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—— Abstract

I present an infinite-reduction-path-preserving typability-preserving translation of pure type systems
which eliminates rules and sorts that are in some sense irrelevant with respect to normalization. This
translation can be bootstrapped with existing results for the Barendregt-Geuvers-Klop conjecture,
extending the conjecture to a larger class of systems. Performing this bootstrapping with the results
of Barthe et al. [4] yields a new class of systems with dependent rules and non-negatable sorts for
which the conjecture holds. To my knowledge, this is the first improvement in the state of the
conjecture since the results of Roux and van Doorn [16] (which can be used for the same sort of
bootstrapping argument) albeit a somewhat modest one; in essence, the translation eliminates clutter
in the system that does not affect normalization. This work is done in the framework of tiered pure
type systems, a simple class of persistent systems which is sufficient to study when concerned with
questions about normalization.
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1 Introduction

The class of pure type systems [2, 3, 5, 8, 9, 18] was introduced as a natural generalization
of the lambda cube which includes systems with more complex sort structure and product
type formation rules. The study of pure type systems is primarily concerned with how this
sort structure affects meta-theoretic properties (especially given the minimal collection of
type formers). One such property is normalization: a type system is weakly normalizing if
every typable term has a normal form and strongly normalizing if no typable term appears
in an infinite reduction sequence.

Despite the fact that weak normalization is, of course, the weaker of the two properties,
it is often sufficient for proving other important meta-theoretic properties, e.g., consistency
and decidability of type checking in the presence of dependent types. Observations to this
effect were made by Geuvers in his PhD thesis [9], where he also conjectured that weak
normalization implies strong normalization for all pure type systems (Conjecture 8.1.12).
This conjecture has come to be known as the Barendregt-Geuvers-Klop conjecture.*

Little progress has been made on this conjecture, in part because pure type systems in
general are not always amenable to standard techniques. Though natural, the generalization
to pure type systems from the lambda cube is in some sense the most obvious one, a

Sgrensen submitted the conjecture by this name to the TLCA List of Open Problems [1]. He has also
referred to it as the Barendregt-Geuvers conjecture [17]. Barendregt is noted by Barthe et al. [4] to
have presented the conjecture at the Second International Conference on Typed Lambda Calculi and
Applications (1995), and Klop is the co-author of a preprint which refers to the Barendregt-Geuvers-Klop
conjecture by name ([13], Conjecture 1.1).
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basic syntactic ambiguation of the inference rules which allows for maximal freedom in sort
structure. The resulting systems may fail to have the meta-theoretic properties one might
expect (e.g., type unicity) so it is common to consider classes of systems which do maintain
these properties. The state of the art of the conjecture is the result of Barthe et al. [4], which
proves strong normalization from weak normalization for a class of non-dependent pure type
systems (see Definition 11) by generalizing Xi’s [19] and Sgrensen’s [17] CPS translation.

I propose revisiting the Barendregt-Geuvers-Klop conjecture in a slightly simpler frame-
work. I begin by presenting a class of basic, concrete pure type systems I call tiered pure type
systems. Despite their simplicity, they can be used to characterize a general class of pure
type systems; so called bounded separable persistent pure type systems (and, in particular,
bounded non-dependent systems) are disjoint unions of tiered systems.

Being concrete, the conjecture restricted to this setting is that weak normalization implies
strong normalization for all tiered pure type systems. This re-framing of the problem is a
minor though I believe important step towards making further progress on the full version
of the conjecture. But even in this setting, there are many systems to consider, some of
which contain what amounts to “junk” structure. The primary contribution of this paper is
a translation of pure type systems which preserves typability and infinite reduction paths
(I will simply write “path-preserving” from this point forward) and removes some of this
irrelevant structure. By “removing structure” here, I mean that the target system of the
translation is the same as the source system but with some sorts and rules removed.

Consider, for example, the system AHOL, which may be thought of as the system A\w
with an additional superkind sort /A which allows for the introduction of kind variables that
can appear in expressions but cannot be abstracted over. In AHOL, it is possible to derive

A: ObypoL AAY. Az?. 2z TTAY. A — A.

A judgment of this form cannot derived in Aw because the variable 2l cannot be introduced
without the axiom FypoL O: A. Thus, the introduction of A is meaningful with respect
to what expressions can be derived. But both AHOL and Aw are strongly normalizing. One
basic observation is that there is a single expression inhabiting A, namely [J. This sparsity
of inhabitation can be leveraged to define a path-preserving translation from AHOL to \w
and, in fact, from any pure type system with an isolated top-sort to the same system but
without the top-sort. In the case of the judgment above, the variable 2l can be instantiated
at x yielding the judgment

Foaw MA*. Azt 2 TTA*. A= A

derived which can be derived in Aw.

I generalize this observation in two ways. First, I define a path-preserving translation
that eliminates not just top-sorts but also any sort which is top-sort-like. Second, I extend
this translation to eliminate not just isolated sorts, but also sorts which may appear in some
rules. This translation can be iteratively applied to AS until a fixed point ASY is reached.
Thus, it can be used to prove the strong normalization of systems AS for which St is
known to be strongly normalizing. It can also be bootstrapped with existing results for the
Barendregt-Geuvers-Klop conjecture. The argument is simple: if AS is weakly normalizing,
then so is AS* since it can be embedded in AS. By assumption, AS* is strongly normalizing,
and so AS is strongly normalizing by the path-preserving translation. Bootstrapping with
the result of Barthe et al. yields a proof of the Barendregt-Geuvers-Klop conjecture for a
larger class of systems. In particular, on a technical note, AS may have dependent rules and
non-negatable sorts (see ([4], Definition 2.23, Definition 3.1) and Definition 11 for details).
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This technique bears a resemblance to the one used by Roux and van Doorn [16] in their
structural theory of pure type systems, which in turn resembles the techniques of Geuvers
and Nederhof [8] and Harper et al. [10]. In all these works, a translation is defined from
one pure type system into another which has fewer rules. And though it is not explicitly
stated, the translation of Roux and van Doorn can be bootstrapped in the same way as
described above. In fact, their translation can be used to eliminate some rules between tiered
systems in a disjoint union whereas the translation presented here eliminates some rules
within the individual summands in a disjoint union of tiered systems (all while preserving
strong normalization).

It is important to emphasize that this result depends on the fact that the additional
structure that can be handled is irrelevant and, in particular, irrelevant with respect to
normalization, not derivability or expressibility. But if we do want to prove the full conjecture,
we also have to prove it for “junk” systems, ones which may not be interesting in their own
right and may have rules which don’t add much to the system. This result is perhaps more
meaningfully interpreted in the reverse direction: the systems AS* for which the conjecture
is not known to hold are targets for the developments of better techniques. Ideally, some
technique could handle all these systems uniformly, but as of now it may be useful to further
develop the theory regarding what barriers exist, and what systems beyond the lambda cube
— natural or not — may be important to study.

In what follows I present some preliminary material, which includes some exposition on
tiered systems. I then define the irrelevancy-eliminating translation in two parts: one part
for eliminating rules and one for eliminating sorts. The final translation will be taken as the
composition of these two translations. Finally, I present its application to the Barendregt-
Geuvers-Klop conjecture and conclude with a short section on what it implies about the
systems which remain to be studied.

2 Preliminaries

The class of pure type systems is the basis of a very general framework for describing type
systems and their meta-theory. These systems vary in their sort structure and their product
type formation rules, and include the entire lambda cube. Barendregt cites Berardi [5]
and Terlouw [18] for their conception, though Geuvers and Nederhof [8] are cited as having
given the first explicit definition, based on the previous two works. The presentations of
Barendregt [2, 3] are perhaps the best known sources.?

A pure type system is specified by a triple of sets (S, .4, R) satisfying A C S x S and
R CS xS xS. The elements of S, A, and R are called sorts, axioms and rules, respectively.
I use s and t as meta-variables for sorts.?

For each sort s, fix a Z*-indexed set of expression variables V,. Let *v; denote the ith
expression variable in V, and let V denote (J, s V. I use z, y, and z as meta-variables for
expression variables. The choice to annotate variables with sorts is one of convenience. The
annotations can be dropped for the systems I consider, and are selectively included in the
exposition. This observation regarding variable annotations was first made by Geuvers ([9],
Definition 4.2.9).

2 T am of the opinion that, after the development of the lambda cube, the notion of pure type systems
was soon to follow, and that all aforementioned should be cited as originators.

3 For any subsequent meta-variables, I use positive integer subscripts and tick marks, e.g., s1, s2, and s’.
Note, however, that in later sections, s; will refer to a particular sort in tiered systems. I will try to be
as clear as possible when distinguishing between these two cases of notation.

7:3
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The set of expressions of a pure type system with sorts S is described by the grammar
Tu=S|V|TIVL. T | AV T |TT

I use capital modern English letters like M, N, P, @, A, B, and C' as meta-variables
for expressions. Free variables, bound variables, a-congruence, S-reduction, substitution,
sub-expressions, etc. are defined as usual (see, for example, Barendregt’s presentation [3]).
Substitution of x with N in M is denoted M[N/x], and I write N C M for “N is a
sub-expression of M.’

A statement is a pair of expressions, denoted M : A. The first expression is called the
subject and the second is called the predicate. A proto-context is a sequence of statements
whose subjects are expression variables. The statements appearing in proto-contexts are
called declarations. I use capital Greek letters like I';, A, ®, and T as meta-variables for
contexts. Often the sequence braces of contexts are dropped and concatenation of contexts is
denoted by comma-separation. The S-equality relation and substitution extend to contexts
element-wise. For a context I' and declaration (x : A) I write (x : A) € T if that declaration
appears in I', and I' C A if (z: A) € T" implies (z: A) € A. A proto-judgment is a
proto-context together with statement, denoted I' - M : N. The designation “judgment”
is reserved for proto-judgments that are derivable according to the rules below. Likewise,
the designation “context” is reserved for proto-contexts that appear in some (derivable)
judgment.

The pure type system AS specified by (S,.4,R) has the following rules for deriving
judgments. In what follows, the meta-variables s and s’ range over all sorts in S when
unspecified. A variable ®z is fresh with respect to a context I' if it does not appear anywhere
inT.

Axioms. F)ss:s for any axiom (s,s).
Variable Introduction. For a variable *x which is fresh with respect to I'

FF)\SAMS
I z:Abys®z: A

Weakening. For a variable *x which is fresh with respect to I'

FFASM:A FI—ASBSS
I'*x:Bbys M : A

Product Type Formation/Generalization. For any rule (s, s’,s”)

IT'Fyxs A:s I Szr:Akys B: s
[ kys T2 B s”

Abstraction.

I,5z: Arys M : B [y %24 B: s
[ bys Az M : 524, B

Application.

I'kys M : 11524, B F'kas N: A
T Fyxs MN : B[N/*z]

Conversion. For any terms A and B such that A =3 B

F}—,\‘gMZA Fl—)\sB:S
'-xs M : B
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The subscript on the turnstile is dropped when there is no fear of ambiguity. The
annotations on bound variables in II-expressions and A-expressions are non-standard, and
will in most cases be dropped, but they are occasionally useful to maintain (e.g., see Lemma 1).
It is also standard to write A — B for Ilz“. B in the case that = does not appear free in B.

An expression M is said to be derivable in AS if there is some context I' and expression
A such that I"' Fys M : A. Although there is no distinction between terms and types, it is
useful to call a judgment a type judgment if it is of the form I' - A : s where s € S, and a
term judgment if it is of the form I' - M : A where I' = A : s for some sort s. I also write
that M is a term and A is a type in this case. By type correctness (Lemma 2), a judgment
that is not a type judgment is a term judgment, though some judgments are both type and
term judgments.

2.1 Meta-Theory

I collect here the meta-theoretic lemmas necessary for the subsequent results. Much of the
meta-theory of pure type systems was worked out by Geuvers and Nederhof [8], and can be
found in several of the great available resources on pure type systems ([3, 4, 9, 12], among
others) so proofs are omitted. For the remainder of the section, fix a pure type system AS.

» Lemma 1 (Generation). For any context I’ and expression A, the following hold.
Sort. For any sort s, if ' s : A, then there is a sort s’ such that A =g s’ and (s,s') € A.
Variable. For any sort s and variable °x, if I' - %z : A, then there is an type B such that
'k B:sand (°z: B) appears inT' and A =5 B.
I-expression. For any sort s and expressions B and C, if '+ %z, C': A then there
are sorts s', and s" such that T'F B:s and I',°z: B+ C: s’ and (s,s',s") € R and
A =8 8//,
\-expression. For any sort s and expressions B and M, if T - X°zB. M : A then there
is a type C' and sort s’ such that such that T F 11°28. C' : s’ and T,*z : B+ M : C and
A =8 HSIB. C.
Application. For expressions M and N, if ' MN : A, then there is a sort s and types
B and C such that T+ M : T1*z5. C and T' - N : B and A =5 C[N/*z].

» Lemma 2 (Type Correctness). For any context I' and expressions M and A, if T+ M : A
then A € S or there is a sort s such that '+ A : s.

» Definition 3. A pure type system is functional if the following hold.
If (s,t) € A and (s,t') € A thent =1'.
If (s,t,u) € R and (s,t,u') € R, then u=u’.

» Lemma 4 (Type Unicity). If AS is functional then for any context T' and expressions M,
A, and B, if TF M : Aand'- M : B, then A =3 B.

» Definition 5. A sort s is a top-sort if there is no sort s’ such that (s,s') € A. It is a
bottom-sort if there is no sort s’ such that (s',s) € A.

» Lemma 6 (Top-Sort Lemma). For any context T', variable x, expressions A and B, and
top-sort s the following hold.

1.THs: A

2. THax:s

3.TI/AB: s

7:5
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S1 }82% S3

N

Figure 1 A visual representation of the system AU.

2.2 Tiered Pure Type Systems

General pure type systems are notoriously difficult to work with so it is typical to consider
classes of pure type systems satisfying certain properties, e.g., persistence as subsequently
defined.

» Definition 7. A pure type system A\S is persistent if it is functional (Definition 3) and
if (s,t) € A and (s',t) € A then s = §';
Ras C{(s,¢,5) | (s,8') € S x S}.

From this point forward, I freely use the notation (s, s’) for the rule (s, s’,s’). One minor
issue with properties like this is that it is often difficult to envisage the systems which satisfy
them. In particular, the results tailored to a class of systems defined as such may use more
meta-theoretic machinery than necessary. I choose, instead, to work with a simple class of
systems I call tiered pure type systems, which have a very concrete description.

» Definition 8. Let n be a non-negative integer. A pure type system is n-tiered if its has
the form

S={s;|i€n]}

A={(si,si41) | i € [n— 1]}
R C{(s,8,5') | (s,8) € S xS}

where [n] £ {1,...,n}.

A couple remarks about these systems:

these systems can be envisaged as graphs as in Figure 1, which is a visual representation
of the 3-tiered system AU. In such representations, an arrow (s;, s;) indicates the presence
of the rule (s;,s;). Axioms are not represented in the graph except in the ordered the
nodes are presented;

the only 0-tiered system is the empty pure type system; there are two 1-tiered systems,
specified by either ({s1},0,0) or ({s1},0,{(s1,s1)}), neither of which have derivable
expressions; the 2-tiered systems which contain the rule (s1, s1) are exactly the lambda
cube;

the n-tiered systems are considered in passing by Barthe et al. ([4], Remark 2.39). They
include natural subsystems of ECC™ (as defined in [15]) with only the two-sorted rules;

A large class of natural pure type systems can be classified as disjoint unions of tiered
systems. In order to state this equivalence, I work in the structural theory of pure type
systems presented by Roux and van Doorn [16].

» Definition 9. For pure type systems A\S and \S', the disjoint union \SLU\S' is specified
by

Sasurs’ = Sas USxs

Axsuns' = Axs U Ars:

A
Rasurs' = Ras UR s/
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A class of systems which can be characterized by disjoint unions must be partitionable into
atoms which can be analyzed individually. Let ‘< 4’, ‘<4’, and ‘x4’ denote the transitive,
reflexive-transitive, and equivalence closure of A, respectively.

» Definition 10. A pure type system AS is separable if (s,s') € Rs implies s =4 s'. It is
atomic if s =4 s’ for all sorts s and s'.

There are, of course, many examples of important non-separable persistent pure type
systems, e.g., systems from the logic cube [2, 3, 6, 9, 7] like Berardi’s formulation of APREDw
which is specified by

S & [x5, 0%, #P, )
AS{(*,0°), (+",0")}
R 2 {(+,%P), (TP, +P), (O, 00F), (+*, %), (+*,007)}

The rules (%, +F) and (x*,[0P) “cross” between two tiered systems.? Despite this, there are
also useful classes of systems which are separable, e.g., generalized non-dependent systems
are separable by fiat.

» Definition 11. Let AS be a pure type system.
AS satisfies the ascending chain condition if ‘<4’ does, i.e., there is no infinite
sequence of sorts s,s',s", ... such that s < s’ < s"...; it satisfies the descending chain
condition if there is no infinite sequence of sorts s,s',s",... such that s > s > s"...;
it is bounded if it satisfies both the ascending and descending chain conditions.
S is weakly non-dependent if (s,s',s") € R implies s > s > s".
AS is stratified if it satisfies the ascending chain condition and is non-dependent.
AS is generalized non-dependent if it is stratified and persistent. If AS is also bounded,
I will write that it is bounded non-dependent, and if it is tiered, I will just write that
it is non-dependent.

We can now characterize disjoint unions of tiered systems in terms of the above properties.
The proof of Lemma 12 is omitted, but it follows roughly by showing that ‘< 4’ is a total
order.

» Lemma 12. A pure type system is tiered if and only if it is persistent, bounded, and
atomic.

» Lemma 13. A pure type system is persistent, bounded, and separable if and only if is the
disjoint union of tiered pure type systems.

Proof. It is straightforward to verify that tiered systems are persistent, bounded, and atomic,
and so their disjoint unions are persistent, bounded, and separable. In the other direction,
let AS be a pure type system that is persistent, bounded, and separable and consider the
partition P of S into = 4-equivalence classes. Let S, be such an equivalence class and let
AS,, denote the pure system specified by
A

Sxs, =8p

Ars, = Arxs N (Sp x Sp)

Ras, £ Ras N (Sp x Sy X Sp)

4 1d like to specifically thank the reviewer who reminded me of this example.
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The system AS,, is persistent and bounded because AS is, and it is atomic by definition, so
by Lemma 12 it is tiered. We can then view AS as the system |_|3p€7;. AS,.5 Note that all
axioms are accounted for by fiat and all rules are accounted for by separability. |

» Corollary 14. A pure type system is bounded non-dependent if and only if it is the disjoint
union of non-dependent tiered pure types systems.

Roux and van Doorn [16] show that the (strong) normalization of a disjoint union of pure
type systems is equivalent to the (strong) normalization of each of its individual summands.
So on questions of normalization regarding persistent, bounded, separable systems it suffices
to consider tiered systems.

» Proposition 15. If weak normalization implies strong normalization for all tiered pure
type systems, then the same is true for all persistent, bounded, separable pure type systems.
In particular, if weak normalization implies strong normalization for all non-dependent pure
type systems, then the same is true for all bounded non-dependent pure type systems.®

I close this section with some useful features of tiered systems. One of the primary
benefits of working in persistent systems in general (and tiered systems in particular) is
that derivable expressions can be classified by the level in the system at which they are
derivable. This property is shown by defining a degree measure on expressions and classifying
expressions according to their degree. This result is due to Berardi [6] and Geuvers and
Nederhof [8], and the presentation here roughly follows the same course.

» Definition 16. The degree of an expression is given by the following function deg : T — N.

Let T; denote {M € T | deg(M) = j} and let T>; denote {M € T | deg(M) > j}.

» Lemma 17 (Classification). Let AS be an n-tiered pure type system. For any expression A,
the following hold.
deg(A) =n+1 if and only if A =s,.
deg(A) =n if and only if ' Fys A : s, for some context T
For i € [n— 1], we have deg(A) =i if and only if TFyxs A: B and T'bys B : s;41 for
some context I' and expression B.
In particular, for context T' and expressions M and A, if T'Fys M : A then deg(A) =
deg(M) + 1.

Formally, they are isomorphic pure type systems. The definition of a pure type system homomorphism
is as one might expect, see the definition of Geuvers (][9], Definition 4.2.5) — which is also used by Roux
and van Doorn [16] — for more details.

This all sits in a more general theory. A natural extension of tiered systems includes infinite tiered
systems and even cyclic systems, which can help better characterize classes of systems, like generalized
non-dependent systems and persistent separable systems.
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Finally, some useful facts about degree. See the presentation by Barendregt [3] for proofs
in the 2-tiered case.

» Lemma 18. Let A\S be an n-tiered pure type system and let A and B be expressions
derivable in AS.

If deg(B) = j — 1 then deg(A[B/% z]) = deg(A).

If A —p B, then deg(A) = deg(B).

3 Irrelevancy-Eliminating Translation

Fix an n-tiered pure type system AS. I first describe the sorts which are top-sort-like. Recall
that s is a top-sort if there is no sort s’ such that (s,s’) € A, so s, is the only top-sort of AS.
Top-sorts are interesting in part because they tend to be sparsely inhabited. A top-sort-like
sort s; which is not a top-sort has the sort s; 1 above it, but to ensure s; is sparsely inhabited,
5;+1 should not appear in any rules. We will also be interested in top-sort-like sorts which
themselves do not appear in any rules.

» Definition 19.
A sort s; is rule-isolated if for all j, neither (s;,s;) nor (s;,s;) appear in Ris.
A sort s; is top-sort-like if i <n implies ;11 is rule-isolated (i.e., s; is a top-sort or
its succeeding sort is rule-isolated).
A sort s; is completely isolated if it is top-sort-like and rule-isolated.

Next, I describe the structure that will be considered irrelevant with respect to normal-
ization. Roughly speaking, this includes rules on top-sort-like sorts which allow for the
derivation of redexes on expressions from sparsely inhabited types. It will be possible to
essentially pre-reduce these redexes in the translation, eliminating the need for the rules in
the target system of the translation. In what follows, it will be convenient to consider sets
of top-sort-like sorts. I call a subset Z of [n] an index set for AS, and denote by Sz the set
{Si ‘ 1€ I}

» Definition 20.
For any index set J, a sort s; is J-irrelevant if there is no sort s; such that j € J and
(sj,8:) € Ras. A sort s; is irrelevant if it is [n]-irrelevant.
An index set T is completely irrelevant in \S, if for each i in T,
s; 1s top-sort-like and irrelevant;
si—1 is ([n] \ Z)-irrelevant.

In the case of complete irrelevance, if 7 is a singleton set {i}, then the only rule with s;_1
appearing second is (s;, $;—1). By considering sets of indices simultaneously, we can make
weaker assumptions on these preceding sorts. The condition of ([n] \ Z)-irrelevance ensures
that s;_1 becomes irrelevant after removing the rules associated with sorts in Sz. Note also
that if (s;,$;) € Ras, then any completely irrelevant index set cannot contain ¢ — 1, 4 or
i+ 1. Finally, it is important that there is a unique maximum completely irrelevant indez set.
In particular, the union of any two completely irrelevant index sets is completely irrelevant.

3.1 Eliminating Completely Irrelevant Rules

This section contains the translation which removes the rules associated with sorts whose
indices appear in a completely irrelevant index set. For the remainder of the section, fix such
a set Z. We begin by showing that sorts in S7 are sparsely inhabited.

7:9
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» Lemma 21. Let s; be an irrelevant sort such that s; is a top-sort or s;y1 is irrelevant.
For every derivable expression A, if deg(A) =i then A = s;,_1 or A € Vg

i+1°

Proof. If i = n, then this follows directly from the top-sort lemma (Lemma 6) and the fact
that s, is irrelevant. In fact, in this case s, is inhabited solely by s,_1. If i # n, this follows
in a similar way, i.e., by induction on the structure of derivations. The cases in which the last
inference is an axiom, variable introduction, weakening, or conversion are straightforward.
The last inference cannot be a product type formation because s; is irrelevant. The last
inference cannot be an abstraction or application because s;41 is irrelevant. <

This does not hold if s;41 is not irrelevant. If (s;11,$i+1) € Ras, for example, then
I (Ax%i. x)s;—1 : s; is derivable. This is why we require both s; and s;+1 to be irrelevant.

The primary challenge moving forward is dealing with the fact that variables may appear
as types of sort s;. These variables are what will necessitate s;1 being not just irrelevant,
but also isolated. Regardless, the sparsity of types of sort s; induces sparsity of expressions
of degree i — 1.

» Lemma 22. For index i in L, context T and expression M, if T' = M : s;_1, then M is of
the form Iz, .. . Tap*. B where deg(A;) € I for all j and either B = s,_9 or B € V.

Proof. By induction on the structure of derivations. The cases in which the last inference is
an axiom, variable introduction, or weakening are straightforward. The last inference clearly
cannot be an abstraction, and it cannot be an application since s; is irrelevant. What follows
are the remaining two cases.

Product Type Formation. Suppose the last inference is of the form

'HA:s; I'z: AFB:s;_4
CHIlzA B: s,

Since s;_1 is (Sxs \ Z)-irrelevant, it must be that j € Z. The desired result holds after
applying the inductive hypothesis to the right antecedent judgment.
Conversion. Suppose the last inference is of the form

'-M:A Fl‘Si_llSi
FFM:SZ‘_l

where A =3 s;_1. Note that deg(A) =isoI'F A: s; by type correctness. Thus, A = s;_1
by Lemma 21, which means the inductive hypothesis can be applied directly to the left
antecedent judgment. |

» Lemma 23. For index i in Z, context I, expression A and variable Si+'x, if T H A: Si+1ig,
then A € Vg, .

Proof. By induction on the structure of derivations. The cases in which the last inference
is an axiom, variable introduction, or weakening are straightforward. The last inference
clearly cannot be a product type formation or an abstraction. The last inference cannot
be an application because s; is irrelevant. Finally, all conversions are trivial by the same
argument as in the previous lemma. <

» Corollary 24. For index i in I, every derivable expression M of degree i — 1 is of the form
Oz 4. . HxpA*. B where deg(A;) € I for all j and B = s;_s or B € Vy, (and k may
be 0).
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The Translation

The following translation is defined such that it essentially pre-reduces all redexes whose
source types have degree in Z. Naturally, this means it does not strictly preserve g-reductions,
but because these sources types are so sparsely inhabited, we can define a complexity measure
on expressions which is monotonically decreasing in the S-reductions that are pre-performed
by the translation. This is similar to the technique used by Sgrensen for simulating -
reductions [17].

The other wrinkle in defining this translation is that it is difficult to pre-reduce expressions
of variable type because even though such types are sparsely inhabited, it is unclear a priori
what the value of the expression will be after a series of reductions. By Lemma 23, we
know it reduces to a variable, but we don’t know which variable, and it may be one that is
generalized or abstracted over. We ensure this doesn’t happen by requiring s;41 is isolated,
not just irrelevant. We also introduce a distinguished variable e, of type z for each variable
z of sort s;41 in the context. This gives us a canonical term that the translation can assign
to expressions of this type.

» Definition 25. Define the context-indexed function m : Ctx x T — T by induction on both
arguments as follows.

r(si) £ s
Si—o ifi €T and (ix:s;_1) €T
(%) o. ifieZ and (Six:sitiz) el

Sig otherwise

mo(z?. B) £ {TFWA(B) deg(A) eZ

MmO, 1 . 4(B)  otherwise

(At M) & T.z:4(M) deg(4) € T
Ae™A) 4 (M) otherwise
r(MN) 2 (M) deg(N)+1€Z
(M) (N)  otherwise

T(9) £ o
7(T) jel
T(0,%x: A) £ S 7(T), %z : s, 1,0, %z ifj—1€TL and A=s;_,
7(T),%x : 7r(A) otherwise.

As for proving the desired features of this translation, first note if ¢ € Z, then the
translation maps expressions of degree i — 1 (where ¢ € ) to a sort or a e-variable.

» Proposition 26. For any index i in I, context I, and term A, if '+ A: s;_1, then
T (A) = 89, and if T+ A : 5itiz for some variable Sitix, then 10 (A) = o,.

It suffices to consider the expressions of the form specified by Corollary 24, for which the
above fact clearly holds. This turns out to be a key feature of the translation. Because the
translation is able to drop so much information about these expressions, we can pre-reduce
redexes in which they appear on the right.

7:11
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We also use the fact that the context argument of the translation can be weakened when
the last variable does not appear in the expression argument.

» Proposition 27. For any context T', expressions M, A, and B, and variable z, if T+ M : A
and T'F B : s; then 1 5. 5(M) = m(M).

We now prove the standard substitution-commutation and S-preservation lemmas for
this translation.

» Lemma 28. For any index i, context I', expressions M, N, A and B, and variable * z, if
I %z: A-M: B andT'F N : A then

TF7-%‘1;A(M) 7 GI

m(M[N/*2]) = {TF’SWA(M)[TF(N)/S%] otherwise.

Proof. By induction on the structure of M. First suppose that ¢ € Z.

Sort. If M is of the form s;, then 7 (s;[N/*z]) = 1r(s;).

Variable. First suppose M is of the form *z. In particular, A =g B, and since deg(A) =
deg(B) = ¢, we have A = B by Lemma 21. If A = s;_1, then by Proposition 26 we have
7 (N) = s;—2 and

(" a[N/¥x]) = 0 (N) = si2 = T0a:s,, (7).
Similarly, if A is of the form ®+1y, then 7 (N) = e, and
(P z[N/%z]) = 0 (N) = &y = Tp 4y (P ).

If M is of the form iy where iy # Sz, then 7(57y[N/%x]) = (5 y).
I1-Expression. If M is of the form ITy#. B, then

7 ((y*. B)[N/z]) = 7y /. B[N/a])

_ T,y A(B) deg(A4) € Z
Iy (A, Try:4(B) otherwise

where the last equality follows from the definition of 7 and the inductive hypothesis. This
also depends on Proposition 27 to show that 7r . 4(A4) = 7(A). The cases in which
M is a A-expression or application are similar. Furthermore, when ¢ ¢ Z, all cases are
analogous. |

Before proving the S-preservation lemma, it is convenient to partition the p-reduction
relation into two parts, one part which is directly preserved by the translation (/1) and one
part which is pre-reduced by the translation (8z).

» Definition 29. Let 85 denote the notion of reduction given by
Az, M)N —p, M[N/z]

where deg(A) € Z, extended to a congruence relation in the usual way. Let B1 denote the
same notion of reduction but with deg(A) € I, so that f1 N By =0 and B, U Bz = B.

» Lemma 30. For expressions M and N derivable in the context T, the following hold.
If M —p, N, then o(M) —g 7 (N);
if M —p, N, then 70(M) = 0 (N);
in particular, if M =g N, then 7o(M) =g 70(N).
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Proof. The last item follows directly from the first two. We prove the first two items
by induction on the structure of the one-step [-reduction relation. In the case a redex
(AzA. M)N, if deg(A) & Z, then we have

Tp(()\:z:A. M)N) = Tp()\xA. M) (N)
= Az A (M) (N)
=5 100 a(M)[mr(N) /2]
= 10 (M[N/z])

and otherwise,

m((Az?. M)N) = (Az?. M)
= TF,;C:A(M)
(M [N/x])

where the last equality in each sequence of equalities follows from the substitution-commut-
ation lemma (Lemma 28). To show the desired result holds up to congruences, it must follow
that expressions dropped by the translation are already in normal form.

I1-Expression. Suppose M is of the form IIz#. B and N is of the form [z4". B’ where
Mz, B =4 z?. B’

If deg(A) ¢ Z, then ecither A -5 A’ and B = B’ or B —3 B’ and A = A’ and the
inductive hypothesis can be safely applied. If deg(A) € Z, then Lemma 21 implies that A
is in normal form, so A = A" and B —g B’, and the inductive hypothesis can be safely
applied. The case in which M is a A-expression is similar.

Application. Suppose M is of the form PQ and N is of the form P’'Q)’ where

PQ —B1 P,Q/

If deg(Q) + 1 ¢ Z, then either P —5 P’ and Q = Q' or Q —3 Q" and P = P’ and the
inductive hypothesis can be safely applied. If deg(Q) + 1 € Z, Corollary 24 implies that
@ is in normal form, so @ = Q" and P —3 P’ and the inductive hypothesis can be safely
applied. <

With these two lemmas, we can now prove that the translation preserves typability. The
system we translate to is defined simply as the one in which the rules associated with sorts
in St are dropped.

» Definition 31. The irrelevance reduction of A\S, denoted here by \S™, is the n-tiered
system specified by the rules Ras \ {(si,s;) | i € Z and j € [n]}.

» Lemma 32. For context I' and expressions M and A, if
Fkys M: A then 7(T) Fyg- (M) : 0 (4).

Proof. By induction on the structure of derivations.

Axiom. If the derivation is a single axiom F s; : ;41 then the translated derivation is the
same axiom.

7:13
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Variable Introduction. Suppose the last inference is of the form

F"A:Si
I'%iz: AFsiz: A

First suppose i € Z. If A = s;_1, then 7 4.5, , (z) = s;_2 and
TT)F si—2 ¢ 8i—1

where 7(T") is well-formed by the inductive hypothesis; that is,
T(T)F m(A) : s

implies 7(T") is well-formed. If A is of the form ®+'y, then (si+'y: s;,_1) € T, which
implies (e, : *+1y) € 7(T") and 7(I') - e, : *i+1y where 7(I") is again well-formed by the
inductive hypothesis.

Next suppose i — 1 € Z and A = s;_1. By the inductive hypothesis, we can derive

T(F) - Si—1 - S§
T(T),%x : si-1 F %x: s,

and so by weakening,

7(T), %z : si-1 F % 81 7(T), %@ : s;—1 F x84

T(T), %z : 5; 1,0, : 5wk Six: sy
The remaining cases are straightforward.

Weakening. Suppose the last inference is of the form

'EM:A I'-B:s;
I'ix: B-M: A

By Proposition 26, we have 71 ,.5(M) = m(M). By type correctness, I' - A : s; for
some index j, 80 71 4. g(A) = 71 (A). So the inductive hypothesis implies

T(F) F Tp,z;B(M) . TI‘,z:B(A)

We can then use an argument similar to the one in the previous case to extend the context
to 7(T,x : B).
Product Type Formation. Suppose the last inference is of the form
T'HA:s; Iz: Ak B:s;
I'+IIz4. B: sj

ifi € Z, then 7(T') = 7(T,z : A) and 7r(Ilz?. B) = 71 4. 4(B) and so 7(T') F 71 4. 4(B) : s,
by the inductive hypothesis applied to the right antecedent judgment. It cannot be the
case that i —1 € Z and A = s;_1 since s; is rule-isolated in this case. The remaining case
is straightforward.
Abstraction. Suppose the last inference is of the form
I'%x: A-M: B I‘FHxA.B:sj
L'k Az? M :Tlz?. B
If i € Z, then

7(T) =7(T, %z : A)
Az, M) =71 5. a(M)
Tp(HxA. B) =11 4. 4(B)
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so the desired judgment follows directly from the inductive hypothesis applied to the left
antecedent judgment. Again, it cannot be the case that i — 1 € Z and A = s;_1 since s;
is rule-isolated in this case. The remaining case is straightforward.

Application. Suppose the last inference is of the form

'+ M:IIz* B THN:A
' MN : B[N/*zx]

By type correctness, I' - IIz4. B : s; for some sort s;, and by generation, we have
I'¢: AF B : s,

so by Lemma 28, if i € Z (i.e., deg(N) + 1 € 7), then /(M N) = 70 (M) and
m(B[N/%2]) = 71 2. A(B) = 7 (Ilz". B).

The desired result then follows directly from the inductive hypothesis applied to the left
antecedent judgment. And if ¢ ¢ Z, then 70 (B[N/x]) = 71 4. a(B)[mr(N)/z] and we have
7(T) F 7o (M) : Tz (A, Tr,2:A(B) 7(T)F o (N) : m(A4)
) - (M) (N £ 7w (B) (V) 2]

Conversion. Suppose the last inference is of the form

't-M:A I'EB:s;
I'-M:B

where A =g B. Then we have

7)Yk (M) : m(A) T F m(B) : s
() F (M) : (B)

where 7 (A) =g m(B) by Lemma 30. <

It remains to show that this translation is path-preserving. The guiding observation is
that fBs-reductions cannot make more “complex” redexes. We define a complexity measure
which captures this observation by its being monotonically decreasing in Ss-reductions.

» Definition 33. The shallow A-depth of an expression M is the number of top-level \’s
appearing in it, i.e., the function 6 : T — N is given by (Az?. N) £ 1+§(N) and (M) =0
otherwise. The shallow \-depth of a redex (A\x*. M)N is the shallow \-depth of its left
term Az, M. I will simply write “depth” from this point forward.

» Definition 34. Define u: T — N to be the function which maps an expression to the sum
of the depths of its Ba-redexes, i.e.,

(s:) = () 20
p(z?. B) = p(Az?. B) £ u(A) + u(B)
w(M)+ pu(N)+6(MN) MN is a Bz-redex
w(M) + p(N) otherwise.

Finally, we prove the monotonicity lemma. It depends on the domain-full version of a
result by Lévy for the untyped lambda calculus about the creation of new redexes [14]. T give
the statement of the result here without proof (See [11, 20] among others for the standard
definition of a residual).

M(MN)é{
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» Lemma 35. For expressions M and N such that M —5 N, if (Az?. P)Q is a redex of N
which is not a residual of a redex in M, then it is created in one of the following ways.

1. (8. y) (A2t P)Q —5 (\a?. P)Q;

2. (M\y©. AzP. R)SQ — 5 (\xPIS/Y. R[S/y])Q where A = D[S/y] and P = R[S/y];

3. (\P. R)Y(Az?. P) =5 R[Az?. P/y] where yQ is a sub-expression of R.

» Lemma 36. For derivable expressions M and N, if M —p, N, then u(M) > u(N).

Proof. Suppose M reduces to N by reducing the By-redex (Az®. P)Q. By Corollary 24,
the expression @ is of the form Ilz,41. ... Iz, “*. B where deg(A;) € Z for all j and either
B =s,_9 or B € V,,. This means reducing a S2-redex cannot duplicate existing redexes in
M, so every redex has at most one residual in N. Furthermore, if N has a new [s-redex, it

is by item 2 of Lemma 35, i.e., there are expressions C, D, R, and S, and variable z such
that P = Az”. R and

(AzC. X2P. R)QS =5 (AP1R/7 RIQ/x))S.

It is easy to verify that, because of the form of @), only one new S-redex is created and,
furthermore, §(R[Q/z]) < §(R). This implies the new redex has smaller depth than the

redex that was reduced, so even if it is a [a-redex, the complexity of M decreases. <
The proof of the main theorem of this section is standard.
» Theorem 37. If AS™ is strongly normalizing, then \S is strongly normalizing.

Proof. Suppose there is an infinite reduction sequence in AS
M1 —B MQ B ..

where Mj is derivable in AS from the context I'. Since p is monotonically decreasing in
Ba-reductions (Lemma 36), there cannot be an infinite sequence of solely [a-reductions
contained in this sequence. This means there are infinitely many (; reductions in this
sequence, which by Lemma 30 implies there infinitely many g-reductions in the reduction
path

TF(Ml) 3 TF(MQ) B ...

where 70 (M;) is derivable in AS™ by Lemma 32. |

3.2 Eliminating Completely Isolated Sorts

We now handle completely isolated sorts. Recall that a sort s; is completely isolated
if s; is top-sort-like and rule-isolated. This translation is slightly simpler than the first.
It is a generalization of the observation made in the introduction that one can define a
path-preserving translation from AHOL to Aw, i.e., one that eliminates the rule-isolated
top-sort.

Fix an n-tiered pure type system AS with n > 2, and a completely isolated sort s;.” In
essence, the following translation removes the completely isolated sort and shifts down all
the sorts that might be above it. Because isolated sorts can only really be used to introduce
variables into the context, the translation pre-substitutes those variables with dummy values
that won’t affect the normalization behavior of the expression after translation.

7 The restriction on n is a technicality that ensures the target system is nontrivial. See, for example, the
variable case of Definition 38.
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One notable feature of this translation is that it does not preserve the number of sorts in
the system and, furthermore, does not preserve degree. It will be useful to be more careful
about variable annotations in the following definitions and lemmas.

» Definition 38. Define the context-indexed function Or : Ctx x T — T inductively on both
arguments as follows.

sj—1 otherwise

Si—a ifj=1tand (fix:s;_1) €T

[I>

Or(s;)

Or(Pix) & ¢S j<i
Si-lx  otherwise

9F(H8j$A. B) A Her(sj)x‘gF(A)

. Or z.4(B)
GF(ASJ'J;A. M) 2 /\9r(5j)x9F(A). Or 5 a(M)

Or(MN) = 0p(M)fr(N)
This function is used to define a function on contexts as
0(2) =2

o) ifj=1and A=s;_1

O(T,%x: A) £
’ O(T), i)z Or(A)  otherwise.

As with the previous translation, contexts can be weakened without changing the value
of the function (in analogy with Proposition 27 for 7). We go on to prove substitution-
commutation, S-reduction preservation, and typability preservation. The proofs are similar
to those in the previous sub-section and, consequently, are slightly abbreviated.

» Lemma 39. For context T', expressions M, N, A and B, and variable %ix, if j # i and
[,%z:AFM:B and T+ N : A then Op(M[N/*z]) = Op s 4. a(M)[0p(N) /o7 () 2].

Proof. By induction on the structure of M. All cases are straightforward except the case
in which M is a variable, but then the assumption that j # i ensures the desired equality
holds. |

» Lemma 40. For expressions M and N derivable from T', if M —g N, then Op(M) —3
Or(N). Furthermore, if M =g N, then 0p(M) =g Op(N).

Proof. The second part follows directly from the first, which follows by induction on the
structure of the one-step S-reduction relation. In the case of a redex (Az. M)N, we have
Or((Az?. M)N) = AW 0p . 4(M))0r(N)
— 5 Or,2:4(M)[0r(N) /%753 z]
= Or(M[N/* ) ])

where the last equality follows from Lemma 39, keeping in mind that j # ¢ since i is isolated,
so the lemma can be safely applied. |

Finally, typability preservation. The target system is as expected, the completely isolated
sort s; is removed and potential sorts above it are shifted down.

7:17
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» Definition 41. The i-collapse of \S, denote here by AS™, is the (n — 1)-tiered systems
specified by the rules {(0z(s;),05(sk)) | (s5,56) € Ras}-

» Lemma 42. For context T and expressions M and A where M # s;_1, if
r-M:A then OT) F Op (M) : 6r(A).

Proof. By induction on the structure of derivations. The proof differs slightly depending on
whether or not s; is a top-sort. I make clear below which cases differ.
Axiom. Since M # s;_1, the judgment & F 0(s;) : 0z (s;j41) is still an axiom.
Variable Introduction. Suppose the last inference is of the form
' A: .Sj
I'%x: A Six: A
If j =iand A =s;_1, then (T') I s;_5: s;_1 is still derivable. Note that (T") can be
proved to be well-formed by the inductive hypothesis. If j < i, then we have
H(F) = GF(A) . Sj
O(T),%x: Op(A) F %ix: Op(A)

If j > 4, then in particular s; is not a top-sort. This case is then similar to the previous
one, keeping in mind that this might use the axiom (s;_1, s;) for the translated derivation
in the system AS™, but not in the case that s; is a top-sort.

Weakening. This case follows directly from the fact that 0r 5. p(M) = 0p(M) whenever M
and B are derivable from I'. It is also similar to the analogous case in the previous
sub-section.

Product Type Formation. Suppose the last inference is of the form

'HA:s; I'%x: A B: sg
I'FTz?. B: sy

Note that j # i and k # i since s; is rule-isolated. In particular, neither A nor B are s;_1.
Therefore, we can apply the inductive hypothesis directly to each antecedent judgment
and derive the desired consequent judgment.

Abstraction. Suppose the last inference is of the form

I'%z: A+ M: B I'+Tz4. B: sy
'k Azd M :1z4. B

Note that j # i since s; is rule-isolated, and so ITz#. B would not be derivable. Further-
more, B # s; (so M # s;_1) since s; is irrelevant. Therefore, we can apply the inductive
hypothesis directly to each antecedent judgment and derive the desired consequent
judgment.

Application. Suppose the last inference is of the form

' M:Iz4 B THFN:A
I'F MN : B[N/x]

Note that deg(A) # i+ 1 (and in particular N # s;_1), since s;4+1 is rule-isolated.
Furthermore, deg(A) # i (and deg(NN) # i — 1) since s; is rule-isolated. Therefore, we
can apply the inductive hypothesis directly to each antecedent judgment to derive

O) F Or(M)Op(N) : O 4.4(B)[0r(N)/z]

where 0r 4.4 (B)[0r(N)/x] = 6r(B[N/z]) by Lemma 39.
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Figure 2 A system with a non-trivial sequence of irrelevance reductions.

Conversion. Suppose the last inference is of the form

TEM:A I'-B:s;
'M:B
If M =s;_1, then A =3 s; =g B. Then by Lemma 21, in fact A= B. If B =s;_1, then
by Corollary 24 we again have A = B. Otherwise, by Lemma 40, 6r(A) =g 6r(B) and
we can derive §(T") - 0 (M) : Or(B) by the inductive hypothesis and conversion. <

Since S-reductions are simulated directly, the argument for the final theorem is straight-
forward.

» Theorem 43. If A\S™ is strongly normalizing then \S is strongly normalizing.

3.3 The Final Translation

We can now consider the fixed-points of the above translations.

» Definition 44. Let 7(\S) denote the fized-point of taking the irrelevance reduction of
AS with respect to maximum completely irrelevant index sets. That is, repeat AS = A8~
taken with respect to the mazimum completely irrelevant index set of AS, until its mazximum
completely irrelevant index set is empty.

» Definition 45. Let 0(\S) denote the fized-point of taking the i-collapse of AS, where i is
the maximum index of a complete isolated sort in \S, if one exists. That is, repeat \S = \S™
taken with respect to the maximum index of a completely isolated sort of \S wuntil it has no
completely isolated sort or is 2-tiered.

Note that a sort which does not appear in the maximum completely irrelevant index set
of AS may appear in the maximum completely irrelevant set of AS™. See Figure 2 for a
tiered system with a non-trivial sequence of irrelevance reductions. The maximum completely
irrelevant index set of this system is {9}, but after eliminating the rules associated with sg,
both sg and s5 become rule-isolated, and so the next maximum completely irrelevant index
set is {4,8}. One can then imagine how this effect can be scaled up to larger systems.

I will write AS* for 7(AS) and AS? for 6(7()\S)). Since no rules are removed by an
i-collapse (only shifted), no sort can become completely isolated and no new completely
irrelevant index set can be created, so in fact ASY is the fixed-point of 6 o 7.

The main two theorems are as follows.

» Theorem 46. For any tiered pure type system AS, if ASY s strongly normalizing, then
AS is strongly normalizing.
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» Theorem 47. For any tiered pure type system AS, if weak normalization implies strong
normalization for \S*, then weak normalization implies strong normalization for AS.

In particular, if AS* satisfies the conditions of Barthe et al. ([4], Theorem 5.21), then
weak normalization implies strong normalization in AS. This does not immediately apply
to ASY since it is not immediate that weak normalization is preserved from AS to AS™; the
sorts are not preserved. Note that it is immediate in the case that the completely isolated
sort is a top-sort. Given the scope of this work, I leave this to be verified, it is a natural step
in extending these results.

4 Conclusions

I have presented a path-preserving translation which eliminates some irrelevant structure.
Again, this structure is irrelevant with respect to normalization, not derivability. When
combined with results for the Barendregt-Geuvers-Klop conjecture, it widens the class of
systems for which the conjecture applies. This is a step towards proving the conjecture for
all tiered systems, in particular because it highlights those systems which require further
analysis. For example, it appears that dealing with circular rules is one of the clear barriers
in strengthening these results. For 3-tiered systems, we extend the conjecture to (and can
prove strong normalization of) the system®

but not to the same system with the additional rule (ss, s3). Circular rules break irrelevancy
and, consequently, induce much more complicated structure in the system.

Additionally, it is worth noting that the conditions on completely irrelevant index sets
cannot be trivially weakened. If, for example the irrelevance condition on preceding sorts
was removed, this technique would apply to AU (i.e., the same system presented above but
with the additional rule (s2, s2)), leading to a contradiction since AU is non-normalizing.
Circular rules again seem to be at the core of this issue. More carefully considering A\U and
related non-normalizing systems through the lens of these results — particularly why the
techniques don’t apply to these systems — may yield a more structural understanding of the
non-normalization of AU. Regardless, I hope to have demonstrated with this translation that,
despite the full Barendregt-Geuvers-Klop conjecture seeming quite far from being resolved,
there are still a number of approachable questions and avenues for further development.
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