
A Metatheoretic Analysis of Subtype Universes
Felix Bradley #Ñ

Royal Holloway, University of London, UK

Zhaohui Luo #Ñ

Royal Holloway, University of London, UK

Abstract
Subtype universes were initially introduced as an expressive mechanisation of bounded quantification
extending a modern type theory. In this paper, we consider a dependent type theory equipped
with coercive subtyping and a generalisation of subtype universes. We prove results regarding
the metatheoretic properties of subtype universes, such as consistency and strong normalisation.
We analyse the causes of undecidability in bounded quantification, and discuss how coherency
impacts the metatheoretic properties of theories implementing bounded quantification. We describe
the effects of certain choices of subtyping inference rules on the expressiveness of a type theory,
and examine various applications in natural language semantics, programming languages, and
mathematics formalisation.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Type theory, coercive subtyping, subtype universes

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.9

1 Introduction

Power types were initially introduced by Cardelli as a way of integrating subtyping into a type
theory to model bounded quantification [2]. Power(A) represents the collection of subtypes
of A, and a given subtyping relation A ≤ B can be considered as shorthand for A : Power(B).
Cardelli’s system was designed with language design in mind, focusing on behavioural
subtyping defined by shared properties of objects. In particular, Cardelli’s power types could
be used to model a notion of parametric polymorphism called bounded quantification, where
one can quantify over the subtypes of a given type. By writing λ(X ≤ A).M as shorthand
for λ(X : Power(A)).M .

Cardelli’s initial system for power types prioritised expressivity over well-behaved meta-
theory and included a Type : Type judgement, which was chosen to express non-terminating
computations. Power types have since been revisited by other authors such as Aspinall, who
reformulated power types into a predicative system [1]. However, these system have often
had issues within the metatheory closely linked to subtyping and bounded quantification.
The particular choice of subtyping rules is a common issue, where certain combinations of
rules can cause undecidability in the subtyping relation [17, 4].

Maclean and Luo later introduced subtype universes, [16] an analogue of power types
designed specifically for extending UTT equipped with coercive subtyping [15, 13]. They
showed that this extension preserved metatheoretic properties such as logical consistency and
strong normalisation. As subtype universes were initially formulated as an extension of UTT,
they are built to work in conjunction with the particular structure of UTT’s type universes
in mind, which makes for complex proofs. UTT is also restricted in the kind of subtyping
rules the system can use, in that subtypes must be present in the same type universe as
supertypes, which prevents the use of otherwise useful subtyping rules.

© Felix Bradley and Zhaohui Luo;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Felix.Bradley@rhul.ac.uk
https://felixjhb.com/
https://orcid.org/0000-0001-7227-9272
mailto:Zhaohui.Luo@hotmail.co.uk
https://www.cs.rhul.ac.uk/home/zhaohui/
https://doi.org/10.4230/LIPIcs.TYPES.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Metatheoretic Analysis of Subtype Universes

In this paper, we generalise Maclean and Luo’s results by formulating rules for a more
expressive notion of subtype universes, designed to extend a more basic dependent type theory.
We continue to use coercive subtyping, a method of subtyping best suited for preserving
canonicity of terms. Our subtype universes are described by the pseudo-rules

Γ ⊢ A type
Γ ⊢ U(A) type

Γ ⊢ A ≤c B

Γ ⊢(A, c) : U(B)

combined with operators which allow us to retrieve the first object and the second object
of the pair. The addition of being able to retrieve the coercion from a subtyping relation
allows for subtyping relations using subtypes or bounded quantification. In particular, if the
type theory being extended lacks traditional type universes, being able to retrieve coercions
allows the type theory to express more complex subtyping relations.

Section 2 describes the implementation of coercive subtyping, outlines the rules used to
formulate our generalised notion of subtype universes, discusses what it means for a type
theory to lack type universes and why this matters. Section 3 discusses the metatheoretic
properties of subtype universes, dependent on the choice of subtyping judgements and rules
the underlying type theory is equipped with. In particular, this section analyses an important
property of a subset of subtyping judgements: wherein the choice of subtyping relations
allows one to “reflect” subtype universes on to the more traditional type universes; and the
other case where this is not possible. Section 4 looks at particular choices of subtyping rules
and the implications that this work has for the use and application of them. In particular, it
focuses on the use of subtyping rules regarding dependent function, universal supertypes, and
subtype universes. Finally, section 5 discusses various applications of subtype universes, and
showcases several examples of how subtype universes may be used in programming, natural
language semantics, and the formalisation of mathematics.

2 Expressive Subtype Universes

In order to be able to introduce subtype universes, we first need to discuss the notion of
subtyping and analyse the particular design choice to use coercive subtyping over subsumptive
subtyping. From there, we briefly cover Cardelli’s power types – designed with programming
languages in mind – and Maclean and Luo’s prior work on subtype universes – designed for
dependent type theories with logic and proofs in mind – and some of the advantages and
restrictions of these approaches, before moving on to introducing subtype universes.

2.1 Coercive Subtyping
Introducing subtyping is a very natural extension of any type system, especially when working
from a set-theoretic notion or understanding. Subtyping intuitively corresponds to the subset
relation, and many properties of subtyping extend from this intuition; for example, we should
be able to process any natural number as a rational number, or be able to say that the
rational numbers include the natural numbers.

When it comes to attempts to implement subtyping, most approaches introduce some
form of a new judgement Γ ⊢ A ≤ B, read as “the type A is a subtype of the type B”, from
which we can derive that any term of type A is also a term of type B. This notion as-is
without alteration is subsumptive subtyping – any supertype subsumes its subtypes.

This approach runs into issues quickly, however. Subsumptive subtyping as presented
breaks the canonicity of a type system: we expect that any object of an inductive type to be
computationally equivalent to some canonical object described by the type’s rules. With

F. Bradley and Z. Luo 9:3

subsumptive subtyping, one can no longer comprehend objects given the computation and
elimination rules for the object’s type, as that object may actually be of a subtype. As all
natural numbers are also rational number, but we can no longer use the rules of rational
numbers to process the rational numbers.

One proposed solution to this issue is coercive subtyping [13]. The core concept behind
coercive subtyping is that subtyping describes implied coercions that allow us to interpret
objects of a subtype as a given canonical form in the supertype. These coercions are functions
described by the underlying type theory, allowing us to preserve a lot of the underlying
metatheory of the type system. Using the same example as discussed for subsumptive
subtyping, we can interpret a natural number as a ration number through the explicit
coercion which sends n 7→ n/1.

We can reduce our system with subtyping to a system without subtyping simply by
inserting coercions where necessary, and so adding coercive subtyping to a theory tends to
be a conservative extension. Of particular use to us is UTT, a modern type theory written
in Martin-Löf’s Logical Framework, where extending the system with coercive subtyping has
been proven to be conservative [15].
▶ Remark 1. We use τ [C] to denote both a type theory τ implementing coercive subtyping
extended by some set of subtyping judgements (arbitrary or dependent on some other
choice), as well as the type theory τ implementing coercive subtyping extended by the
specific collection of subtyping judgements C. For example, we later describe a syntactic
transformation from τ to UTT[C]: as these systems can’t use the same set of subtyping
judgements, it can be inferred that the C in UTT[C] is dependent on the choice of C in τ .

The key rules for coercive subtyping are as follows:

Γ ⊢ f : Π(x : B).C
Γ ⊢ A <c B Γ ⊢ a : A

Γ ⊢ f(a) : [c(a)/x]C

Γ ⊢ f : Π(x : A).C
Γ ⊢ A <c B Γ ⊢ a : A

Γ ⊢ f(a) = f(c(a)) : [c(a)/x]C

These rules (Sub-Intro and Sub-Comp respectively) are used in conjunction with other
rules, such as those for congruence, transitivity, and others1.

Of particular note is the computation rule – in Luo, Soloviev and Xue’s own analysis of
the metatheory and implementation of coercive subtyping, this is not formally a reduction
rule added to the system [15]. Instead, the type theory they describe has a two-step reduction
process: the first step is c-reduction, or the insertion of coercions. The second step is the
more typical reduction process involving the application of β-reduction. This process is a
necessary step due to the need to correctly mark the places in terms where coercions need to
be inserted in order for a term to be well-typed before standard reduction can occur.

In this work, we opt to use the same notion of reduction for the type theory we describe –
this allows us to treat c-reduction as part of the normal reduction process. In particular, to
avoid the complicated metatheory that Luo et al. worked through, we first show that our
type theory can be transformed into UTT[C] for particular choices of subtyping judgements.
As UTT[C] handles the actual two-step reduction process, this allows us to informally treat
c-reduction as on the same level as β-reduction.

When one implements subtyping, one also needs to decide which types are subtypes
of which types. This could be both single cases, or families of subtypes (for example, one
may wish to say that all finite types are subtypes of N). We consider the most general case
possible where the type theory τ is extended by a set of subtyping rules C.

1 The full set of rules for the implementation of coercive subtyping can be found in [15]. Whilst we do
not use the same judgements in this work, the rules are fundamentally the same.

TYPES 2022

9:4 A Metatheoretic Analysis of Subtype Universes

To ensure that τ is sound for a given choice of C, we need a notion of coherence – “that
every possible derivation of a statement Γ ⊢ a : A has the same meaning” [17].We use a
similar definition of coherence as Luo et al. as follows:

▶ Definition 2 (Coherence). A set of subtyping judgements and inference rules C is coherent
if the following hold:

If Γ ⊢ A <c B, then Γ ⊢ A type, Γ ⊢ B type, and Γ ⊢ c : A → B

Γ ̸ ⊢ A <c A for every Γ, A, and c

If Γ ⊢ A <c B and Γ ⊢ A <c′ B, then Γ ⊢ c = c′

The coherency of the subtyping judgements and rules used coercive subtyping is critical –
without the guarantee of coherency, τ loses any hope of consistency. In practice, reasoning
about coherency can be tedious at best. However, other authors have found difficulty within
the metatheory of bounded quantification when using subsumptive subtyping [1, 11]. Even
for simpler systems, prior authors have provided proofs which were later found to contain
errors [17]. Only as recently as 2004 did Compagnoni provide the first proof of the decidability
of subtyping for a higher order lambda calculus [6].

2.2 Subtype Universes
Cardelli initially introduced power types as a means of explicitly mechanising bounded
quantification – the type Power(A) as the type of subtypes of A [2]. In his original formulation,
the judgement A ≤ B was in shorthand for A : Power(B), thus typing had completely
subsumed subtyping in his system.

Cardelli describes a very expressive type system made possible by these power types, but
made compromises in the underlying metatheory of the system in favour of expressiveness.
For example, Cardelli’s system had a type of all types – while quantification over types is
useful, this simple statement can be used to express non-terminating computations, but is
also the source of Girard’s paradox, which causes logical inconsistency [9, 7, 10]

Maclean and Luo later introduced subtype universes as an extension of UTT[C], UTT
equipped with coercive subtyping and a set of subtyping judgements C [16]. In this im-
plementation, subtyping wasn’t completely subsumed by subtype universes; the notions of
subtyping and typing were kept disjoint, and subtype universes presented a way for typing
to interface with subtyping.

There were some restrictions with Maclean and Luo’s presentation, however; they asso-
ciated subtype universes with the underlying predicative type universes that allowed one
to internally quantify over types. This required annotating subtype universes to ensure
that types had names in the correct universes, and it also restricted the choice of subtyping
relations that could be introduced into the system. In particular, their proof required that
for every A ≤c B, A inhabited the same type universe as B.

One of the ways we sought to improve on this design was to expand upon it and remove
these restrictions. We use the following rules2:

U-Form
Γ ⊢ B type

Γ ⊢ U(B) type

2 The rules described here only cover types, and do not touch on kinds or subkinding – for the purposes
of this work, the rules covering types are sufficient. Whenever we use describe a relation A ≤c B, it is
always the case that A and B are types.

F. Bradley and Z. Luo 9:5

U-Intro
Γ ⊢ A ≤c B

Γ ⊢⟨A, c⟩ : U(B)

U-σ1-Elim
Γ ⊢ B type Γ ⊢ t : U(B)

Γ ⊢ σ1(t) type

U-σ2-Elim
Γ ⊢ B type Γ ⊢ t : U(B)

Γ ⊢ σ2(t) : σ1(t) → B

U-σ1-Comp
Γ ⊢ B type Γ ⊢⟨A, c⟩ : U(B)

Γ ⊢ σ1(⟨A, c⟩) = B

U-σ2-Comp
Γ ⊢ B type Γ ⊢⟨A, c⟩ : U(B)
Γ ⊢ σ2(⟨A, c⟩) = c : A → B

For a given type A, U(A) is the type of subtypes of A (intuitively, this corresponds to the
power set operator). Terms of a subtype universe behave in a similar fashion to pairs, from
which we can obtain both the subtype (via the operator σ1) and the coercion through which
we may obtain the corresponding object of the supertype (via the operator σ2). This design
more closely resembles Cardelli’s original intent where subtyping is subsumed by typing, as
we can now describe any subtyping relation by declaring an object of a subtype universe.

▶ Remark 3. For coherent C, the type of a given ⟨A, c⟩ can be calculated by type-checking the
term σ2(⟨A, c⟩) = c. One could extend the subtype universes we use here to also explicitly
carry information about the supertype, either as part of their data or via annotations.
However, assuming that C is coherent, one is also able to derive the type of any given ⟨A, c⟩
by examining the codomain of c. For simplicity, this work does not include these annotations
as the metatheory does not fundamentally change.

2.3 Flat Type Theories
This notion that subtyping implies a partial ordering on types in a system is a property we
call monotonicity. Under any set-theoretic notion, this seems obvious; the partial ordering
would be inclusion. However, if the system has multiple type universes, then monotonicity
presents quite a restriction on the choice of subtyping relations one can introduce; there’s
some natural subtyping relations we may want to use in a system. Consider the example of
the type of pointed subtypes:

Σ(x : U(B)).σ1(x)

Intuitively, a pointed subtype of B should also a subtype of B, and so we may want to use
the subtyping relation

Σ(x : U(B)).σ1(x) ≤q B

where q
def= λ(y : Σ(x : U(B)).σ1(x)).(σ2(π1(y)))(π2(y)). However, if we were to follow

Maclean and Luo’s method for translating U(A) into an object of UTT[C], we would quickly
find that cannot; their method for mapping subtype universes on to type universes simply
does not work here. There is a sense in which the left-hand-side of the subtyping relation
is more complicated or of a higher order than the right-hand-side – that the LHS should
inhabit a higher type universe than the RHS – due to the presence of U(B).

TYPES 2022

9:6 A Metatheoretic Analysis of Subtype Universes

This leads to one of the key motivations for this work: when can subtype universes be
mapped onto type universes? Are there particular choices of subtyping judgements and rules
such that the resultant system can’t be described by a system with the standard hierarchy of
type universes Type1, Type2, ...? Does the choice of subtyping relations affect the metatheory
of the system, and if it does, when and how?

In order to better understand how a choice of subtyping relations affects the system, we
need to look at a system with coercive subtyping and subtype universes but with minimal
structure on its type universes. As we also want to look at the logical consistency of type
theories implementing subtype universes, we allow for an impredicative type of propositions
Prop.

Whilst the proofs we describe in this work theoretically apply to any “flat” type theory
that has no type universes or at most a universe of propositions, we opt to use a subtheory of
UTT[C] to make several of the proofs in this work more convenient3 – for example, we use the
fact that UTT[C] is logically consistent and strongly normalising. In particular, this subtheory
of UTT[C] contains dependent function types, dependent pair types, an impredicative type
universe of propositions, and the atomic types 0, 1, and N4.

We write τ to denote the chosen subtheory of UTT[C], extended with subtype universes
and a (sometimes arbitrary or variable) set of subtyping judgements C. When it is not
necessarily clear what specific set of subtyping judgements τ is equipped with, we write τ [C]
to denote τ equipped with the specific set of subtyping judgements C. We also write τ [C; R]
to denote the theory τ [C] which has been extended by a specific subtyping judgement or
rule R.

3 Metatheory

In our analysis of τ , we will first examine the metatheory of τ equipped with a set of only
monotonic subtyping relations. In particular, we will describe an embedding of τ [C] in
UTT[C]. In order to describe this embedding, we first need to develop a notion of the level
of a type – a measure of it’s complexity or “order” under the Curry-Howard interpretation of
types as propositions. Afterwards, we will examine the metatheory of the general case where
τ is equipped with a set of subtyping relations wherein some are non-monotonic. In both
cases, we will prove logical consistency and strong normalisation of τ .

3.1 Type Level

To properly analyse the metatheory of subtype universes, we need to understand under what
conditions can subtype universes be reflected on to type universes. In order to do this, we
need a notion of the “level” of a type; a description of where a given type fits in the type
universe hierarchy. If this notion is well-formed, we will be able to transform terms of a type
theory with “well-behaved” subtyping judgements into a type theory where the metatheoretic
properties we care about have already been proven.

3 We use a different set of subtyping judgements to UTT[C], such as using ⊢ A type rather than ⊢ A : Type,
but this is primarily for brevity when writing judgements

4 The atomic types, type constructors, and type of Propositions are all defined using UTT’s inductive
schemata [12]. While τ can easily be expanded to include inductive data types and inductive propositions,
we have elected to skip these inclusions for simplicity and brevity of argument.

F. Bradley and Z. Luo 9:7

In particular, we use UTT[C], Luo’s Unifying Theory of dependent Types extended with
coercive subtyping, as our target theory for this syntactic transformation. This is due to many
of the metatheoretic properties we are interested in having been proven for this theory[15, 8].
As such, our own notion of type level is similar in practice to that which Luo uses, but a
different approach is necessary; Luo’s approach uses type isomorphism and type universes to
define level, and we do not have the luxury of the latter [12].

Instead, our notion of type level is defined recursively; basic types (e.g. propositions,
Prop, N → N, etc.) should be of type level 0, and subtype universes should correspond to
increasing the type level by 1.

▶ Definition 4. For a given type A within a context Γ considered in τ , we define its type
level LΓ(A) by recursion as follows:

If Γ ⊢ A = P : Prop, then LΓ(A) = 0;
If Γ ⊢ A = Prop, 0, 1, or N, then LΓ(A) = 0;
If ∃B, C such that Γ ⊢ A = Π(x : B).C, then LΓ(A) = maxx:B{LΓ(B), LΓ(C[x])};
If ∃B, C such that Γ ⊢ A = Σ(x : B).C, then LΓ(A) = maxx:B{LΓ(B), LΓ(C[x])};
If ∃B such that Γ ⊢ A = U(B), then LΓ(A) = LΓ(B) + 1.
If ∃B, c, s such that Γ ⊢ A = σ1(s) and Γ ⊢ s = ⟨B, c⟩, then LΓ(A) = LΓ(B);
If ∃N such that Γ, s : U(N) ⊢ A = σ1(s) then LΓ(A) = maxM≤N {LΓ(M)};
Otherwise, LΓ(A) is undefined.

We need to ensure that our notion of type level is well-formed, i.e. every type has a type
level, and only types have a type level.

▶ Lemma 5. If Γ ⊢ A type, then precisely one of the following hold:
Γ ⊢ A = P : Prop
Γ ⊢ A = Prop
Γ ⊢ A = 0
Γ ⊢ A = 1
Γ ⊢ A = N
∃B, C such that Γ ⊢ A = Π(x : B).C
∃B, C such that Γ ⊢ A = Σ(x : B).C
Γ ⊢ A = U(B)
∃s such that Γ ⊢ A = σ1(s)

Proof. By induction on derivations of the form Γ ⊢ A type. ◀

▶ Corollary 6. LΓ(A) is defined if and only if Γ ⊢ A type.

One of the key metatheoretic features we are interested in is strong normalisation, and so
it is also important to check that our notion of type level is invariant under reduction. As
discussed in section 2.1, we inherit the same two-step reduction process as that described in
Luo, Soloviev and Xue’s work on the implementation of coercive subtyping [15]. The first
step is c-reduction, wherein coercions are inserted where appropriate to ensure that terms are
well-formed and well-typed. The second step is the more typical reduction process via the
application of β-reduction. As our goal in this section is to describe an embedding of τ into
UTT[C], we can informally treat this reduction process as if it were a single step, putting
c-reduction at the same level as β-reduction.

▶ Definition 7. Let M ▷ N denote that applying a single step of reduction to M yields N .
Likewise, let ▷∗ denote the reflexive and transitive closure of ▷, i.e. M ▷∗ N denotes that
applying 0 or more steps of reduction to M yields N .

TYPES 2022

9:8 A Metatheoretic Analysis of Subtype Universes

▶ Theorem 8. If A ▷ B then LΓ(A) = LΓ(B).

Proof. To show that this is true in general, we simply need to show that this holds true for
reduction via the computation rule U-σ1-Comp. For any object s of type U(B), we obtain
that it is of the form ⟨B, c⟩ for some B and c by induction on derivations. As LΓ(σ1(s)) is
defined by its reduction with respect to U-σ1-Comp, this holds. ◀

▶ Corollary 9. If A ▷∗ B then LΓ(A) = LΓ(B).

▶ Remark 10. Luo’s notion of type level had a couple of valuable properties: for example, if
two types are type-isomorphic, then they had the same level. For our own notion of type
level, this doesn’t necessarily hold: if we consider the case of τ with empty C, then every
subtype universe is type-isomorphic to the unit type.

There are also other cases which should serve as counterexamples at a glance, but end up
being much more interesting under a closer look. Unfortunately, this is outside the scope of
this paper.5

3.2 A Syntactic Transformation
As previously mentioned, subtype universes can be thought of as a collection of pairs of
objects; the first object in the pair is the subtype of the supertype, and the second object of
the pair is the coercion through which it is a subtype. We can make this intuition explicit
with a syntactic transformation by turning subtype universes in τ into the type of dependent
pairs in UTT[C], where the first object is the name of the subtype and the second object is
the coercion.

This intuition only works if the subtype has a name in the corresponding type universe.
This leads us to a formal definition of monotonicity:

▶ Definition 11. A coercive subtyping relation A ≤c B is monotonic if LΓ(A) ≤ LΓ(B). A
set of coercive subtyping judgements and rules C is monotonic if every coercive subtyping
relation derived from C is monotonic.

However, we’ve already seen that there are some non-monotonic subtyping judgements
which may be desirable, so we will revisit the case of non-monotonic subtyping later; for
now, we focus on the case of monotonic subtyping. For monotonic C, we define a syntactic
transformation δ : τ → UTT[C] by recursion as described in figure 1.

In this section, we describe both judgements derived in τ and judgements derived in
UTT[C]. While one can view the underlying type theory T as a subtheory of UTT, we use
a different set of judgements. As such, we distinguish between them where necessary; any
judgement derived in τ will be denoted with ⊢τ , and any judgement derived in UTT[C] will
be denoted with ⊢UTT. Moreover, any context in τ will be written as Γ, and any context in
UTT[δ(C)] will be written as δ(Γ)

To ensure this is a useful transformation, we need to check whether or not types have names
in the expected type universes; whether we can derive the judgements we expect regarding
translated terms; and whether this transformation preserves metatheoretic properties we’re
interested in, such as logical consistency and strong normalisation.

Prior to this, however, we need to discuss the translation of subtyping and how δ can
preserve any notion of subtyping. For some derivation Γ ⊢τ A ≤c B, we expect to be able to
take any Γ ⊢ a : A and derive that Γ ⊢ a : B; if δ is to preserve subtyping, then we also need to
ensure that not only can we derive δ(Γ) ⊢UTT δ(a) : δ(A), but also that δ(Γ) ⊢UTT δ(a) : δ(B).

5 We encourage the curious reader to think about the following example: for Γ, a : A ⊢ P : Prop, consider
whether or not the types Π(a : A).P and Π(X : U(A)).Π(x : σ1(X)).P [c(x)/a] are type-isomorphic.

F. Bradley and Z. Luo 9:9

δ(U(B)) = Σ(X : TypeLΓ(B)).(X → δ(B)) δ(σ2) = π2

δ(⟨A, c⟩) = (tLΓ(B)
LΓ(A) ◦ n(δ(A)), δ(c)) δ(σ1) = T ◦ π1

δ(Πx:AB) = Πx:δ(A)δ(B) δ(λ(a : A).B) = λ(a : δ(A)).δ(B)

δ(Σx:AB) = Σx:δ(A)δ(B) δ((a, b)) = (δ(a), δ(b))

δ(π1) = π1 δ(π2) = π2 δ(f(x)) = δ(f)(δ(x))

δ(0) = 0 δ(1) = 1 δ(∗) = ∗

δ(N) = N δ(0) = 0 δ(S) = S

δ(Prop) = Prop δ(∀(x : A).P) = Prf(∀(x : δ(A)).δ(P))

δ(Λ(a : A).P) = Λ(a : δ(A)).δ(P)

Figure 1 The transformation of terms in τ [C] into terms in UTT[δ(C)] under δ.

As we have only defined the domain of our transformation δ as being UTT[C] for some C,
we can exactly specify our target theory by choosing which subtyping judgements and rules
it uses, depending on our initial choice of C for τ . As such, we extend our definition of δ to
include the subtyping judgements of τ , sending any A ≤c B ∈ C to δ(A) ≤δ(c) δ(B); we write
the collection of the latter as δ(C). Moreover, we can precisely say that, for C a fixed set of
subtyping judgements and rules, we can define a syntactic transformation δ : τ → UTT[δ(C)]
per the above.

▶ Theorem 12. If Γ ⊢ A type, then δ(Γ) ⊢ δ(A) : Type and there exists some i ∈ ω and
some term n in UTT[δ(C)] such δ(Γ) ⊢ n : Typei and Ti(n) = δ(A).

Proof. Proof by induction on derivations of Γ ⊢ A type and cross-referencing with lemma 5.
We consider the following cases:
Case 1. ∃B, P such that A is of the form ∀(b : B).P . As in UTT the predicate ∀(x : A).P

exists for any type A and any predicate P over A and has a name in Prop, we may take
i = 0 and n to be the name of Prf(∀(b : δ(B)).δ(P)) in Type0.

Case 2. A of the form Prop. Trivially, we may take i = 0 and n = prop : Type0 .

Case 3. A of the form 0, 1, or N. We take advantage of UTT’s rules which introduce the
names of inductive data types to establish that, as all of these constructors do not have
any types in their generating sequence of inductive schemata, i = 0 and δ(A) must have
names in Type0 [12].

Case 4. ∃B, C such that A is of the form Π(x : B).C, or Σ(x : B).C. Similarly, these types
have a name in Typei if and only if both δ(B) has a name in Typej and δ(C) has a name
in Typek. Assuming δ(B) has a name in Typej and δ(C) has a name in Typek, we may
take i = max{j, k} and thus δ(A) has a name in Typei, which is as desired.

Case 5. ∃B such that A is of the form U(B). Using the same reasoning as per Π types:
as δ(A) = Σ(X : TypeLΓ(B)).(X → δ(B)), we note that TypeLΓ(B) has a name in
TypeLΓ(B)+1 and that X → δ(B) has a name in TypeLΓ(B), and so we may take n as the
name for TypeLΓ(B).

Case 6. ∃s such that A is of the form σ1(s). By induction, we have some B and c such that
Γ ⊢ s = ⟨B, c⟩ and thus A = B by U-σ1-Comp. We may take i = LΓ(A) and n to be the
name of δ(B) in TypeLΓ(A).

TYPES 2022

9:10 A Metatheoretic Analysis of Subtype Universes

Case 7. ∃B such that A is of the form σ1(s), where s : U(B) is variable. As C is monotonic,
we know that LΓ(A) is at most LΓ(B) and thus we may take i = LΓ(B) and n to be the
name of δ(A) in TypeLΓ(B). ◀

▶ Theorem 13. For coherent and monotonic C, the rules of τ [C] are admissible in UTT[δ(C)]
under transformation by δ.

Proof. This is a special case of theorem 23 taking k = 0. ◀

▶ Lemma 14. Let R be a coherent subtyping judgement or rule. Then δ(R) is coherent.

Proof. Assume that R ⊢ A ≤c B. By our definition of δ, we immediately have that δ(Γ) ⊢ δ(c) :
δ(A) → δ(B). Injectivity of δ implies both: that δ(Γ) ̸ ⊢ δ(A) ≤δ(c) δ(A) for every Γ, A, and
c; and that if δ(Γ) ⊢ δ(A) ≤δ(c) δ(B) and δ(Γ) ⊢ δ(A) ≤δ(c′) δ(B), then δ(Γ) ⊢ c = c′. Thus
δ(A) ≤δ(c δ(B) is coherent for every derivation of A ≤c B from R. ◀

3.3 On Monotonic Subtyping
▶ Theorem 15 (Logical consistency). For monotonic C, τ is logically consistent, i.e. there
does not exist some Γ and p such that Γ ⊢ p : ∀(P : Prop).P .

Proof. Proof by contradiction. Assume that there does exist some Γ and p such that
Γ ⊢ p : ∀(P : Prop).P . Under syntactic transformation by δ, we obtain δ(Γ) ⊢ δ(p) : Prf(∀(P :
Prop).P), which contradicts the logical consistency of UTT[C]. ◀

▶ Theorem 16 (Preservation of one-step reduction). For monotonic C, if M ▷ N then
δ(M) ▷ δ(N).

Proof. Proof by induction on the terms of τ . For every reduction M ▷R N in τ via a
computation rule R, we show that there exists a computation rule S such that δ(M)▷S δ(N)
in UTT[C].

As before, there are several trivial cases which have been omitted for brevity, most of
which are special cases of the computation rule µ for UTT’s inductive types6. We focus on
the non-trivial cases regarding subtyping and subtype universes.
Case 1. f(a) ▷Sub-Comp f(c(a)) ⇒

δ(f(a)) def= δ(f)(δ(a)) ▷CA2 δ(f)(δ(c)(δ(a))) def= δ(f)(δ(c(a))) def= δ(f(c(a)))
Case 2. σ1(⟨A, c⟩) ▷U -σ1-Comp A ⇒

δ(σ1(⟨A, c⟩)) def= δ(σ1)(δ(⟨A, c⟩)) def= TLΓ(B) ◦ π1(tLΓ(B)
LΓ(A) ◦ n(δ(A)), δ(c))

▷Σ1 TLΓ(B)(t
LΓ(B)
LΓ(A) ◦ n(δ(A))) def= δ(A)

Case 3. σ2(⟨A, c⟩) ▷U -σ2-Comp c ⇒
δ(σ2(⟨A, c⟩)) def= δ(σ2)(δ(⟨A, c⟩)) def= π2((tLΓ(B)

LΓ(A) ◦ n(δ(A)), δ(c))) ▷Σ2 δ(c) ◀

▶ Corollary 17 (Preservation of multi-step reduction). For monotonic C, if M ▷∗ N then
δ(M) ▷∗ δ(N).

▶ Theorem 18 (Strong normalisation). For monotonic C, if Γ ⊢ M : A, then M is strongly
normalisable, i.e. every possible sequence of reductions of M is finite.

6 These include Π types, Σ types, N, 1, 0.

F. Bradley and Z. Luo 9:11

Proof. Proof by contradiction. Assume that there does exist some Γ and M such that
Γ ⊢ M : A where M has an infinite reduction sequence. Under transformation by δ we obtain
δ(M). As δ preserves multi-step reduction, we obtain an infinite reduction sequence of δ(M),
which contradicts the strong normalisation of UTT[C]. ◀

▶ Remark 19. For monotonic C, we can take advantage of our transformation δ and the
decidability of type-checking in UTT[C] to show that in τ both type checking and the
subtyping relation is decidable. For any given term M in τ , we can consider the type of
δ(M). As UTT[C] is a conservative extension7 of UTT, we can type-check δ(M). As δ is
injective, we are also able to know the form of the type of δ(M) in UTT[C] and thus also
in τ .

To show that subtyping is also decidable, for any given pair of types A, B, we can consider
the construction of a term t which is well-typed if and only if the subtyping relation A ≤ B

is derivable (such as λ(f : B → N).λ(a : A).f(a).) [17]. By checking if δ(t) is well-typed in
UTT[C], we can decide whether or not A ≤ B.

3.4 On Non-Mononotic Subtyping
When analysing the more general case of the metatheory of τ [C], where the set of subtyping
judgements C contains some non-monotonic subtyping relations, one will often run into
immediate difficulty. Our first approach to this problem was to try and use the notion that
the use of coercive subtyping is a kind of shorthand for the insertion of exact coercions.
The extension of a type theory with coercive subtyping should be a conservative extension,
and likewise extending a type theory with additional subtyping rules should not affect the
underlying theory [15, 13].

One could interpret the extension of a type theory with additional coercive subtyping
rules as a kind of weakly conservative extension – it should not “add” new types to the
theory, and one should not suddenly be able to obtain terms in types that were previously
uninhabited. Furthermore, if you have a term that depends on the existence of a subtyping
judgement, then it should be possible to construct another term of the same type that doesn’t
rely on that subtyping judgement through the insertion of coercions – this can form the
basis of a type-checking algorithm, assuming you have a type-checking algorithm for the case
where C is empty.

When applying this idea to τ , the existence of subtype universes causes immediate
problems. If you have a term that depends on an object of a subtype universe, say ⟨A, c⟩ :
U(B), then you can attempt to construct another object of the same type by both inserting
coercions and by replacing instances of ⟨A, c⟩ with ⟨B, idB⟩. At the term-level, this idea
requires effort, but is sound. Unfortunately, the idea does not work in general due to the
presence of new types.

Consider a subtyping rule from which we may derive A ≤c B, and extending τ [C] with R.
Observe that

Σ(x : U(B)). EqU(B)(x, ⟨A, c⟩)

where EqA
def= ∀(x : A).∀(y : A).∀(P : Prop).(P (x) ↔ P (y)) is the type of propositional

Leibniz equality on a given type A. Whilst this type can be derived in τ [C; R], it cannot
be derived in τ [C], and there’s no obvious process from which we may try to extend the
type-checking algorithm for τ [C].

7 More accurately, UTT[C] is equivalent to a type theory which is a conservative extension of UTT – the
exact meaning of “conservativity” of τ with respect to T is not always clear with the rules for coercive
subtyping we have used.

TYPES 2022

9:12 A Metatheoretic Analysis of Subtype Universes

David Aspinall’s work on the predicative typed lambda calculus λPower lead to him
introducing a notion of “rough types” [1]. Where as one may intuit our first approach
described above as an attempt to blur terms together to extend a type-checking algorithm,
Aspinall’s approach instead blurs types together, organises them into rough types, and
develops a rough-type-checking algorithm. Aspinall shows that, as long as there is a method
to calculate the rough type of a given term, this is sufficient to be able to prove strong
normalisation for the calculus.

We believe Aspinall’s approach would also work for τ . However, it also possible to further
generalise the definitions and proofs given in sections 3.2 and 3.3 to cover practically most
non-monotonic subtyping relations. The key insight is that most non-monotonic subtyping
relations are still relatively well-behaved: by measuring how far a subtyping relation is from
being monotonic, we’re able to adjust the embedding of τ into UTT[C] in response. We first
introduce this measurement:

▶ Definition 20. A coercive subtyping relation A ≤c B is k-monotonic if LΓ(B)−LΓ(B)+k ≥
0. A set of coercive subtyping judgements and rules C is k-monotonic if every coercive
subtyping relation derived from C is k-monotonic.

This is a generalisation of monotonicity of subtyping – in particular, any given monotonic
subtyping relation is 0-monotonic. If we consider the example of pointed subtypes introduced
earlier in section 2.3

Σ(x : U(B)).σ1(x) ≤q B,

we can calculate that the difference between the level of the supertype and the level of the
subtype is independent of the choice of the type B.

LΓ(B) − LΓ(Σ(x : U(B)).σ1(x)) = LΓ(B) − max(LΓ(B) + 1, LΓ(σ1(x))) (1)
= min(−1, −LΓ(σ1(x))) (2)

If you wanted to extend τ [] with the rule B type ⊢ Σ(x : U(B)).σ1(x) ≤q B, then this
subtyping rule would be 1-monotonic. At worst, because a type can only be constructed with
a finite number of Us, we know that there must always exist some k such that this subtyping
rule is k-monotonic.

▶ Corollary 21. Let R be an i-monotonic coherent coercive subtyping rule, and let C be
a j-monotonic set of coherent coercive subtyping judgements. Then [C; R] is (at worst)
(i + j)-monotonic.

From here, one can modify the embedding δ described in section 3.2: if you have a
bounded measure k of the difference in level between a supertype and a subtype, then
this says that if you were attempting to embed τ [C] into UTT[C] by mapping U(B) to
Σ(X : TypeLΓ(B)).(X → δ(B)), then the particular choice of TypeLΓ(B) is k levels under
where it needs to be for δ(A) to have a name.

▶ Definition 22. For a given set of k-monotonic subtyping judgements C, define a syntactic
transformation δk : τ [C] → UTT[δk(C)] defined identically to δ except

δk(U(B)) def= Σ(X : TypeLΓ(B)+k).(X → δk(B)), δk(⟨A, c⟩) = (tLΓ(B)+k
LΓ(A) ◦n(δk(A)), δk(c))

F. Bradley and Z. Luo 9:13

As there is only a minor difference between δk and δ, it’s easy to see that a lot of the
proofs needed to show that δk is a well-behaved embedding that preserves term reduction
are almost identical to the proofs for δ, except for the extra terms of k, as seen in the proof
of theorem 23. As a result, the proofs of theorem 12 and lemma 14 are functionally identical,
as are the proofs regarding logical consistency, term reduction and strong normalisation.

▶ Theorem 23. For coherent and k-monotonic C, the rules of τ [C] are admissible in
UTT[δ(C)] under transformation by δk.

Proof. As τ is a subtheory of UTT[C] as discussed in section 2.3, the majority of the rules
of τ are effectively derivable in UTT[C] by default. We omit the trivial cases (such as rules
for the unit type, dependent function types, etc.) and instead focus on the non-trivial cases
regarding coercive subtyping and subtype universes.

δk-Sub-Intro

δk(Γ) ⊢ δk(f) : Π(x : δk(B)).δk(C)
δk(Γ) ⊢ δk(A) <δk(c) δk(B) δk(Γ) ⊢ δk(a) : δk(A)

δk(Γ) ⊢ δk(f)(δk(a)) : [δk(c)(δk(a))/x]δ(C)
derivable

δk-Sub-Comp

δk(Γ) ⊢ δk(f) : Πx:δk(A)δk(C)
δk(Γ) ⊢ δk(A) <δk(c) δk(B) δk(Γ) ⊢ δk(a) : δk(A)

Γ ⊢ δk(f)(δk(a)) = δk(f)(δk(c(a))) : [δk(c)(δk(a))/x]δk(C)
derivable

δk-U-Form
δk(Γ) ⊢ δk(B) type

δk(Γ) ⊢ Σ(X : TypeLΓ(B)+k).(X → δk(B)) : TypeLΓ(B)+k+1
derivable

δk-U-Intro
δk(Γ) ⊢ δk(A) <δk(c) δk(B)

δk(Γ) ⊢ δk(⟨A, c⟩) : Σ(X : TypeLΓ(B)+k).(X → δk(B))
derivable

δk-U-σ1-Elim

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
Γ ⊢ δk(t) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

Γ ⊢ TLΓ(B)+k ◦ π1(δk(t)) : Type
derivable

δk-U-σ2-Elim

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
δk(Γ) ⊢ δk(t) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

δk(Γ) ⊢ π2(δk(t)) : π1(δk(t)) → δk(B)
derivable

δk-U-σ1-Comp

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
δk(Γ) ⊢(δk(A), δk(c)) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

δk(Γ) ⊢ TLΓ(B)+k ◦ π1(δk(⟨A, c⟩)) = δk(A) : Type
derivable

δk-U-σ2-Comp

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
δk(Γ) ⊢ δk(A), δk(c)) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

δk(Γ) ⊢ π1(δk(⟨A, c⟩)) = δk(c) : δk(A) → δk(B)
derivable

◀

▶ Theorem 24 (Logical consistency). For k-monotonic C, τ is logically consistent, i.e. there
does not exist some Γ and p such that Γ ⊢ p : ∀(P : Prop).P .

▶ Theorem 25 (Preservation of one-step reduction). For k-monotonic C, if M ▷ N then
δ(M) ▷ δ(N).

▶ Corollary 26 (Preservation of multi-step reduction). For k-monotonic C, if M ▷∗ N then
δ(M) ▷∗ δ(N).

TYPES 2022

9:14 A Metatheoretic Analysis of Subtype Universes

▶ Theorem 27 (Strong normalisation). For k-monotonic C, if Γ ⊢ M : A, then M is strongly
normalisable, i.e. every possible sequence of reductions of M is finite.

▶ Remark 28. As in the case with monotonic subtyping, as the embedding δk is injective,
we can type-check any given term M of τ [C] with k-monotonic C by type-checking the term
δk(M) in UTT[δ(C)].

4 On Subtyping and Bounded Quantification

Works on subtyping and on specific type systems or programming languages with an imple-
mentation of subtyping or bounded quantification often have a variety of basic subtyping
rules or judgements used to enrich the type system. Some of these are particularly popular
amongst authors due to their power, or their ability in making for an expressive type system.
When it comes to the metatheory of subtyping, particular instances or combinations of
subtyping rules can also often cause problems with regards to normalisation and logical
consistency, but also in often desirable properties, such as the decidability of subtyping.

4.1 With Dependent Functions
Bounded quantification was first introduced by Cardelli and Wegner in the language Fun,
with a handful of subsumptive subtyping rules to introduce non-trivial subtypes into the
system [3]. Fun has been a core for study and analysis, and several variations, simplifications
and extensions have come about. In a paper analysing the subtyping of one of these variations
called minimal bounded Fun, Pierce proves that the subtyping relation is undecidable by
encoding the halting problem as a subtyping problem [17].

In particular, the interaction between two subtyping rules causes this undecidability; the
existence of a universal supertype Top, and a dependent function subtyping rule.

Γ ⊢ A type
Γ ⊢ A ≤ Top

Γ ⊢ B1 ≤ A1 Γ, α ≤ B1 ⊢ A2 ≤ B2

Γ ⊢ ∀(α ≤ A1).A2 ≤ ∀(α ≤ B1).B2

Top alone can cause a plethora of issues (as discussed later in this section), but the
function subtyping rule used is of particular interest. Castagna and Pierce have spoken about
the issues this rule presents, and have discussed several variations [4]. However, the version
presented above can also be presented in coercive subtyping.

▶ Lemma 29 (Coherency of Π-Infer). The subtyping rule

Π-Infer

Γ ⊢ A1 ≤c B1 Γ, a : A1 ⊢ A2 type
Γ, b : B1 ⊢ B2 type Γ, a : A1 ⊢[c(a)/b]B2 ≤d A2

Γ ⊢ Π(b : B1).B2 ≤q Π(a : A1).A2

is coherent, where

q = λ(g : Π(b : B1).B2).λ(a : A1).d(a, g(c(a)))

Proof. Per the definition of coherency, we have three conditions we need to check. First, we
check that q has the expected type.

q : (Π(x : B1).B2) → (Π(x : A1).A2)

F. Bradley and Z. Luo 9:15

Secondly, we check the case where A1 = B1 and B2 = A2, and thus c is the identity function
idA1 and d is the constant function λ(x : A1). idA2 . We obtain, through various computation
rules,

q = λ(g : Π(x : A1).A2).λ(x : A1).d(x, g(c(x))) (3)
= λ(g : Π(x : A1).A2).λ(x : A1).(λ(x : A1). id)(x, g(id(x))) (4)
= λ(g : Π(x : A1).A2).λ(x : A1). id(g(id(x))) (5)
= λ(g : Π(x : A1).A2).λ(x : A1).g(x) (6)
= idΠ(x:A1).A2) (7)

as desired. Similarly, for the third case, it’s easy to see that coherency of the hypothesis
implies equality for multiple different derivations of q. ◀

One of the primary hurdles with this subtyping rule is that how the context is filled
with regards to the codomains is uncertain, which may be evidence of an issue. Splitting
this rule into two, with one for contravariance in the domain and the other for covariance
in the codomain, is also possible [13] and arguably easier: Cardelli and Wegner’s original
formulation of the language Fun only uses a subtyping rule for the codomain, which can be
shown to be decidable [17].

4.2 With Universal Supertypes
In coercive subtyping, the implementation of a universal supertype is often impossible for the
sheer reason that it cannot be implemented coherently – Top cannot contain a single object8,
and so needs to be able to describe every possible object of the system. For extremely simple
type theories, such as a theory containing only finite types and no type constructors, this is
relatively trivial; but for even marginally more complex theories, the complexity and size of
Top grows rapidly.

Even ignoring coherency issues for a moment, the same approach we have taken with
respect to the metatheory of reflecting subtype universes on to type universes can’t be taken.
Adding a universal supertype Top to τ always results in non-monotonic subtyping; if we
choose any n ∈ ω such that LΓ(Top) def= n, we can always find a subtype of strictly greater
level (such as Un+1(1).)

Introducing bounded quantification in conjunction with Top into a system also has an
immediate concern in the semantics of the type ∀(X ≤ Top).X. Equivalently, in a system
where we have mechanised bounded quantification via subtype universes or power types, we
can consider the type U(Top) – for all intents and purposes, this should be a type of all types.
By Girard’s paradox, these systems should be non-normalising and thus inconsistent9 [7].

Under the set-theoretic containment semantics, any universal supertype has to be transfin-
ite in nature in the same way that a type of all types is transfinite in nature. It may be
possible to “solve” the metatheoretic issues that universal supertypes present by taking a
similar approach to type universes: by replacing Top with a series of partial supertypes
Top1, Top2, ... equipped with subtyping relations Top1 ≤ Top2 ≤

8 Assuming the system has at least two distinct terms!
9 There are several interesting routes through which one may attempt to obtain a proof of this inconsistency;

the traditional approach here is to obtain what is essentially a bijection between a type and its power
type, which is a contradiction by the diagonal lemma [10, 19]. Another possible route may be that,
through subtype universes, a type theory may be capable of modelling itself – how large this model may
be is unclear, however.

TYPES 2022

9:16 A Metatheoretic Analysis of Subtype Universes

In fact, with subtype universes, such a set of partial supertypes can completely replace
the typical use of type universes by replacing quantification over Typei with bounded
quantification over Topi. Furthermore, i doesn’t necessarily need to be indexed by ω; one
can take any partially ordered set I and, for i, j ∈ I, let Topi ≤ Topj whenever i ≤ j.

4.3 With Subtype Universes
A subtyping inference rule for power types introduced by both Cardelli and Aspinall is as
follows:

Γ ⊢ A ≤ B

Γ ⊢ Power(A) ≤ Power(B)

We can form an equivalent rule for τ as follows:

Γ ⊢ A ≤c B

Γ ⊢ U(A) ≤λ(X:U(A)).⟨σ1(X),c◦σ2(X)⟩ U(B)

which is well-typed and thus coherent by transitivity of subtyping. Under the set-theoretic
notion of subtypes as subsets, this is also an extremely useful rule; we can reason about
collections of subsets. On the other hand, this also greatly impacts any higher structure on
subtype universes; we may wish to reason about the subtypes of U(B) without taking into
account the subtypes of B itself.

There is also an issue of whether subtype universes and subtyping should be allowed to
interact in the first place; subtype universes are an extension of a system with subtyping, and
one may consider that system to have already had a set of subtyping relations judgements
and rules implemented. Even then, being able to reason about subtyping relations with
subtype universes can still be useful. We consider the following example:

O(n) def= Σ(x : N).(x < n)

O(n) ≤π1 N

N ≤λ(n:N).⟨O(n),π1⟩ U(N)

This example of ordinals-as-types was derived from looking at the logical consistency of
certain subtyping relations and attempting to recreate Girard’s paradox [7]. However, the
two above subtyping judgements have an interesting property; the coherency of the second
subtyping judgement now depends on the former. By allowing subtyping judgements to
quantify over subtype universes, the coherency of any one subtyping judgement becomes
dependent on the other judgements in the system.

4.4 Decidability of Typing and Subtyping
While we have sketched a proof that type-checking is decidable for monotonic subtyping and a
subset of non-monotonic subtyping (i.e. those which are k-monotonic), there is still the open
question of whether or not non-monotonic subtyping is decidable in general (i.e. for C that are
non-monotonic but where there does not exist a k such that C is k-monotonic). Furthermore,
our results rely primarily on the advantages that coercive subtyping brings: whether or not
these ideas apply to systems that use subsumptive subtyping is left unanswered, especially
for non-monotonicity.

F. Bradley and Z. Luo 9:17

There do exist examples of non-monotonic subtyping being decidable, such as Com-
pagnoni’s proof for System F ω

∧ [6]. F ω
∧ uses subsumptive subtyping and the dependent

function subtyping rule, but drops the universal supertype Top in favour of empty inter-
section types quantifying over a kind. Additionally, Aspinall’s work on power types lead to
the development of rough-typing [1] – a kind of approximate type-checking that’s powerful
enough to still prove results such as strong normalisation. The algorithm Aspinall outlines
provides enough information that one could likely refine it into a full type-checking algorithm.

In both Aspinall’s work on power types and in Hutchins’ work on pure subtype systems, [11]
the authors point out that bounded quantification can be used to subsume a notion of kinds.
Aspinall emulates the Edinburgh Logical Framework in λPower, and his rough type-checking
can be seen as a notion of kinding . Likewise, Hutchins describes a process through which
functions using kinds can be equivalently described through bounded quantification over
types without any loss of generality.

This does open up several questions, such as whether you can “retrofit” kinds into a pure
type system with bounded quantification. The difficulty of a generation or inversion lemma
when working without coercive subtyping lends to one fear in regards to the combined use of
both Top and power types. Top ≤ Top allows one to express non-terminating computations
with power types; in a system where the distinction between terms and types are blurred, is
it possible to form non-normalising types, just as one can express non-normalising terms?

5 Applications

5.1 Bounded Quantification
The mechanisation of bounded quantification was one of the key motivations for introducing
power types in Cardelli’s original paper [2]. Cardelli described a focus on the expressiveness
of his system at the cost of non-terminating type-checking, but his formulation considered
the case where subtyping was entire subsumed by typing (i.e. A ≤ B as shorthand for
A : Power(B)). Maclean and Luo’s subtype universes showed that the mechanisation of
bounded quantification could preserve metatheoretic properties, but also kept typing and
subtyping disjoint enough that subtype universes could lead to a more expressive system [16].

Subtype universes as described in this paper are capable of modelling bounded quantific-
ation; one should consider λ(A ≤ B).M as shorthand for λ(x : U(B)).[σ1(x)/A]M . This is
particularly useful when it comes to record types. For example, consider a function

darken : {luminosity : Float32} → Float32 → {luminosity : Float32}

This function is clearly sufficient in the case where we’re handling objects that only carry
luminosity data, but if we were to use subtyping to parse an object which also carried hue
and saturation data, then we would receive an object with only luminosity data back. To fix
this issue, we can use bounded quantification, and instead use the function

darken : Π(X : U({luminosity : Float32})).σ1(X) → Float32 → σ1(X)

which allows us to preserve any excess information parsed in.
Subtyping can also be taken into consideration and used when designing languages and

software to prevent errors. Often a collection of types designed to model information or
objects will have some higher notion of structure on them; for example, the type Q equipped
with addition, subtraction, multiplication and division forms a field. When designing the
data types used to model these objects, we may wish for these operations to be as close to

TYPES 2022

9:18 A Metatheoretic Analysis of Subtype Universes

independent of which type we’re considering them in. For example, take Int16 ≤c Float32.
For any two x, y : Int16, we would expect c(x + y) = c(x) + c(y), and we may wish to choose
a c or change our definitions of + accordingly.

These approaches make for future-safe design and development of software. Often during
the development of software one may wish to refactor code to improve its maintainability,
reduce complexity, or prepare for adding new features; by taking these safe-guarding measures
in the design-process, errors can be prevented and type-safety can be ensured. We also retain
one of the key advantages of subtype universes and power types in that these objects can be
interpreted as types; we can consider functions that range over types, which is not possible
with just bounded quantification. Our system is also capable of modelling new kinds of
subtyping relations through this process.

For example, for a given type B, consider the type of pointed subtypes Π(x : U(B)).σ1(x).
Intuitively, a pointed subtype of B is also a subtype of B, but Maclean and Luo’s subtype
universes had no way of describing this subtyping relation coherently. However, with the
introduction of σ2 in our system, we can obtain the exact coercion through which one type
is a subtype of another type, and so we can use the coherent subtype relation

Σ(x : U(B)).σ1(x) ≤q B where q
def= λ(y : Π(x : U(B)).σ1(x)).(σ2(π1(y)))(π2(y)).

With Maclean’s subtype universes, we could implement behavioural subtyping with relative
ease, but one could not describe subtyping relations which used bounded quantification.
Being able to combine the two makes for a more expressive system.

5.2 Natural Langauge Semantics
Subtyping has a variety of applications in natural language semantics in describing the
relationships between different categories and groups. When we start formalising these
relationships, there quickly becomes a desire for some notion of bounded quantification.

Montague grammar, introduced in Richard Montague’s seminal work, solves this problem
by interpreting categorisation as propositions [18]. By semantically typing different language
constructs, we can interpret a fully constructed sentence as a type. For example, we could
interpret the sentence “all grass is green” as a term of type ∀x.isGrass(x) → isGreen(x). As
lemongrass is a type of grass and thus isLemongrass(x) ≤ isGrass(x), we would also obtain
the sentence “all lemongrass is green”10.

However, we quickly run into an issue with Montague grammar in that we can form
nonsense sentences: we can semantically type the sentence “all purple is trains” or “the
month of December plays football”, but these sentences don’t make sense and are likely
undesirable. We can instead model natural language semantics in a modern type theory,
where every category of objects has its own type and subtyping is used to describe the
relationships between categories of objects [14, 5]. For example, we can consider the type of
Woman as a subtype of Human, or Chair as a subtype of Furniture. This allows us to use
subtype universes to model categorisation of objects. Using U -Infer as an example, one may
infer from Fish ≤ Animals that U(Fish) ≤ U(Animals) – i.e. that a type of species of fish is
also type of species of animal.

We can also use subtype universes to model subsective adjectives. For example, how
should one interpret the adjective “skillful” versus the adjective “small”? Let CN be the
universe of common nouns. For any common noun, the interpretation of small : Π(A :

10 While one may understand types as propositions via the Curry-Howard correspondence, the subtleties of
subtyping with propositions in a type theory where propositions are treated distinctly from types is still
an unexplored topic. Further analysis and discussion on this is outside the scope of this work, however.

F. Bradley and Z. Luo 9:19

CN).A → Prop is both sound and meaningful. However, using the same idea to obtain
skillful : Π(A : CN).A → Prop presents some issues. Whilst skillful(Doctor) makes sense, an
example such as skillful(Chair) is obviously not intended. If we wish to exclude unintended
combinations from our modelling of language, we can instead consider the semantic typing
skillful : Π(A : U(Human)).σ1(A) → Prop. Of course, as Doctor ≤c Human, we have that
skillful(⟨Doctor, c⟩) is a well-typed expression. However, this now excludes unintended cases
– skillful(⟨Chair, c′⟩) is ill-typed because Chair ̸≤ Human.

5.3 Point-Set Topology
Subtyping has some interesting relationships with topology. For example, one could choose
a set of subtyping judgements and rules such that a type and its subtypes model a space
and its open sets. Under this application, the subtype universe of a space corresponds to its
topology – the set of open sets.

This is a relatively easy process if the space we want to look at has a given metric, as the
topology derived from a metric space is given by the union of open balls around points. As
an example, we consider the rational numbers with the Euclidean metric (denoted d). We
first model the rational numbers Q as N×N /0 with addition, multiplication, metric, and
ordering defined in the typical ways, e.g. we define the Euclidean metric d : Q → Q → Q
such that d(x, y) = |x − y|.

We then consider the following three coherent subtyping rules:

Γ ⊢ z : Q, Γ ⊢ r : Q
Γ ⊢ Σ(x : Q).(d(z, x) < r) ≤π1 Q

Γ ⊢ I type Γ, x : I ⊢ A ≤c Q
Γ ⊢ Σ(i : I)A ≤λ(p:Σ(i:I)A).c(π1(p),π2(p)) Q

Γ ⊢ A <c Q Γ ⊢ B <c′ Q
Γ ⊢ Σ(a : A).Σ(b : B).(c(a) = c′(b)) <c◦π1 Q

These three rules are sufficient for U(Q) to be a topology of Q. It’s rather simple to check
that there exists an empty subtype; that the arbitrary union of subtypes is also a subtype;
and that the intersection of two subtypes is also a subtype.

We do, however, have a multitude of technical and semantic issues to work our way
through. Is this the correct notion of union and intersection, for example? Have we chosen
our basis correctly, or is there a different basis for the topology which is more convenient to
work with (for example, slicing the real line)?

Under the above rules, there exists multiple empty subtypes – whilst the rules we’ve
introduced could be further refined to prevent these issues, we may also wish to reason
about U(Q) as a setoid. Similarly, we may also want to reason about Q as a setoid as there
exists multiple different ways of expressing the same rational number: for example, 1/2
is represented by the pairs (1, 2), (2, 4), (3, 6), and so on. There is an obvious notion of
propositional equality EqQ we can equip to Q by defining

EqQ(p, q) def= (π1(p − q) = 0) : Prop .

However, with a notion of point-set topology formalised, we can also equip Q with a notion
of equality based on open sets.

EqQ
′(p, q) def= ∀(x : U(Q)).((∃(r : σ1(x)).(p = r)) ∧ (∃(s : σ1(x)).(q = s))).

Whilst EqQ is certainly more reasonable for reasoning about arithmetic or number theory, it’s
plausible that EqQ

′ and similar notions may be more useful for reasoning about continuity,
limits, or Cauchy sequences. Exploring this further is outside the scope of this paper, however.

TYPES 2022

9:20 A Metatheoretic Analysis of Subtype Universes

When using subtype universes to model topologies, the coercions used in the subtyping
judgements can be understood as mapping open sets to open sets. We leave open the
question of whether these coercions can be interpreted as a continuous embedding of one
space into another and what this means for the semantics of a type theory. Nonetheless,
understanding subtyping as continuous embedding could provide some new intuition for the
problems regarding universal supertypes: Top is not only a universal supertype, but also a
space in which every space in a type theory can be embedded into. If we want to be able to
use a universal super type with coercive subtyping, then we need some way to describe every
object of our type theory.

We can immediately ask questions and draw conclusions about what such a space looks
like: for example, if we take a type theory consisting only of finite types with no type
constructors, then Top is described by N. For any type theory modelling anything more
complicated, Top is unlikely to look like a slice of R∞, as any space embedding into R∞

must be both seperable and metrizable11.

6 Conclusion

This work generalised and extended Maclean and Luo’s prior notion of subtype universes in
order to provide support for a much wider range of coercive subtyping relations. By examining
a type system lacking the traditional type universe hierarchy of Type0, Type1, Type2, ..., we
have allowed for subtypes more complicated than their supertype; and by allowing one to
obtain the coercion through the σ2 operator, we are able to express coherent subtyping
judgements and rules that use subtype universes.

In doing so, we have found that the metatheory remains relatively well-behaved regardless
of the choice in subtyping relations; both monotonic and k-monotonic subtyping result in
logical consistency and strong normalisation of terms. Additionally, we have sketched a proof
of the decidability of type-checking and subtyping in both cases by embedding terms into
UTT[C] and type-checking there instead. However, whether or not similar results can be
proven for non-monotonic subtyping in general (i.e. where there does not exist a k such that
subtyping is k-monotonic) is left open.

Throughout the course of this paper, we hope to have shed some light regarding particular
uses of subtyping, such as the difficulties of using a universal supertype Top. However, we
have left several questions open, such as whether or not τ is confluent, the subtleties of
subtyping between propositions, and how closely linked subtyping and subtype universes are
to a notion of continuous embeddings.

In particular, we want to more closely examine Hutchins’ work on pure subtype sys-
tems [11]: systems akin to pure type systems wherein the typing relation is entirely subsumed
by the subtyping relation, a notion “almost completely dual to [...] the approach taken by
Cardelli” . Simple questions such as the decidability of subtyping or how one may implement
a notion of propositional logic into a pure subtype system are left open, and we look forward
to working on this in the future.

References
1 David Aspinall. Subtyping with power types. In Peter G. Clote and Helmut Schwichtenberg,

editors, Computer Science Logic, pages 156–171, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

11 More formally, every seperable and metrizable space is homeomorphic to a subset of the Hilbert cube
[0, 1]∞, which is a subspace of R∞. This is established in the proof of Urysohn’s metrization theorem.

F. Bradley and Z. Luo 9:21

2 Luca Cardelli. Structural subtyping and the notion of power type. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’88, pages 70–79, New York, NY, USA, 1988. Association for Computing Machinery. doi:
10.1145/73560.73566.

3 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv., 17(4):471–523, December 1985. doi:10.1145/6041.6042.

4 Giuseppe Castagna and Benjamin C. Pierce. Decidable bounded quantification. In Proceedings
of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’94, pages 151–162, New York, NY, USA, 1994. Association for Computing Machinery.
doi:10.1145/174675.177844.

5 Stergios Chatzikyriakidis and Zhaohui Luo. On the interpretation of common nouns:
Types versus predicates. In Stergios Chatzikyriakidis and Zhaohui Luo, editors, Mod-
ern Perspectives in Type-Theoretical Semantics, pages 43–70. Springer Cham, 2017. doi:
10.1007/978-3-319-50422-3.

6 Adriana Compagnoni. Higher-order subtyping and its decidability. Information and Computa-
tion, 191(1):41–103, 2004. doi:10.1016/j.ic.2004.01.001.

7 Thierry Coquand. An analysis of Girard’s paradox. Technical Report RR-0531, INRIA, May
1986. URL: https://hal.inria.fr/inria-00076023.

8 Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University
of Edinburgh, 1994.

9 Douglas J. Howe. The computational behaviour of girard’s paradox. Technical report, Cornell
University, Ithaca, New York, USA, March 1987.

10 Antonius J. C. Hurkens. A simplification of Girard’s paradox. In Mariangiola Dezani-Ciancaglini
and Gordon Plotkin, editors, Typed Lambda Calculi and Applications, pages 266–278, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg.

11 DeLesley S. Hutchins. Pure subtype systems. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’10, pages
287–298, New York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/
1706299.1706334.

12 Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, London, March 1994.

13 Zhaohui Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, February
1999. doi:10.1093/logcom/9.1.105.

14 Zhaohui Luo. Common nouns as types. In D. Béchet and A. Dikovsky, editors, Proceedings of
the 7th International Conference on Logical Aspects of Computational Linguistics (LACL’12),
pages 173–185, Berlin, Heidelberg, 2012. Springer-Verlag.

15 Zhaohui Luo, Sergey Soloviev, and Tao Xue. Coercive subtyping: Theory and implementation.
Information and Computation, 223:18–42, 2013. doi:10.1016/j.ic.2012.10.020.

16 Harry Maclean and Zhaohui Luo. Subtype Universes. In Ugo de’Liguoro, Stefano Berardi,
and Thorsten Altenkirch, editors, 26th International Conference on Types for Proofs and
Programs (TYPES 2020), volume 188 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 9:1–9:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.TYPES.2020.9.

17 Benjamin C. Pierce. Bounded quantification is undecidable. In Proceedings of the 19th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92,
pages 305–315, New York, NY, USA, 1992. Association for Computing Machinery. doi:
10.1145/143165.143228.

18 Richmond H. Thomason, editor. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974.

19 Kevin Watkins. Hurkens’ simplification of Girard’s paradox, July 2004. URL: https://www.
cs.cmu.edu/~kw/research/hurkens95tlca.elf.

TYPES 2022

https://doi.org/10.1145/73560.73566
https://doi.org/10.1145/73560.73566
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/174675.177844
https://doi.org/10.1007/978-3-319-50422-3
https://doi.org/10.1007/978-3-319-50422-3
https://doi.org/10.1016/j.ic.2004.01.001
https://hal.inria.fr/inria-00076023
https://doi.org/10.1145/1706299.1706334
https://doi.org/10.1145/1706299.1706334
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.4230/LIPIcs.TYPES.2020.9
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/143165.143228
https://www.cs.cmu.edu/~kw/research/hurkens95tlca.elf
https://www.cs.cmu.edu/~kw/research/hurkens95tlca.elf

	1 Introduction
	2 Expressive Subtype Universes
	2.1 Coercive Subtyping
	2.2 Subtype Universes
	2.3 Flat Type Theories

	3 Metatheory
	3.1 Type Level
	3.2 A Syntactic Transformation
	3.3 On Monotonic Subtyping
	3.4 On Non-Mononotic Subtyping

	4 On Subtyping and Bounded Quantification
	4.1 With Dependent Functions
	4.2 With Universal Supertypes
	4.3 With Subtype Universes
	4.4 Decidability of Typing and Subtyping

	5 Applications
	5.1 Bounded Quantification
	5.2 Natural Langauge Semantics
	5.3 Point-Set Topology

	6 Conclusion

