :
C ∈ { Prfc,∧c,∨c,∀c,∃c } } and Re

FO = Rc
FO ∪ { (C-red) : C ∈ { Prfc,∧c,∨c,∀c,∃c } }.

Simple type theory (STT) can be expressed either as a first order theory or as an extension
of predicate logic. To avoid nestling multiple encodings, we choose the latter option, as
shown in Figure 2b. Predicate Logic is extended with the object type of propositions o and
the function type arrow ⇝. These definitions allow to construct simple types and assimilate
propositions to objects.

We respectively call Constructive STT and Ecumenical STT the λΠ / ≡ theories ΣcHO =
Σc
FO ∪ { (C-decl) : C ∈ { o,⇝ } },Rc

HO = Rc
FO ∪ { (C-red) : C ∈ { o,⇝ } } and Σe

HO =
Σe
FO ∪ Σc

HO,R
e
HO = Re

FO ∪ Rc
HO. For readability purposes, we respectively denote by

⊢cHO and ⊢eHO the provability relations ⊢Σc
HO

,Rc
HO

of Constructive STT and ⊢Σe
HO

,Re
HO

of
Ecumenical STT.
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(Set-decl) Set : TYPE

(ι-decl) ι : Set
(El-decl) El : Set → TYPE

(Prop-decl) Prop : TYPE

(Prf-decl) Prf : Prop → TYPE

(a) Base of the encoding.

(o-decl) o : Set
(o-red) El o ↪→ Prop

(⇝-decl) ⇝ : Set → Set → Set
(⇝-red) El (x⇝ y) ↪→ El x → El y

(b) Higher order.

(⊤-decl) ⊤ : Prop
(⊤-red) Prf ⊤ ↪→ (z : Prop) → Prf z → Prf z

(⊥-decl) ⊥ : Prop
(⊥-red) Prf ⊥ ↪→ (z : Prop) → Prf z

(⇒-decl) ⇒ : Prop → Prop → Prop
(⇒-red) Prf x⇒ y ↪→ Prf x → Prf y
(¬-decl) ¬ : Prop → Prop
(¬-red) Prf (¬x) ↪→ Prf x → (z : Prop) → Prf z

(∧-decl) ∧ : Prop → Prop → Prop
(∧-red) Prf (x ∧ y) ↪→ (z : Prop) → (Prf x → Prf y → Prf z) → Prf z

(∨-decl) ∨ : Prop → Prop → Prop
(∨-red) Prf (x ∨ y) ↪→ (z : Prop) → (Prf x → Prf z) → (Prf y → Prf z) → Prf z
(∀-decl) ∀ : (a : Set) → (El a → Prop) → Prop
(∀-red) Prf (∀ a p) ↪→ (z : El a) → Prf (p z)

(∃-decl) ∃ : (a : Set) → (El a → Prop) → Prop
(∃-red) Prf (∃ a p) ↪→ (z : Prop) → ((x : El a) → Prf (p x) → Prf z) → Prf z

(c) Constructive connectives and quantifiers.

(Prfc-decl) Prfc : Prop → TYPE

(Prfc-red) Prfc ↪→ λx : Prop.Prf (¬ ¬x)
(⇒c-decl) ⇒c : Prop → Prop → Prop
(⇒c-red) ⇒c ↪→ λx : Prop. [λy : Prop. (¬ ¬x) ⇒c (¬ ¬ y)]
(∧c-decl) ∧c : Prop → Prop → Prop
(∧c-red) ∧c ↪→ λx : Prop. [λy : Prop. (¬ ¬x) ∧ (¬ ¬ y)]

(∨c-decl) ∨c : Prop → Prop → Prop
(∨c-red) ∨c ↪→ λx : Prop. [λy : Prop. (¬ ¬x) ∨ (¬ ¬ y)]
(∀c-decl) ∀c : (a : Set) → (El a → Prop) → Prop
(∀c-red) ∀c ↪→ λa : Set. [λp : El a → Prop.∀ a (λx : El a.¬ ¬(p x))]

(∃c-decl) ∃c : (a : Set) → (El a → Prop) → Prop
(∃c-red) ∃c ↪→ λa : Set. [λp : El a → Prop.∃ a (λx : El a.¬ ¬(p x))]

(d) Classical connectives and quantifiers.

Figure 2 Definition of Ecumenical STT in λΠ / ≡.
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⊤,⊥,¬,
∧,∨,⇒,

∃,∀

∧c,∨c,⇒c

∃c,∀c
o,⇝

Figure 3 Logical fragments of theory U.

We call the set of these four theories, represented in Figure 3, the “logical fragments of
theory U”.

In Ecumenical Predicate Logic and Ecumenical STT, hybrid propositions and proofs can
be expressed, for example in context P : Prop, Q : Prop, one can prove that Prf((P ∧Q)⇒cP )
is inhabited and that Prf((P ∧c Q) ⇒ P ) is not.

3 Properties of the logical fragments of theory U

The system λΠ / ≡ is very permissive due to the minimal restrictions on the user-defined
rewriting system R. In general, there is no guarantee of properties such as subject reduction,
type uniqueness, or the decidability of type-checking [40, 2]. To ensure that the theories
defined in the previous section are well-behaved, further properties need to be established
such as the confluence, well-typedness, and normalization of the associated rewriting system.

3.1 Well-typedness
A λΠ / ≡ theory Σ,R is said to be well-typed if
1. the rewriting system ↪→βR is confluent [42, 40, Definition 1.1.5.],
2. for every declaration c : T in signature Σ, term T is typed by a sort s in theory Σ,R,
3. for every rule ℓ ↪→ r in R, typing context Γ, type T , and substitution σ such that

Γ ⊢Σ,R σℓ : T , then Γ ⊢Σ,R σr : T .
Item 3 ensures that ↪→R enjoys subject reduction [40, Definition 2.4.4], i.e. Γ ⊢Σ,R t : T and
t ↪→R u implies Γ ⊢Σ,R u : T for any Γ, t, u, T . Item 1 ensures that the product is injective
in theory Σ,R [4], i.e. (x : t1) → u1 ≡βR (x : t2) → u2 implies t1 ≡βR t2 and u1 ≡βR u2 for
any x, t1, t2, u1, u2. These properties guarantee in turn that ↪→β preserves typing. Note that
the injectivity of the product is also called product compatibility in the literature [40, 44].

The well-typedness of all fragments of theory U, including the four logical fragments
studied in this paper, is established in [6]. Alternatively, the framework of strongly well-
formed λΠ / ≡ theories [40] could also be used in the specific case of the logical fragments
to ensure well-typedness. This framework is not sufficient for the entirety of theory U, as
fragments of theory U that include the definition of predicate subtyping [26] are not strongly
well-formed.

▶ Lemma 1 (Well-typedness [6, Theorem 9]). All logical fragments of theory U are well-typed.
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▶ Corollary 2 (Subject reduction). Let Σ,R be one of the four logical fragments of theory
U. Let t, u, T be terms of Λ(Σ) and Γ a typing context such that Γ ⊢Σ,R t : T and t ↪→βR u,
then Γ ⊢Σ,R u : T .

▶ Corollary 3 (Fragment theorem [6, Theorem 7]). Let Σ1,R1 and Σ2,R2 be two of the four
logical fragments of theory U such that Σ1 ⊆ Σ2. Let t, T be terms of Λ(Σ1) and Γ a typing
context such that codom(Γ) ⊂ Λ(Σ1). If Γ ⊢Σ2,R2 t : T , then Γ ⊢Σ1,R1 t : T .

3.2 Normalization
A sufficient condition for the decidability of type-checking in a well-typed theory Σ,R is the
normalization [42] of the rewriting system ↪→βR . Indeed, using a normalization strategy and
the confluence of ↪→βR , the convertibility modulo ≡βR of two terms A,B ∈ Λ(Σ) is decidable
by computing the normal forms of A and B and testing if they are equal (up to α-renaming).
In this case, the applicability of the conversion rule (conv) is decidable, ensuring in turn the
decidability of type-checking modulo Σ,R. Normalization is also a first step towards a proof
of consistency for a given theory.

The strong normalization of β-reduction is established for the λΠ-calculus [25], and the
additional rewriting systems defined by the four logical fragments of theory U are obviously
normalizing. However, weak and strong normalization are not modular in higher-order
rewriting settings [1]; as a consequence, the normalization of ↪→βR cannot be deduced from
the fact that ↪→β and ↪→R are both normalizing.

Some theoretical results and tools have been developed in order to prove normalization of
term rewriting systems in dependent type theories [20, 35, 7]. However, these results cannot
be directly used to prove the normalization of the logical fragments of U, and more generally
of theory U. The rule (⇝-red) is one of the many problematic rules: the right-hand side is a
product, thus the rule is not arity-preserving [18], and is pinpointed by SizeChangeTool
[7] as being self-looping. As a consequence, the consistency and type-checking decidability of
theory U and many of its fragments is still an open question.

In the following sections, we begin to answer this question by proving the weak normal-
ization of Ecumenical STT, from which the decidability of type-checking and consistency
will ensue. The following normalization proof relies on a notion of models of λΠ / ≡ theories
valued in structures named Π-algebras, which are similar to pre-Heyting algebras [27, 17].
Any λΠ / ≡ theory which admits a model in every full ordered and complete Π-algebra
is called super-consistent. In [15], the author establishes the strong normalization of ↪→β

over well-typed terms for any super-consistent theory using reducibility candidates [41, 23].
Moreover, the super-consistency of an expression of minimal STT with parametric quantifiers
is proven. Sections 3.2.1 and 3.2.2 extend the models of minimal STT with parametric
quantifiers described in [15] to Constructive STT, thus proving that Constructive STT is
super-consistent. Finally, the strong normalization of ↪→β over λΠ / ≡ terms well-typed in
Constructive STT is used to prove weak normalization for all logical fragments of theory U.

3.2.1 Super-consistency
In the following section, we define all the notions necessary to state and prove the super-
consistency of Constructive STT.

▶ Definition 4. A full, complete, and ordered Π-algebra is formed with
a preordered set (B,≤) with a maximal element ⊤̃ of B,
a function ∧̃ : B × B → B such that a ∧̃ b is a greatest lower bound of { a, b } for ≤,

TYPES 2022



4:8 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

a function Π̃ : B × (P(B) \ ∅) → B such that a ≤ Π̃(b, S) if for all c ∈ S, a ∧̃ b ≤ c,
and an order relation ⊑ over B with respect to which Π̃ is left anti-monotonic and right
monotonic, and for which every subset of B has a least upper bound.

Note that relations ≤ and ⊑ need not be in any way related.

▶ Definition 5. A model valued in a full, ordered, and complete Π-algebra is a triplet of
interpretation functions (J·Ki)1≤i≤3 and a set V. The ith interpretation J·Ki takes as arguments
a term t and i − 1 variable assignments (ϕj)1≤j<i such that fv(t) ⊆

⋂
1≤j<i dom(ϕj) and

returns a value JtKiϕ1,...,ϕi−1
∈ V such that

JKINDK2
ϕ1

= JTYPEK2
ϕ1

= B and JKINDK3
ϕ1,ϕ2

= JTYPEK3
ϕ1,ϕ2

= ⊤̃,
J(x : t) → uK3

ϕ1,ϕ2
= Π̃(JtK3

ϕ1,ϕ2
, { JuK3

(ϕ1,x=c1),(ϕ2,x=c2) : c1 ∈ JtK1, c2 ∈ JtK2
ϕ1

})
This definition is a simplification of its counterpart in [15], which allows models with an
arbitrary number of interpretation functions. However, only three levels of interpretation are
required to show the super-consistency of Constructive STT.

▶ Definition 6 (Compatibility). Let (J·Ki)1≤i≤3 be a model valued in a full, ordered, and
complete Π-algebra B and i ∈ { 1, 2, 3 }. The variable assignments ϕ1, . . . , ϕi−1 are compatible
with a typing context ∆ if for all 1 ≤ j < i and (x : A) ∈ ∆ we have ϕj(x) ∈ JAKjϕ1,...,ϕj−1

.

▶ Definition 7 (Model of a theory). A model valued in a full, ordered, and complete Π-algebra
B is a model of a theory Σ,R if and only if the following conditions are met for every
i ∈ { 1, 2, 3 }, typing context ∆, terms t, u,A,B,C ∈ Λ(Σ), variables x, y ∈ V, and compatible
variable assignments ϕ1, . . . , ϕi−1:
Variable assignment: if i ≥ 2, then for every (x : A) ∈ ∆, we have JxKiϕ1,...,ϕi−1

= ϕi−1(x).
Well-typedness: if i ≥ 2 and ∆ ⊢Σ,R t : A, then JtKiϕ1,...,ϕi−1

∈ JAKi−1
ϕ1,...,ϕi−2

.
Weakening: if ∆ ⊢Σ,R t : A and y /∈ dom(∆), then JtKiϕ1,...,ϕi−1

= JtKi(ϕ1,y=a1),...,(ϕi−1,y=an−1).
Substitution: if ∆(y : C) ⊢Σ,R t : B, ∆ ⊢Σ,R u : C, then

J(u/y)tKiϕ1,...,ϕi−1
= JtKi(ϕ1,y=JuK2

ϕ1
),...,(ϕi−1,y=JuKi

ϕ1,...,ϕi−1
).

Validity of the congruence: if ∆ ⊢Σ,R A : C, ∆ ⊢Σ,R B : C, and A ≡βR B, then
JAKiϕ1,...,ϕi−1

= JBKiϕ1,...,ϕi−1

Validity of the axioms: if (c : A) ∈ Γ, then JAK3 ≥ ⊤̃.

▶ Definition 8 (Super-consistency). A λΠ / ≡ theory Σ,R admitting a model valued in every
full, ordered, and complete Π-algebra is called super-consistent.

▶ Theorem 9 ([15, Theorem 5.1]). →β is strongly normalizing over well-typed terms in
super-consistent λΠ / ≡ theories.
Note that this result does not yield normalization for the whole rewriting system ↪→βR . This
theorem is more generally applicable to non-terminating user-defined rewriting systems ↪→R ,
which is useful when ≡βR is a decidable congruence but ↪→R is non-terminating. A trivial
example would be R = {x ↪→ x }.

▶ Theorem 10 ([15, Theorem 4.3]). Minimal STT is super-consistent.

3.2.2 Models of Constructive STT
In this section, we extend the model of Minimal STT valued in a given arbitrary full, ordered,
and complete Π-algebra B defined in [15] to a model of Ecumenical STT.
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3.2.2.1 Model of Minimal STT

Let { e } be an arbitrary one-element set and A the smallest set containing B and { e },
and closed by cartesian product (denoted ×) and exponentiation (denoted F). Let V be
the smallest set containing A, B, and { e } and closed by cartesian product and dependent
function space, i.e. if S is an element of V and T a family of elements of V indexed by S,
then the set Fd(S, T ) of functions mapping each element s of S to an element of Ts is in V.
We define the interpretation functions (J·Ki)1≤i≤3 as described in Figure 4.

▶ Lemma 11 ([15, Theorem 4.2]). The model (J·Ki)1≤i≤3 is a model of Minimal STT in B.

3.2.2.2 Extension of the model to Constructive STT

The three interpretation functions of the model defined in Figure 4 are extended to define a
model of Constructive STT valued in the given Π-algebra B with the following method:
1. we extend the model to interpret the constructive connectives ⊤, ⊥, ¬, ∃, ∧, and ∨;
2. we prove that the typing of these connectives is preserved by these interpretations;
3. we prove that the axioms declaring these connectives, i.e. (⊤-decl), (⊥-decl), (¬-decl),

(∃-decl), (∧-decl), and (∨-decl), are valid in this extension.
4. we prove that reduction by the rewrite rules defining these connectives, i.e. (⊤-red),

(⊥-red), (¬-red), (∃-red), (∧-red), and (∨-red), leaves the interpretations invariant.
These verifications ensure that our extension is a model of Constructive STT. The most
problematic step of this method is Item 4. As an example, constructive conjunction is not
directly defined by a rewrite rule of the form ∧ ↪→ t or a ∧ b ↪→ t, but by a rule of the form
Prf (a ∧ b) ↪→ t which needs to preserve interpretation. As a consequence, the interpretation
of Prf and of the application need to be taken into account while accomplishing Item 1.

For example, as Prf ⊤ ↪→ (z : Prop) → Prf z → Prf z, we need to define J⊤K3
ϕ,ψ such

that JPrf ⊤K3
ϕ,ψ = J(z : Prop) → Prf z → Prf zK3

ϕ,ψ = Π̃(⊤̃, { Π̃(c, { c }) : c ∈ B }); here we
conclude using JPrf ⊤K3

ϕ,ψ = J⊤K3
ϕ,ψ. The interpretations of all constructive connectives and

quantifiers are described in Figure 5.

▶ Lemma 12 (Well-typedness). For any i ∈ { 1, 2 } and declaration c : T in (⊤-decl), (⊥-decl),
(¬-decl), (∃-decl), (∧-decl), and (∨-decl), we have JcKi+1

ϕ1,...,ϕi
∈ JT Kiϕ1,...,ϕi−1

.

Proof. We check every case.
If i = 1: JcK2

ϕ = e and JT K1 = { e }
If i = 2: J⊤K3

ϕ,ψ and J⊥K3
ϕ,ψ are elements of B, which is equal to JPropK2

ϕ,
J¬K3

ϕ,ψ is an element of F({ e } × B,B), which is equal to JProp → PropK2
ϕ,

J∧K3
ϕ,ψ and J∨K3

ϕ,ψ are elements of F({ e } × B,F({ e } × B,B)), which is equal to
JProp → Prop → PropK2

ϕ,
and J∃K3

ϕ,ψ is an element of F(A × B,F({ e } × F({ e } × S,B),B)), which is equal to
J(x : Set) → (El x → Prop) → PropK2

ϕ. ◀

▶ Lemma 13 (Validity of the axioms). For all declarations c : T in (⊤-decl), (⊥-decl),
(¬-decl), (∃-decl), (∧-decl), and (∨-decl), then JT K3

ϕ,ψ ≥ ⊤̃.

Proof. There are four possibilities.
For (⊤-decl) and (⊥-decl), we have T = Prop and by definition JT K3

ϕ,ψ = ⊤̃ ≥ ⊤̃.
For (¬-decl), we have T = Prop → Prop, and as a consequence JT K3

ϕ,ψ = Π̃(⊤̃, { ⊤̃ }) ≥ ⊤̃.
For (∧-decl) and (∨-decl), we have T = Prop → Prop → Prop and by definition
JT K3

ϕ,ψ = Π̃(⊤̃, { Π̃(⊤̃, { ⊤̃ }) }) ≥ ⊤̃.
For (∃-decl), we have T = (x : Set) → (El x → Prop) → Prop, and as a consequence
JT K3

ϕ,ψ = Π̃(⊤̃, { Π̃(Π̃(c, { ⊤̃ }), { ⊤̃ }) : c ∈ B }) ≥ ⊤̃. ◀
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JTYPEK1 = JKINDK1 = V

JSetK1 = A

J(x :C) → DK1 =
{

{ e } if JDK1 = { e }
F(JCK1, JDK1) else

Jλx :C. tK1 = Jt uK1 = JtK1

JtK1 = { e } in every other case

(a) First level of interpretation.

JTYPEK2
ϕ = JKINDK2

ϕ = JSetK2
ϕ = JoK2

ϕ = B

JElK2
ϕ = S 7→ S ∈ F(A,V)

JPrfK2
ϕ = e 7→ { e } ∈ F({ e },V)

JιK2
ϕ = { e }

J(x :C) → DK2
ϕ =

{
{ e } if for all c′ ∈ JCK1, JDK2

ϕ,x=c′ = { e }
Fd(JCK1 × JCK2

ϕ, (JDK2
ϕ,x=c′)⟨c,c′⟩) else

J⇝K2
ϕ =

{
{ e } if T = { e }
⟨S, T ⟩ ∈ A × A 7→ F({ e } × S, T ) else

JxK2
ϕ = ϕ(x)

Jλx :C. tK2
ϕ =

{
e if for all c ∈ JCK1, JtK2

ϕ,x=c = e

c ∈ JCK1 7→ JtK2
ϕ,x=c else

Jt uK2
ϕ =

{
e if JtK2

ϕ = e

JtK2
ϕ JuK2

ϕ else

JtK2
ϕ = e in every other case

(b) Second level of interpretation.

JTYPEK3
ϕ,ψ = JKINDK3

ϕ,ψ = ⊤̃
JSetK3

ϕ,ψ = JιK3
ϕ,ψ = JoK3

ϕ,ψ = ⊤̃
J⇝K3

ϕ,ψ = ⟨⟨S, a⟩, ⟨T, b⟩⟩ ∈ (A × B)2 7→ Π̃(a, { b }) ∈ B

JElK3
ϕ,ψ = ⟨S, a⟩ ∈ A × B 7→ a ∈ B

JPrfK3
ϕ,ψ = ⟨e, a⟩ ∈ { e } × B 7→ a ∈ B

J⇒K3
ϕ,ψ = ⟨e, a⟩ ∈ { e } × B 7→ ⟨e, b⟩ ∈ { e } × B 7→ Π̃(a, { b })

J∀K3
ϕ,ψ = ⟨S, a⟩ ∈ A × B 7→ ⟨e, g⟩ ∈ { e } × F({ e } × S,B) 7→

Π̃(a, { g ⟨e, s⟩ : s ∈ S })
JxK3

ϕ,ψ = ψ(x)

J(x :C) → DK3
ϕ,ψ = Π̃

(
JCK3

ϕ,ψ, { JDK3
ϕ(x=c′),ψ(x=c) : c′ ∈ JCK1, c ∈ JCK2

ϕ }
)

Jλx :C. tK3
ϕ,ψ =

{
e if for all ⟨c′, c⟩ ∈ JCK1 × JCK2

ϕ, JtK3
ϕ(x=c′),ψ(x=c) = e

⟨c′, c⟩ ∈ JCK1 × JCK2
ϕ 7→ JtK3

ϕ(x=c′),ψ(x=c) else

Jt uK3
ϕ,ψ =

{
e if JtK3

ϕ,ψ = e

JtK3
ϕ,ψ⟨JuK2

ϕ, JuK
3
ϕ,ψ⟩ else

(c) Third level of interpretation.

Figure 4 Model of minimal STT.
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JtK1 = { e } if t ∈ { ⊤,⊥,¬,∃,∧,∨,Prop }

(a) First level.

JPropK2
ϕ = B

JtK2
ϕ = e if t ∈ { ⊤,⊥,¬,∃,∧,∨ }

(b) Second level.

JPropK3
ϕ,ψ = ⊤̃

J⊤K3
ϕ,ψ = Π̃(⊤̃, { Π̃(c, { c }) : c ∈ B })

J⊥K3
ϕ,ψ = Π̃(⊤̃,B)

J∧K3
ϕ,ψ = ⟨e, a⟩ 7→ ⟨e, b⟩ 7→ Π̃(⊤̃, { Π̃(Π̃(a, { Π̃(b, { c }) }), { c }) : c ∈ B })

J∨K3
ϕ,ψ = ⟨e, a⟩ 7→ ⟨e, b⟩ 7→ Π̃(⊤̃, { Π̃(Π̃(a, { c }), { Π̃(Π̃(b, { c }), { c }) }) : c ∈ B })

J¬K3
ϕ,ψ = ⟨e, a⟩ 7→ Π̃(a, { Π̃(⊤̃,B) })

J∃K3
ϕ,ψ = ⟨S, a⟩ ∈ A × B 7→ ⟨e, g⟩ ∈ { e } × F({ e } × S,B) 7→

Π̃(⊤̃, { Π̃(a, { Π̃(g ⟨e, s⟩, { c }) : s ∈ S }), { c }) : c ∈ B })
(c) Third level.

Figure 5 Interpretations of Constructive STT connectives.

▶ Lemma 14 (Validity of the congruence). For all rewrite rules ℓ ↪→ r in (⊤-red), (⊥-red),
(¬-red), (∃-red), (∧-red), and (∨-red), then for all i ∈ { 1, 2, 3 }, JℓKiϕ1,...,ϕi−1

= JrKiϕ1,...,ϕi−1
.

Proof. We check every case.
If i = 1: in all cases JℓK1 = JrK1 = { e }.
If i = 2: in all cases JℓK2

ϕ = JrK2
ϕ = e.

If i = 3: we check the equality for every rule.
(⊤-red): JPrf ⊤K3

ϕ,ψ = Π̃(⊤̃, { Π̃(c, { c }) : c ∈ B }) = J(z : Prop) → Prf z → Prf zK3
ϕ,ψ

(⊥-red): JPrf ⊥K3
ϕ,ψ = Π̃(⊤̃,B) = J(z : Prop) → Prf zK3

ϕ,ψ

(¬-red): JPrf ¬AK3
ϕ,ψ = Π̃(JAK3

ϕ,ψ, { Π̃(⊤̃,B) }) = JPrf A → (z : Prop) → Prf zK3
ϕ,ψ

(∧-red): JPrf A ∧ BK3
ϕ,ψ = Π̃(⊤̃, { Π̃(Π̃(JAK3

ϕ,ψ, { Π̃(JBK3
ϕ,ψ, { c }) }), { c }) : c ∈ B }) =

J(z : Prop) → (Prf A → Prf B → Prf z) → Prf zK3
ϕ,ψ

(∨-red): JPrf A ∨ BK3
ϕ,ψ = Π̃(⊤̃, { Π̃(Π̃(JAK3

ϕ,ψ, { c }), { Π̃(Π̃(JBK3
ϕ,ψ, { c }), { c }) }) : c ∈

B }) = J(z : Prop) → (Prf A → Prf z) → (Prf B → Prf z) → Prf zK3
ϕ,ψ

(∃-red): JPrf (∃ T P )K3
ϕ,ψ = Π̃(⊤̃, { Π̃(JT K3

ϕ,ψ, { Π̃(JP K3
ϕ,ψ ⟨e, s⟩, {c}) : s ∈ JT K2

ϕ }), {c}) :
c ∈ B }) = J(z : Prop) → ((y : El T ) → Prf P y → Prf z) → Prf zK3

ϕ,ψ

In all cases, reduction preserves interpretation. ◀

▶ Proposition 15. ↪→β strongly terminates on well-typed terms of Constructive STT.

Proof. Constructive STT has models valued in all full, ordered, and complete Π-algebras.
Thus, the theory is super-consistent and we conclude by Theorem 9. ◀

▶ Corollary 16. Ecumenical STT is weakly normalizing.

Proof. We exhibit a normalizing strategy for a given well-typed term t of Ecumenical STT.
1. First, normalize t with respect to every rule defining classical connectives and quantifiers,

i.e. (⇒c-red), (∧c-red), (∨c-red), (∀c-red), and (∃c-red). This procedure terminates as
the number of classical connectives and quantifiers stricly decreases with every reduction.
Note that the result t′ of this procedure is well-typed in Constructive STT.

2. Second, β-normalize t′. This procedure terminates by Proposition 15, yielding a term t′′.
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3. Finally, normalize t′′ with respect to (⊤-red), (⊥-red), (⇒-red), (∧-red), (∨-red), (∀-red),
and (∃-red). The number of connectives and quantifiers strictly decreases with each
reduction. Each of these reduction step using rules (∀-red) and (∃-red) might create one
β-redex; however it is of the form (λx : t. u) y, which can be immediately reduced without
increasing the number of connectives and quantifiers.

The term resulting from this procedure is ↪→βRe
HO

-normal. ◀

We can conclude that type-checking in the logical fragments of theory U is decidable.

▶ Corollary 17. Type-checking in Ecumenical STT is decidable.

In practice, this normalization strategy is not implemented to type-check modulo Ecumeni-
cal STT. However, a considerable number of proofs, notably the standard HOL Light library,
have been type-checked in this theory [12]. The diversity and size of these developments
provide no counter-example to the strong normalization of Ecumenical STT.

▶ Conjecture 18. Ecumenical STT is strongly normalizing.

4 First order ecumenism

Some fragments of theory U have been previously studied separately in [3, 26, 43]. Soundness
and conservativity of these expressions with respect to a reference system, and consistency
have not all been established for all fragments; the consistency of theory U is still an open
question.

In the following sections, we study the soundness and conservativity of all logical fragments
of U with respect to appropriate reference systems (first order constructive and classical
logics, and higher-order constructive and classical logics). We also establish the consistency
of the logical fragments of theory U, which is a first step towards the consistency of the
whole theory. In the current section, we focus on the first order fragments, ie Constructive
Predicate Logic and Ecumenical Predicate Logic.

4.1 Reference systems: constructive and classical predicate logic
As reference systems for Constructive Predicate Logic and Ecumenical Predicate Logic, we
choose the systems NJ and NK [11].

In these systems, terms are defined over a first order language L containing function
and predicate symbols with their arity. Terms are of the form t, u, · · · = x | f(t1, . . . , tn)
where x is a variable and f ∈ L is a function symbol of arity n. Formulas are defined by
A,B, · · · = P (t1, . . . , tn) | ⊤ | ⊥ | A ∧ B | A ∨ B | A ⇒ B | ¬A | ∀x. A | ∃x. A, where
x is a variable and P ∈ L is an n-ary predicate symbol. Typing contexts are defined by
Γ,∆, · · · = [] | Γ, A. The rules of the NJ proof system are described in Figure 6. System NK
is the extension of NJ with the excluded-middle rule (EM) of conclusion A∨ ¬A and without
premises. We respectively write Γ ⊢NJ A and Γ ⊢NK A if the judgment Γ ⊢ A is derivable in
NJ and NK.

4.2 Soundness and conservativity of Constructive Predicate Logic
Soundness and conservativity of Constructive Predicate Logic were first proved in [13], and
restated and reproven in [40]. The proof if soundness is tedious and error prone: in both
aforementioned proofs, the free variables occuring in the constructive natural deduction
proof are not accurately taken into account. In the following, we reprove soundness and
conservativity of Constructive and highlight the errors made in previous proofs.
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A ∈ Γ axiom
Γ ⊢ A

⊤-intro
Γ ⊢ ⊤

Γ ⊢ ⊥ ⊥-elim
Γ ⊢ A

Γ ⊢ A ∧B ∧-elim
Γ ⊢ A

Γ ⊢ A ∧B ∧-elim
Γ ⊢ B

Γ ⊢ A Γ ⊢ B ∧-intro
Γ ⊢ A ∧B

Γ, A ⊢ ⊥
¬-intro

Γ ⊢ ¬A
Γ ⊢ ¬A Γ ⊢ A ¬-elim

Γ ⊢ ⊥
Γ, A ⊢ B

⇒-intro
Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒-elim
Γ ⊢ B

Γ ⊢ A ∨-intro
Γ ⊢ A ∨B

Γ ⊢ B ∨-intro
Γ ⊢ A ∨B

Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C
∨-elim

Γ ⊢ C

Γ ⊢ ∀x. A ∀-elim
Γ ⊢ A

Γ ⊢ A ∃-intro
Γ ⊢ ∃x. A

Γ ⊢ A x /∈ fv(Γ)
∀-intro

Γ ⊢ ∀x. A
Γ ⊢ ∃x. A Γ, A ⊢ B x /∈ fv(Γ, B)

∃-elim
Γ ⊢ B

Figure 6 Rules of constructive predicate logic NJ.

|x|c ≜ x

|f(t1, . . . , tn)|c ≜ ḟ |t1|c . . . |tn|c
|P (t1, . . . , tn)|c ≜ Ṗ |t1|c . . . |tn|c

|⊤|c ≜ ⊤
|⊥|c ≜ ⊥

|¬A|c ≜ ¬ |A|c

|A ∧ B|c ≜ |A|c ∧ |B|c
|A ∨ B|c ≜ |A|c ∨ |B|c

|A ⇒ B|c ≜ |A|c ⇒ |B|c
|∀x. A|c ≜ ∀ ι (λx : El ι. |A|c)
|∃x. A|c ≜ ∃ ι (λx : El ι. |A|c)

Figure 7 Translation | · |c of NJ to its expression in λΠ / ≡.

As in [40], a first order language L is encoded in λΠ / ≡ by a context ∆L declaring
an n-ary function ḟ : El ι → . . . → El ι → El ι for every n-ary function symbol f ∈ L,
and an n-ary function Ṗ : El ι → . . . → El ι → Prop for every n-ary predicate symbol
P ∈ L. For example, the first order language L containing a nullary predicate P and
a unary predicate Q is expressed in λΠ / ≡ by the context ∆L represented in Figure 8.
Terms and formulas of the intuitionistic first order system NJ are naturally embedded into
Constructive Predicate Logic using transformation |.|c defined in Figure 7. Finally, for any
context Γ = A1, . . . , An and proposition A, denoting by y1, . . . , yk the free variables of Γ, A,
we define |Γ|Ac = y1 : El ι, . . . , yk : El ι, x1 : Prf |A1|c, . . . , xn : Prf |An|c. Again, Figure 8
provides an example: the NJ context ∀x. [Q(x) ∧ P ] is translated into the λΠ / ≡ context Γ.

In [40], the NJ proof represented in Figure 8 is expressed by the term π in Constructive
Predicate Logic. Note that the variable y is not free in the final judgment ∀x. [Q(x) ∧P ] ⊢ P ,
thus is not declared in the typing context ∆L,Γ. However, y is free in the NJ proof, thus
appears free in term π. As a consequence, π is not well-typed in ∆L,Γ and the soundness
result of [40] does not hold. To handle such free variables, we suggest the following slight
alteration: we add a witness w : El ι to context ∆L and substitute whenever necessary. As
an example, we express the NJ proof of Figure 8 with the term π(y/w), well-typed in ∆L,Γ.
Note that this presentation can be easily extended to many sorted natural deduction by
adding a constant s : El and a witness ws : El s for every additional sort.

▶ Lemma 19 (Soundness). If A is an NJ formula over a first-order language L such that
Γ ⊢NJ A, then there is a term t ∈ Λ(ΣcFO) such that ∆L; |Γ|Ac ⊢cFO t : Prf |A|c.
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∀x. [Q(x) ∧ P ] ⊢ ∀x. [Q(x) ∧ P ]
∀-elim

∀x. [Q(x) ∧ P ] ⊢ Q(y) ∧ P
∧-elim

∀x. [Q(x) ∧ P ] ⊢ P

∆L = (P : Prop), (Q : El ι → Prop)
Γ = (H : Prf (∀ ι (λx : El ι. [(Q x) ∧ P ])))
π = (H y) P (λx1 : Prf (Q y). λx2 : Prf P . x2)

Figure 8 Counter-example to soundness proofs of constructive predicate logic from [13, 40].

Proof. By induction on the derivation of Γ ⊢ A. We develop the case of the left elimination
of the conjunction ∧-elim to illustrate the use of the witness w : El ι. By induction hypothesis
on the proof πB of Γ ⊢ A∧B, there is a term tB such that ∆L; |Γ|A∧B

c ⊢cFO tB : Prf |A∧B|c.
Term t = tB |A|c (λz1 : Prf |A|c. λz2 : Prf |B|c. z1) is of type Prf |A|c in context ∆L, |Γ|A∧B

c .
Let y1, . . . , yk = fv(B)\fv(Γ, A). As |Γ|A∧B

c = |Γ|Ac , y1 : El ι, . . . , yk : El ι, and using the
substitution lemma [40, Lemma 2.6.9.], ∆L; |Γ|Ac ⊢ (w/y1, . . . , w/yk)t : Prf |A|c. ◀

The conservativity of Constructive Predicate Logic with respect to NJ, which is the
converse statement to Lemma 19, has been established in [13, 40] and can be seen as
a specific case of the proof of conservativity of Constructive STT, further developed in
Section 5.2.2.

▶ Lemma 20 (Conservativity). Let L be a first-order language and A a NK formula over L.
If there is a term t ∈ Λ(ΣcFO) such that ∆L; |Γ|Ac ⊢cFO t : Prf |A|c, then Γ ⊢NJ A.

4.3 Soundness and conservativity of Ecumenical Predicate Logic
In the following section, the soudness and conservativity of Ecumenical Predicate Logic with
respect to NK are established using the analogous results already established for Constructive
Predicate Logic, i.e. Lemmas 19 and 20, and the properties of double-negation translations.

Figure 9a defines the embedding |.|e of NK formulas into Ecumenical terms, which maps
every NK connective to the corresponding classical connective. Considering the construction
of the classical connectives, this transformation mimicks the Kolmogorov double negation
translation A 7→ ¬¬(A⊥) [29] represented in Figure 9b. In the following, the Kolmogorov
translation ¬¬(·⊥) is naturally extended to contexts.

|x|e = x

|f(t1, . . . , tn)|e = ḟ |t1|e . . . |tn|e
|P (t1, . . . , tn)|e = Ṗ |t1|e . . . |tn|e

|□|e = □

|¬A|e = ¬ |A|e
|A ⋊⋉ B|e = |A|e⋊⋉c |B|e
|Qx. A|e = Qc ι (λx : El ι. |A|e)

(a) Expressing NK into Ecumenical Predicate Logic.

P (t1, . . . , tn)⊥ = P (t1, . . . , tn)
□⊥ = □

(¬A)⊥ = ¬A
(A ⋊⋉ B)⊥ = (¬¬A) ⋊⋉ (¬¬B)
(Qx. A)⊥ = Qx. (¬¬A)

(b) The ·⊥ translation from NK to NJ.

Figure 9 Translations of NK propositions, where □ ∈ { ⊤, ⊥ }, ⋊⋉∈ { ∧, ∨, ⇒ }, and Q ∈ { ∀, ∃ }.

▶ Lemma 21. For every NK proposition A, Prfc |A|e ≡βRe
F O

|¬¬A⊥|c.

Proof. By a straightforward induction on the structure of formula A. ◀
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▶ Lemma 22 ([29]). For every NK proposition A, if Γ ⊢NK A then ¬¬Γ⊥ ⊢NJ ¬¬A⊥.

The soundness of Ecumenical Predicate Logic with respect to NK is immediate using
Lemmas 21 and 22. Formally, for any context Γ = A1, . . . , An and proposition A, denoting
by y1, . . . , yk the free variables of Γ, A, we define |Γ|Ae = y1 : El ι, . . . , yk : El ι, x1 :
Prfc |A1|e, . . . , xn : Prfc |An|e.

▶ Lemma 23 (Soundness). If A is NK formula over language L such that Γ ⊢NK A is provable
in NK, then there exists a term t ∈ Λ(ΣeFO) such that ∆L; |Γ|A,c ⊢eFO t : Prfc |A|e.

Proof. By Lemma 22, ¬¬Γ⊥ ⊢NJ ¬¬A⊥ is provable in NJ. By the soundness of Constructive
Predicate Logic, ∆L; |¬¬Γ⊥|¬¬A

c ⊢cFO t : Prf |¬¬A⊥|c. By Lemma 21 and the fact that
fv(¬¬A) = fv(A), we conclude that ∆L; |Γ|Ae ⊢eFO t : Prfc |A|e. ◀

▶ Lemma 24 (Conservativity). Let L be a first-order language and A a NK formula over L.
If there is a term t ∈ Λ(ΣeFO) such that ∆L, |Γ|Ae ⊢eFO t : Prfc |A|e, then Γ ⊢NK A.

Proof. By the conversion rule and Lemma 21, ∆L, |¬¬Γ⊥|Ac ⊢eFO t : Prf (|¬¬A⊥|c). By
Corollary 3, there is a reduct of Prf (|¬¬A⊥|c), which we will denote by T , such that
∆L, |¬¬Γ⊥|Ac ⊢cFO t : T . By conversion, ∆L, |¬¬Γ⊥|Ac ⊢cFO t : Prf (|¬¬A⊥|c). By Lemma 20,
¬¬Γ⊥ ⊢NJ ¬¬A⊥ is derivable in NJ, and we conclude by Lemma 22 that Γ ⊢NK A. ◀

5 Higher order ecumenism

In the following section, we study the soundness and conservativity of the higher order logical
fragments of U with respect to higher-order constructive and classical logics. We will then
conclude that Ecumenical STT is consistent.

5.1 Reference systems: constructive and classical HOL-λ
As reference systems for Constructive and Ecumenical STT, we consider the intentional
version of HOL-λ [16], that is the system obtained by removing the η-expansion rule.

The types of the system HOL-λ are the simple types defined by T,U, · · · = ι | o | T → U .
Terms of HOL-λ are λ-terms with additional constants, among which figure the logical
connectives. Formally, terms and their associated types are inductively defined by:

a set of typed variables X, such that every variable x ∈ X of type T is a term of type T ;
a set of typed constants L, such that every constant c ∈ L of type T is a term of type T ;
for every term t of type U and variable x ∈ X of type T , λx. t is a term of type T → U ;
for every pair of terms t and u of respective types T → U and T , t u is a term of type U ;
⇒̇, ∧̇, and ∨̇ are terms of type o → o → o, ⊥̇ and ⊤̇ of type o, and ¬̇ of type o → o;
∀̇T and ∃̇T are terms of type (T → o) → o for every simple type T .

We assume that there is an infinite number of variables associated to each simple type.
Terms of type o are called propositions. Note that we will use the infix notation for the binary
connectives ⇒, ∧̇, and ∨̇ for readability purposes. We write the substitution of variable x by
a similarly typed term u in a term t by (u/x)t.

The β-reduction is defined by the rewrite rule (λx. t) u ↪→ (u/x)t. The rewriting system
↪→β , i.e. the smallest relation containing β-reduction and closed by term constructors and
substitution, is confluent and strongly normalizing [23]. In the following, the β−normal form
of a term t will be denoted by t↓. The proof system of HOL-λ is shown on Figure 10; all
propositions appearing in a proof are normal. The constructive subsystem HOL-λI of HOL-λ
is the system obtained by removing the excluded-middle rule (EM) from its proof system.
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axiom
Γ ⊢ A

EM
Γ ⊢ A ∨̇ ¬̇A

⊤̇-intro
Γ ⊢ ⊤̇

Γ ⊢ ⊥̇ ⊥̇-elim
Γ ⊢ A

Γ ⊢ A ∧̇B ∧̇-elim
Γ ⊢ A

Γ ⊢ A ∧̇B ∧̇-elim
Γ ⊢ B

Γ ⊢ B Γ ⊢ A ∧̇-intro
Γ ⊢ A ∧̇B

Γ ⊢ A ∨̇-intro
Γ ⊢ A ∨̇B

Γ ⊢ B ∨̇-intro
Γ ⊢ A ∨̇B

Γ, A ⊢ B
⇒̇-intro

Γ ⊢ A ⇒̇B

Γ ⊢ A ⇒̇B Γ ⊢ A ⇒̇-elim
Γ ⊢ B

Γ ⊢ (A t)↓
∃̇-intro

Γ ⊢ ∃̇TA
Γ ⊢ ∀̇TA ∀̇-elim

Γ ⊢ (A t)↓

Γ ⊢ A ∨̇B Γ, A ⊢ C Γ, B ⊢ C
∨̇-elim

Γ ⊢ C

Γ, A ⊢ ⊥̇
¬̇-intro

Γ ⊢ ¬̇A
Γ ⊢ ¬̇A Γ ⊢ A ¬̇-elim

Γ ⊢ ⊥̇

Γ ⊢ (A x)↓ x /∈ fv(Γ)
∀̇-intro

Γ ⊢ ∀̇TA
Γ ⊢ ∃̇TA Γ, (A x) ↓ ⊢ B x /∈ fv(Γ, B)

∃̇-elim
Γ ⊢ B

Figure 10 Rules of the HOL-λ proof system.

|ι| = ι

|o| = o

|T → U | = |T |⇝ |U |

|x|c = x

|t u|c = |t|c |u|c
|λx. t|c = λx : T̃ . |t|c

|Ċ|c = C

|c|c = ċ

|Q̇T |c = Q

Figure 11 Shallow embedding of HOL-λI types and terms in the expression of constructive STT,
where C ∈ { ⇒, ∧, ∨, ⊤, ⊥, ¬ }, c ∈ L, Q ∈ { ∀, ∃ }, and x is a HOL-λ variable of type T .

5.2 Soundness and conservativity of Constructive STT
Let us establish the direct correspondance between Constructive STT and HOL-λI.

5.2.1 Soundness of Constructive STT
We choose a shallow expression of HOL-λI in Constructive STT via a translation |.|c repre-
sented on Figure 11. This translation preserves λ-abstractions, applications, and β-conversion.
We express simple types in λΠ / ≡ using the translation | · | shown in Figure 11. We denote by
T̃ the normal form of El |T |, where T is a simple type. This notation allows to use normalized
type anotations in order to map normal HOL-λI terms to normal terms of Constructive STT.
Finally, we define a context ∆L declaring a symbol ċ : T̃ for every constant c ∈ L of type T
and a witness w : El ι.

▶ Lemma 25 (Preservation of ↪→β). If t ↪→β t
′ in HOL-λI, then |t|c ↪→β |t′|c in λΠ / ≡.

Proof. By the shallowness of translation | · |c. ◀

▶ Corollary 26 (Preservation of β-conversion). If t and t′ are two convertible HOL-λI terms,
then |t|c ≡βRc

HO
|t′|c.

▶ Lemma 27 (Preservation of normality). If t is a HOL-λI term, then t is β-normal if and
only if |t|c is normal in Constructive STT.

Proof. The direct implication is immediate by using Lemma 25. The converse statement is
established by a straightforward induction on t. ◀
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▶ Lemma 28 (Preservation of types). Let t be a HOL-λI term of type T , and x1, . . . , xn its
free variables of respective types T1, . . . , Tn. We can type |t|c with: ∆L, x1 : El |T1|, . . . , xn :
El |Tn| ⊢cHO |t|c : El |T |.

Proof. By induction over the proof of typability of term t. ◀

Lemma 28 notably entails that for any HOL-λI proposition A, the λΠ / ≡ term Prf |A|c is
well-typed in any context declaring the free variables of A. Note that using the witness w : El ι,
every type |T |, where T is a HOL-λI simple type, has an element w(T ) in Constructive STT:

if T = ι, then w has type El ι.
if T = o, then ⊤ has type El o ≡βRc

HO
Prop.

if T = T1 → T2, then λx : El |T1|. w(T2) has type El |T | ≡βRc
HO

El |T1| → El |T2|.
We define a transformation from HOL-λI contexts into λΠ / ≡ contexts: if Γ = A1, . . . , An is
a HOL-λI context and A is a HOL-λI proposition, denoting by y1, . . . , yk the free variables
of Γ and A, of respective types T1, . . . , Tk, then |Γ|Ac = y1 : El |T1|, . . . , yk : El |Tk|, x1 :
Prf |An|c, . . . , xn : Prf |An|c. Observe that contrary to the case of predicate logic, some of
the free variables may be of type El o ≡βRc

HO
Prop.

▶ Lemma 29 (Soundness). If Γ ⊢ A is provable in HOL-λI, then there is a term t ∈ Λ(ΣcHO)
such that ∆L, |Γ|Ac ⊢cHO t : Prf |A|c.

Proof. By induction on the derivation of Γ ⊢ A. We develop the cases of the introduction
and elimination of the universal quantifier.
Rule ∀̇-elim: By induction hypothesis, there is tA such that ∆L, |Γ|Ac ⊢cHO tA : Prf |∀̇TA|c.

By weakening and the application rule, ∆L, |Γ|(A t)
c ⊢cHO (tA t) : Prf |A t|c. By Corol-

lary 26 and the conversion rule, ∆L, |Γ|(A t)
c ⊢cHO tA : Prf |(A t)↓ |c. By the substitution

lemma [40, Lemma 2.6.9.] applied to every variable of fv(A t)\fv(Γ, (A t)↓) and witnesses
of the associated simples types, ∆L, |Γ|(A t)↓

c ⊢cHO (tA t) : Prf |(A t)↓ |c.
Rule ∀̇-intro: By induction hypothesis, there is a term tA such that ∆L, |Γ|(A x)↓

c ⊢cHO tA :
Prf |(A x) ↓ |c. By weakening and the conversion rule, ∆L, |Γ|(A x)

c ⊢cHO tA : Prf |A x|c.
As x /∈ fv(Γ), the variable x is not declared in the context |Γ|Ac and we can apply the
abstraction rule to the typing judgment ∆L, |Γ|A x

c ⊢cHO tA : Prf |A x|c to obtain a
derivation of ∆L, |Γ|Ac ⊢cHO λx : El |T |. tA : Prf (∀ |T | |A|c). ◀

.

5.2.2 Conservativity of Constructive STT
The conservativity proof developed in this section is similar to other proofs of conservativity of
higher order logics expressed in λΠ / ≡ [10, 2]. Notably, we heavily rely on the normalization
of Ecumenical STT; we consider normal forms to constrain the form of λΠ / ≡ terms to
establish the preliminary Lemmas 30–35.

▶ Lemma 30 (Normal proof types). If A is a HOL-λI proposition, then (Prf |A|c)↓ has the
form (x1 : M1) → . . . → (xn : Mn) → Prf M for some terms M,M1, . . . ,Mn.

▶ Lemma 31 (Normal simple types). If T is a simple type, the normal form of the term T̃ is
in the set inductively defined by Prop | El s | T̃1 → T̃2, where s : Set and s ̸≡βRc

HO
o.

▶ Lemma 32 (Conserving hypotheses). Let A and B be HOL-λI propositions and x a variable
or constant. If ∆L, |Γ|Ac ⊢cHO x : (x1 : T1) → . . . → (xn : Tn) → Prf |B|c, then there is C ∈ Γ
such that ∆L, |Γ|Ac ⊢cHO x : Prf |C|c.

▶ Lemma 33 (Conserving simple types). Let A be a HOL-λI proposition and u ∈ Λ(ΣcHO) a
normal term. If ∆L, |Γ|Ac ⊢cHO u : Set, then there is a simple type T such that u = |T |.
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▶ Lemma 34 (Conserving objects). Let A be a HOL-λI proposition, T simple type, and u

a normal term in Constructive STT. If ∆L, |Γ|Ac ⊢cHO u : El |T |, then there is a normal
HOL-λI term v of type T such that u ≡βRc

HO
|v|c.

▶ Lemma 35 (Weak conservativity). Let A be a normal HOL-λI proposition. If there is a
normal term t such that |Γ|Ac ⊢cHO t : Prf |A|c, then Γ ⊢ A is provable in HOL-λI.

Proof. By induction on term t. As t is normal, there are only two cases to consider.
If u = x u1 . . . un, we prove by induction on k that for any k ∈ {0, . . . , n}, there is a

normal HOL-λI proposition Ak such that |Γ|Ac ⊢cHO x u1 . . . uk : Prf |Ak|c and Γ ⊢ Ak in
HOL-λI.
If k = 0, then there are terms M1, . . . ,Mn such that ∆L, |Γ|Ac ⊢cHO x : (x1 : M1) →
. . . → (x1 : Mn) → Prf |A|c. By Lemma 32, there is C ∈ Γ such that x : Prf |C|c, and
as a consequence ∆L, |Γ|Ac ⊢cHO x : Prf |C|c and Γ ⊢ C in HOL-λI by the axiom rule.

If 0 < k ≤ n, by induction hypothesis there is a HOL-λI proposition Ak−1 such that
x u1 . . . uk−1 has type Prf |Ak−1|c in context ∆L, |Γ|Ac and Γ ⊢ Ak−1 in HOL-λI.
By inversion, there are Mk and Nk such that Prf |Ak−1|c ≡βRc

HO
(y : Mk) → Nk and

uk has type Mk in context ∆L, |Γ|Ac .
Let Ãk−1 be the βRc

HO-normal form of |Ak−1|c. Given the form of Prf Ãk−1, we know
that Ãk−1 has a head connective; as | · |c is shallow, Ak−1 also has a head connective.
We proceed by case disjunction on the head connective of Ak−1. Here, we develop
the case of the universal quantifier, i.e. Ak−1 = ∀̇TBk and Prf |Ak−1|c ≡βRc

HO
(y :

El |T |) → Prf (|Bk|c y). By product compatibility [40, Definition 2.4.5], Mk ≡βRc
HO

El |T | and Nk ≡βRc
HO

Prf (|Bk|c y). By Lemma 34, there is a HOL-λI term vk of type
T such that uk ≡βRc

HO
|vk|c. Using Corollary 26 and conversion, x u1 . . . uk has type

Prf (|(Bk vk)↓ |c) in context ∆L, |Γ|Ac . Finally, (Bk vk)↓ is provable in context Γ by
an application of ∀̇-elim.

By induction, there is a normal HOL-λI proposition An such that ∆L, |Γ|Ac ⊢cHO t :
Prf |An|c and Γ ⊢ A. By the uniqueness of types [40, Theorem 2.6.25.], |An|c ≡βRc

HO
|A|c.

However, by Lemma 27, |A|c and |An|c are normal. By confluence, |An|c = |A|c. The
embedding |.|c is injective, so An = A and we can conclude that Γ ⊢ A in HOL-λI.

If u = λx : M. u0, then Prf |A|c is convertible to a product (x : M1) → M2. Using
the same reasoning as in the previous case, we deduce that proposition A has a head
connective and once again develop the case of the universal quantification, i.e. A =
∀̇TB and Prf |A|c ≡βRc

HO
(x : El |T |) → Prf (|B|c y). By product compatibility

[40, Definition 2.4.5], M1 ≡βRc
HO

El |T | and M2 ≡βRc
HO

Prf (|B|c x). By inversion,
∆L, |Γ|Ac , x : El |T | ⊢cHO u0 : Prf (|B|c x) with x /∈ fv(Γ, A). By Corollary 26, conversion,
and substitution, ∆L, |Γ|(B x)↓

c ⊢cHO u0 : Prf (|(B x) ↓ |c. By induction hypothesis,
Γ ⊢ (B x)↓. Finally, A is provable in context Γ using ∀̇-intro. ◀

Using the weak normalization of Constructive STT we finally establish conservativity.

▶ Corollary 36 (Conservativity). Let A be a normal HOL-λI proposition. If there is a term t

such that ∆L, |Γ|Ac ⊢cHO t : Prf |A|c, then Γ ⊢ A is provable in HOL-λI.

5.3 Soundness and conservativity of Ecumenical STT
Here, we show that the Ecumenical STT has a similar expressivity to the HOL-λ system.
Similarly to the first order case, we use the soundness and conservativity of Constructive
STT with respect to HOL-λI and the properties of the translations by double negation.
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|⋊̇⋉|e = ⋊⋉c
|Q̇|e = Qc |T |c
|t|e = |t|c else

(a) Defining | · |e.

x⊥ = x

(t u)⊥ = t⊥ u⊥

(λx. t)⊥ = λx. t⊥

⋊̇⋉⊥ = λx1. λx2. (¬̇¬̇x1)⋊̇⋉(¬̇¬̇x2)
Q̇⊥ = λf. Q̇(λy. ¬̇¬̇(f y))
t⊥ = t in all other cases

(b) Higher order ⊥-translation.

Figure 12 Translations of HOL-λ terms where ⋊⋉∈ { ∧, ∨, ⇒ }, Q ∈ { ∀, ∃ }, and x1, x2, f , and y

are HOL-λ variables of respective types o, o, T → o, and T .

Formally, we define the embedding |.|e inductively over HOL-λ terms as shown in Figure 12a.
Similarly to the constructive case, transformation |.|e preserves convertibility and types, and
is extended to HOL-λ contexts. However, this transformation does not map normal terms to
normal terms: for example (z∧̇z)⊥ = [λx1. λx2. (¬̇¬̇x1)∧̇(¬̇¬̇x2)] z z which is a β-redex. The
proof requires a straightforward extension of the double negation translation .⊥, represented
on Figure 12b and established by Lemma 38.

▶ Lemma 37. If A is convertible to B in HOL-λ, then A⊥ is convertible to B⊥ in HOL-λ.

Proof. The only rule in HOL-λ is β-reduction and transformation .⊥ acts as a morphism
over abstractions and applications. ◀

▶ Lemma 38. Γ ⊢ A in HOL-λ if and only if ¬̇¬̇Γ⊥↓ ⊢ ¬̇¬̇A⊥↓ in HOL-λI.

Proof. The forward implication is proven by induction on the derivation of Γ ⊢ A. The
backwards implication holds immediately, as every normal proposition A is provably equivalent
to ¬̇¬̇A in HOL-λ, and HOL-λ is an extension of HOL-λI. ◀

▶ Lemma 39 (Soundness). If Γ ⊢ A is provable in HOL-λI, then there is a term t such that
|Γ|Ae ⊢eHO t : Prfc |A|e is derivable.

Proof. By Lemmas 29 and 38, ¬̇¬̇Γ⊥ ↓ ⊢ ¬̇¬̇A⊥ ↓ in HOL-λI and there is t such that
∆L, |¬̇¬̇Γ⊥↓|¬̇¬̇A⊥↓

c ⊢eHO t : Prf |¬̇¬̇A⊥↓|c. By conversion, ∆L, |Γ|Ae ⊢eHO t : Prfc |A|e. ◀

▶ Lemma 40 (Conservativity). If there is a term t such that ∆L, |Γ|Ae ⊢eHO t : Prfc |A|e, then
Γ ⊢ A is provable in HOL-λ.

Proof. If there is a term t such that |Γ|Ae ⊢eHO t : Prfc |A|e where A is a normal HOL-λ
formula, then by conversion and weakening, |¬̇¬̇Γ⊥↓ |¬̇¬̇A⊥↓

c ⊢eHO t : Prf |¬̇¬̇A⊥↓ |c. As t
and |¬̇¬̇Γ⊥↓ |¬̇¬̇A⊥↓

c are respectively a term and a typing context of Constructive STT, we
conclude by Corollary 3 that |¬̇¬̇Γ⊥↓ |¬̇¬̇A⊥↓

c ⊢eHO t : Prf |¬̇¬̇A⊥↓ |c. By conservativity of
Constructive STT, ¬̇¬̇Γ⊥↓⊢ ¬̇¬̇A⊥↓ in HOL-λI. By Lemma 38, Γ ⊢ A in HOL-λ. ◀

▶ Corollary 41 (Consistency). There is no derivation of ⊢eHO Prf ⊥ in Ecumenical STT.

6 Conclusion

In this paper, we have studied the logical fragments of theory U and established their
normalization, consistency, decidability of type-checking, soundness and conservativity. These
results comfort the enterprise of using theory U to store, recheck, translate, and hybridize
proofs from various proof assistants. The extension of these results, notably normalization
and consistency, to the entirety of theory U is still an open question.
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Another open question is the behaviour of hybrid propositions and proofs in Ecumenical
STT, i.e. propositions and proofs mixing constructive and classical connectives. Given the
distinct design choices made in Ecumenical STT and preexisting ecumenical systems, hybrid
objects may not behave similarly. Some results over hybrid objects can however already be
deduced by normalization and properties of Constructive STT, as the normal forms of hybrid
objects are in this fragment.

Finally, the implementation of constructivization algorithms in theory U could further
improve the interoperability between classical and constructive proofs. A first candidate
would be the standard library of HOL Light, already translated in theory U [12], which
could be partially exported to constructive proof assistants such as Coq, Agda, or Matita.
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