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1 Introduction

Quantitative algebraic reasoning was formalized in a series of articles of Bacci, Mardare,
Panangaden and Plotkin [5, 15, 16, 6] as a tool for studying computational effects in
probabilistic computation. Those papers work with algebras in the category Met of metric
spaces or CMet of complete metric spaces. Quantitative algebras are algebras acting on
a (complete) metric space A so that every n-ary operation is a nonexpanding map from
An, with the maximum metric, to A. If the underlying metric is an ultrametric, we speak
about ultra-quantitative algebras. Mardare et al. introduced quantitative equations, which
are formal expressions t =ε t

′ where t and t′ are terms and ε ≥ 0 is a rational number. A
quantitative algebra A satisfies this equation iff for every interpretation of the variables the
elements of A corresponding to t and t′ have distance at most ε. A variety (called 1-basic
variety in [15]) is a class of quantitative algebras presented by a set of quantitative equations.
Classical varieties of algebras are well known to correspond bijectively to finitary monads
T on Set (preserving directed colimits): every variety is isomorphic to the category SetT of
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10:2 Strongly Finitary Monads for Varieties of Quantitative Algebras

algebras for T, and vice versa. The question whether an analogous correspondence holds
for quantitative algebras has been posed in [1] and [17]. For ultra-quantitative algebras we
answer this by working with enriched (i.e. locally nonexpanding) monads on the category Met
of metric spaces, and its full subcategories UMet of ultrametric spaces and CUMet of complete
ultrametric spaces. An enriched monad is strongly finitary if it is a left Kan extension of its
restriction to finite discrete spaces. We characterize these monads as the enriched finitary
monads preserving precongruences. Every strongly finitary monad on Met, UMet or CUMet
is proved to be the free-algebra monad of a variety of quantitative algebras (Theorem 52 and
Theorem 56).

For UMet and CUMet we also prove the converse: for every variety of ultra-quantitative
algebras the free-algebra monad is strongly finitary (Theorem 47). We conclude that varieties
bijectively correspond to strongly finitary monads on UMet or CUMet. It is an open problem
whether this also holds for Met.

Related Work
A closely related result holds for partially ordered algebras (with nonexpanding operations).
Here varieties are presented by inequations between terms. Kurz and Velebil [13] proved that
they bijectively correspond to strongly finitary monads on the category Pos of posets.

The main tool of Mardare et at. ([15, 16]) are ω-basic equations: for a finite set of
expressions xi =δi yi (where xi, yi are variables and δi ≥ 0) and for terms t and t′ one writes
xi =δi

yi ⊢ t =ε t
′. An algebra A satisfies this equation if, for every interpretation f of the

variables satisfying d(f(xi), f(yi)) ≤ δi for all i, the elements corresponding to t and t′ have
distance at most ε. A class of quantitative algebras presented by such equations is called
an ω-basic variety. Unfortunately, the free-algebra monad of an ω-basic variety need not
be finitary ([1], Example 4.1). Monads on UMet corresponding to ω-basic varieties were
characterized in [1], Corollary 4.15.

Full proofs of the results presented in this extended abstract can be found in [3].

2 Strongly Finitary Functors

In this section we introduce strongly finitary functors, and present some of their properties.
Later we prove a bijective correspondence of varieties and strongly finitary monads for UMet
and CUMet.

▶ Assumption 1. Throughout our paper we work with categories and functors enriched
over a symmetric monoidal closed category (V ,⊗, I). We recall these concepts shortly. Our
leading examples of V are metric spaces, ultrametric spaces and partially ordered sets.

▶ Definition 2 ([8], 6.12). A symmetric monoidal closed category is given by a category
V , a bifunctor ⊗ : V × V → V and an object I. Moreover, natural isomorphisms are given
expressing that ⊗ is commutative and associative, and has the unit I (all up to coherent natural
isomorphisms). Finally, for every object Y a right adjoint of the functor − ⊗ Y : V → V is
given. We denote it by [Y,−] and denote the morphism corresponding to f : X ⊗ Y → Z by
f̂ : Y → [X,Z].

Often ⊗ is the categorical product and I the terminal object; then V is cartesian closed.

▶ Example 3.
(1) V = Pos, the category of posets, is cartesian closed, [X,Y ] is the poset of all monotone

maps f : X → Y ordered pointwise. Here f̂ = curryf is the curried form of f .
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(2) V = Met, the category of (extended) metric spaces and nonexpanding maps. Objects are
metric spaces defined as usual, except that the distance ∞ is allowed. Nonexpanding
maps are those maps f : X → Y with d(x, x′) ≥ d(f(x), f(x′)) for all x, x′ ∈ X.
A product of metric spaces X × Y is the metric space on the cartesian product with the
maximum metric

d((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)}.

This category is not cartesian closed: curryfication is not bijective. However, Met is
symmetric closed monoidal w.r.t. the tensor product X⊗Y which is the cartesian product
with the addition metric

d((x, y), (x′, y′)) = d(x, x′) + d(y, y′).

Here [X,Y ] is the metric space Met(X,Y ) of all morphisms f : X → Y with the
supremum metric: the distance of f, g : X → Y is

d(f, g) = sup
x∈X

d(f(x), g(x)).

And I is the singleton space.
(3) The cartesian closed category UMet of (extended) ultrametric spaces is the full subcategory

of Met on spaces satisfying the following stricter triangle inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}.

Here the curryfication of morphisms f : X × Y → Z to f̂ : Y → [X,Z] is bijective.
(4) The category CMet of complete metric spaces is the full subcategory of Met on spaces

with limits of all Cauchy sequences. It has the same symmetric closed monoidal structure
as above: if X and Y are complete spaces, then so are X ⊗ Y and [X,Y ].
Analogously to (3) the category CUMet of complete ultrametric spaces is cartesian closed.

▶ Convention 4. By a category C we always mean a category enriched over V . It is given by
(1) a class obC of objects,
(2) an object C (X,Y ) of V (called the hom-object) for every pair X,Y in obC ,
(3) a ’unit’ morphism uX : I → C (X,X) in V for every object X ∈ obC , and
(4) ’composition’ morphisms

cX,Y,Z : C (X,Y ) ⊗ C (Y,Z) → C (X,Z)

for all X,Y, Z ∈ obC , subject to commutative diagrams expressing the associativity of
composition and the fact that uX are units of composition. For details see [8], 6.2.1.

▶ Example 5.
(1) If V = Met then C is an ordinary category in which every hom-set C (X,Y ) carries a

metric such that composition is nonexpanding. Analogously for V = CMet or UMet.
(2) If V = Pos then each hom-set C (X,Y ) carries a partial order such that composition is

monotone.

Let us recall the concept of an enriched functor F : C → C ′ for (enriched) categories C

and C ′. It assigns
(1) an object FX ∈ obC ′ to every object X ∈ obC , and
(2) a morphism FX,Y : C (X,Y ) → C ′(FX,FY ) of V to every pair X,Y ∈ obC so that

the expected diagrams expressing that F preserves composition and identity morphisms
commute.

CALCO 2023



10:4 Strongly Finitary Monads for Varieties of Quantitative Algebras

▶ Convention 6. By a functor we always mean an enriched functor. We use ’ordinary
functor’ in the few cases where a non-enriched functor is meant.

▶ Example 7.
(1) For categories enriched over Met a functor F : C → C ′ is an ordinary functor which is

locally nonexpanding: given f, g ∈ C (X,Y ) we have d(f, g) ≥ d(Ff, Fg). Analogously
for CMet or UMet.

(2) For categories enriched over Pos functors F are the locally monotone ordinary functors:
given f ≤ g in C (X,Y ), we get Ff ≤ Fg in C (FX,FY ).

▶ Remark 8.
(1) In general one also needs the concept of an enriched natural transformation between

parallel (enriched) functors. However, if V is one of the categories of Example 3, this
concept is just that of an ordinary natural transformation between the underlying
ordinary functors.

(2) Given two categories D ,C , we denote by [D ,C ] the category of all functors F : D → C

enriched by assigning to every pair of functors F,G : D → C an appropriate object
[F,G] of V of all natural transformations.
In case V = Met, UMet or CMet the distance of τ, τ ′ : F → G in [F,G] is
supX∈obD d(τX , τ

′
X).

▶ Notation 9.
(1) Every set X is considered as a discrete poset: x ⊑ x′ iff x = x′. This is the coproduct∐

X I in Pos. Analogously, X is considered as a discrete metric space: all distances of
x ̸= x′ are ∞. This is the coproduct

∐
X I in Met (and also in UMet and CUMet).

(2) For the category Setf of finite sets and mappings we define a functor

K : Setf → V , X 7→
∐
X

I.

Thus for V = Met, CMet, UMet or Pos it assigns to every finite set the corresponding
discrete object.

(3) Let us recall the concept of the (enriched) left Kan extension of a functor F : A → C

along a functor K : A → C [11]: this is an endofunctor LanKF : C → C endowed with
a universal natural transformation τ : F → (LanKF ) ·K. The universal property states
that given a natural transformation σ : F → G ·K for any endofunctor G : C → C , there
exists a unique natural transformation σ : LanKF → G with σ = σK · τ . The functor
LanKF is unique up to a natural isomorphism.

▶ Definition 10 (Kelly and Lack [12]). An endofunctor F of V is strongly finitary if it is a
left Kan extension of its restriction F ·K to Setf . Shortly: F = LanK(F ·K).

▶ Example 11.
1. For every natural number n the endofunctor (−)n of the n-th power is strongly finitary

on Met, UMet and CUMet.
2. A coproduct of strongly finitary functors is strongly finitary.

▶ Theorem 12 ([12]). If V is cartesian closed, then strongly finitary endofunctors are closed
under composition.

▶ Open Problem 13. Are all strongly finitary endofunctors on Met closed under composition?
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In order to characterize strong finitarity for endofunctors on V = Met, UMet and CMet,
we apply Kelly’s concept of density presentation that we now recall. For that we first shortly
recall weighted colimits.

▶ Definition 14 ([8, 11]).
(1) A weighted diagram in a category C is given by a functor D : D → C together with a

weight W : Dop → V . A weighted colimit is an object C = colimWD of C together with
isomorphisms in V :

ψX : C (C,X) → [Dop,C ](W,C (D−, X))

natural in X ∈ obC .
(2) The unit of this colimit is the natural transformation ν = ψC(idC) : W → C (D−, C).
(3) A functor F : C → C ′ preserves this colimit if colimW (F ·D) = FC with the unit having

components Fνd for d ∈ D .

In all categories of Example 3 weighted colimits (for all D small) exist.

▶ Example 15. (Conical) directed colimits are the special case where D is a directed poset
(every finite subset has an upper bound), and the weight W is trivial: the constant functor
with value 1 (the terminal object).
(1) In Pos directed colimits are formed on the level of the underlying sets. They commute

with finite products.
(2) Directed colimits in Met, UMet and CMet also exist, but they are not formed on the level

of the underlying sets. For example, consider the diagram of metric space An = {0, 1}
with dn(0, 1) = 2−n, where the connecting maps are id : An → An+1 (n < ω). The
colimit is a singleton space.

▶ Lemma 16. In Met, UMet and CUMet every space is a directed colimit of all of its finite
subspaces.

▶ Theorem 17. Directed colimits in Met, UMet or CMet commute with finite products.

Proof sketch.
(1) For a directed diagram (Di)i∈I in Met, cocones ci : Di → C forming a colimit were

characterized in [4], Lemma 2.4, by the following properties: (a) C =
⋃

i∈I ci[Di], and (b)
for every i ∈ I, given y, y′ ∈ Di we have d(ci(y), ci(y′)) = infj≥i d(fj(y), fj(y′)), where
fj : Di → Dj denotes the connecting map.
Given another directed diagram (D′

i)i∈I with a cocone c′
i : D′

i → C ′ satisfying (a) and
(b), it is our task to prove that the cocone ci × c′

i : Di ×D′
i → C × C ′ satisfies (a), (b),

too. Since I is directed, (a) is clear, and (b) needs just a short computation.
(2) The argument for UMet is the same.
(3) For directed colimits in CMet the characterization of colimit cocones is analogous: (b)

is unchanged, and in (a) one states that
⋃

i∈I ci[Di] is dense in C. The proof is then
analogous to (1). ◀

▶ Definition 18. A functor is finitary if it preserves directed colimits.

▶ Example 19.
(1) An endofunctor of Set is strongly finitary iff it is finitary.
(2) An endofunctor of Pos is strongly finitary iff it is finitary and preserves reflexive coinserters,

see [2].

CALCO 2023



10:6 Strongly Finitary Monads for Varieties of Quantitative Algebras

▶ Notation 20. Let K : A → C be a functor. We denote by K̃ : C → [A op,V ] the functor
with K̃C = C (K−, C).

For example, the functor K : Setf → Met yields K̃ : Met → [Setop
f ,Met] taking a metric

space M to the functor M (−) : Setop
f → Met of finite powers of M .

▶ Definition 21 ([11]). A density presentation of a functor K : A → C is a collection of
weighted colimits in C such that
(a) K̃ preserves those colimits, and
(b) C is the (iterated) closure of the image K[A ] under those colimits.

▶ Example 22. A density presentation of the functor K : Setf → Met (Notation 9) is given
by all directed colimits and all precongruences (a name borrowed from [9]) which we now
present. They express every metric space as a colimit of discrete spaces. (The weight used
for precongruence is, however, not discrete.)

▶ Notation 23. For every metric space M let |M | denote its underlying set (a discrete
metric space).

▶ Definition 24.
(1) We define the basic weight W0 : Dop

0 → Met as follows. The category D0 consists of
a. the linearly ordered set of all rational numbers ε ≥ 0,
b. two parallel cocones of it λε, ρε : ε → a, and
c. a morphism σε : a → ε splitting that pair: λε · σε = id = ρε · σε (for all ε). The posets

D0(λε, ρε) are all discrete.
The values of W0 are W0a = {0} and W0ε = {l, r} with d(l, r) = ε. The morphisms
W0λε,W0ρε : {0} → {l, r} are given by 0 7→ l, 0 7→ r, respectively, and W0σε is clear.

(2) For every metric space M we define its precongruence as the weighted diagram DM :
D0 → Met with the basic weight W0, where DMa = |M | and DMε ⊆ |M | × |M | is the
discrete space of all pairs of distance at most ε. Here Dλε, Dρε : DMε → |M | are the
projections πl and πr, respectively, and D0σε : |M | → DMε is the diagonal. The diagram
DM assigns to the morphism ε ≤ ε′ the inclusion map of the subset DMε of DMε′.

▶ Proposition 25. Every metric space M is the weighted colimit of its precongruence in Met.

Proof. For every space X, to give a natural transformation τ : W0 → [Dop
0 ,Met](DM −, X)

means to specify a map f = τa(0) : |M | → X together with maps τε(l), τε(r) : DMε → X such
that τε(l) = f · πl and τε(r) = f · πr. Thus τ is determined by f , and the last equations are
equivalent to f : M → X being nonexpanding. The desired isomorphism ψX of Definition 14
is given by ψX(τ) = f . ◀

▶ Remark 26. To define precongruences in UMet, we just use the codomain restrictions
W0 : Dop

0 → UMet and DM : D0 → UMet. Again, every ultrametric space is the weighted
colimit of its precongruence in UMet. Analogously for CUMet.

▶ Example 27. The categories Met, UMet, CMet and CUMet have a density presentation of
K (Notation 9) consisting of all directed diagrams and precongruences of finite spaces. Indeed,
in Definition 21 Condition (a) follows from Example 15. For Condition (b) observe that
finite metric spaces are obtained from Setf as colimits of precongruences by Proposition 25,
and every metric space is a directed colimit of all of its finite subspaces in Met. Analogously
for the three subcategories of Met.
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The importance of the concept of density presentation for our paper stems from the
following result of Kelly:

▶ Theorem 28 ([11], Theorem 5.29). Given a density presentation of a functor K : A → C ,
an endofunctor T of C fulfils T = LanK(T ·K) iff it preserves the colimits of that presentation.

▶ Corollary 29. An endofunctor of Met, UMet, CMet or CUMet is strongly finitary iff it
preserves directed colimits and colimits of precongruences.

This follows from Theorem 28 and the example above.

3 Varieties of Quantitative Algebras

We now prove that varieties of ultra-quantitative algebras bijectively correspond to strongly
finitary monads on UMet. These are monads carried by a strongly finitary endofunctor.
Throughout this section Σ = (Σn)n∈N denotes a signature, and V is a specified countable set
of variables.

▶ Notation 30.
(1) Following Mardare, Panangaden and Plotkin [15], a quantitative algebra is a metric

space A endowed with a nonexpanding operation σA : An → A for every σ ∈ Σn (w.r.t.
the maximum metric (Example 3)). We denote by Σ-Met the category of quantitative
algebras and nonexpanding homomorphisms. Its forgetful functor is denoted by UΣ :
Σ-Met → Met.

(2) If A is an ultrametric space we speak about an ultra-quantitative algebra and denote the
corresponding category by Σ-UMet.

(3) Analogously, a complete ultra-quantitative algebra is an ultra-quantitative algebra carried
by a complete metric space. The category Σ-CUMet is the corresponding full subcategory
of Σ-UMet. We again use UΣ : Σ-CUMet → CUMet for the forgetful functor.

▶ Example 31.
(1) A free quantitative algebra on a metric space M is the usual algebra TΣM of terms on

variables from |M |. That is, the smallest set containing |M | and such that for every n-ary
symbol σ and every n-tuple of terms ti (i < n) we obtain a composite term σ(ti)i<n. To
describe the metric, let us introduce the following equivalence ∼ on TΣM (similarity of
terms): it is the smallest equivalence turning all variables of |M | into one class, and such
that σ(ti)i<n ∼ σ′(t′i)i<n′ holds iff σ = σ′ and ti ∼ t′i for all i < n. The metric of TΣM

extends that of M as follows: d(t, t′) = ∞ if t is not similar to t′. For similar terms
t = σ(ti) and t′ = σ(t′i) we put d(t, t′) = maxi<n d(ti, t′i).

(2) If M is an ultrametric space, the space TΣM is clearly ultrametric, too. This is the free
quantitative algebra in Σ-UMet.

(3) If M is a complete space, TΣM is also complete, and this is the free quantitative algebra
on M in Σ-CMet.

In particular, if we consider the specified set V of variables as a discrete metric space, then
TΣV is the discrete algebra of usual terms. For every algebra A and every interpretation of
variables f : V → A (in Met, UMet or CUMet) we denote by f ♯ : TΣV → A the corresponding
homomorphism: it interprets terms in A.

CALCO 2023



10:8 Strongly Finitary Monads for Varieties of Quantitative Algebras

▶ Definition 32 ([15]). By a quantitative equation (aka 1-basic quantitative equation) is
meant a formal expression t =ε t

′ where t, t′ are terms in TΣV and ε ≥ 0 is a rational
number. An algebra A in Σ-Met (Σ-UMet or Σ-CUMet) satisfies that equation if for every
interpretation f : V → A we have d(f ♯(t), f ♯(t′)) ≤ ε. We write t = t′ in case ε = 0.

By a variety, aka 1-basic variety, of quantitative (or ultra-quantitative or complete ultra-
quantitative) algebras is meant a full subcategory of Σ-Met (or Σ-UMet or Σ-CUMet, resp.)
specified by a set of quantitative equations.

▶ Example 33.
(1) Quantitative monoids are given by the usual signature: a binary symbol · and a constant

e, and by the usual equations: (x · y) · z = x · (y · z), e · x = x, and x · e = x.
(2) Almost commutative monoids are quantitative monoids in which the distance of ab and

ba is always at most 1. They are presented by the quantitative equation x · y =1 y · x.
(3) Quantitative semilattices are commutative, idempotent quantitative monoids, see [15],

Section 9.1.

▶ Proposition 34 (See [15]). Every variety V of quantitative algebras has free algebras: the
forgetful funtor UV : V → Met has a left adjoint FV : Met → V.

▶ Notation 35. We denote by TV the free-algebra monad of a variety V on Met. Its
underlying functor is TV = UV · FV . As usual, MetTV denotes the Eilenberg-Moore category
of algebras for TV .

▶ Example 36. For V = Σ-Met we have seen the monad TΣ in Example 31: TΣM is the
metric space of all terms over M . Observe that TΣ is a coproduct of endofunctors (−)n, one
summand for each similarity class of terms on n variables over M (which is independent of
the choice M). Thus TΣ is a strongly finitary monad: see Example 11.

▶ Remark 37.
(1) Recall the comparison functor KV : V → MetTV : it assigns to every algebra A of V the

algebra on UVA for TV given by the unique homomorphism α : FVUVA → A extending
idUV A. More precisely: KVA = (UVA,UVα).

(2) By a concrete category over Met is meant a category V together with a faithful ’forgetful’
functor UV : V → Met. For example a variety, or MetT for every monad T. A concrete
functor is a functor F : V → W with UV = UWF . For example, the comparison functor
KV .

▶ Proposition 38. Every variety V of quantitative algebras is concretely isomorphic to
the category MetTV : the comparison functor KV : V → MetTV is a concrete isomorphism.
Analogously for UMet and CUMet.

Proof. For classical varieties (over Set) this is proved in [14], Theorem VI.8.1. The proof for
Met in place of Set is analogous. ◀

▶ Example 39 ([15], Theorem 9.3). For the variety V of quantitative semilattices (Ex-
ample 3.4 (3)) the monad TV assigns to a metric space M the space of all finite subsets of
M with the Hausdorff metric:

d(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Here, d(a,B) = infb∈B d(a, b). In particular, d(A, ∅) = ∞ for all A ̸= ∅.
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▶ Notation 40.
(1) Given a natural number n denote by [n] the signature of one n-ary symbol δ. If a term

t ∈ TΣV contains at most n variables (say, all variables of t are among x0, . . . , xn−1), we
obtain a monad morphism t : T[n] → TΣ as follows. For every space M the function
tM takes a term s using the single symbol δ and substitutes each occurence of δ by
t(x0, . . . , xn−1). More precisely: tM : T[n]M → TΣM is defined by xi 7→ xi (i < n) and
δ(s0, . . . , sn−1) 7→ t(tM (s0), . . . , tM (sn−1)).

(2) Every metric space A defines the continuation monad ⟨A,A⟩ on Met assigning to X ∈ Met
the space ⟨A,A⟩X = [[X,A], A]. More precisely: the functor [−, A] : Met → Metop is
self-adjoint, and ⟨A,A⟩ is the monad corresponding to that adjunction.

(3) Let T be a monad on Met and α : TA → A an algebra for it. We denote by α̂X : TX →
⟨A,A⟩X the morphism which is adjoint to the following composite

[X,A] ⊗ TX
T (−)⊗T X−−−−−−−→ [TX, TA] ⊗ TX

ev−→ TA
α−→ A.

▶ Theorem 41 ([10]). Given an algebra α : TA → A for a monad T on Met, UMet or
CUMet, the morphisms α̂X above form a monad morphism α̂ : T → ⟨A,A⟩. Moreover, every
monad morphism from T to ⟨A,A⟩ has that form for a unique algebra (A,α).

▶ Lemma 42. Let A be a Σ-algebra expressed as a monad algebra α : TΣA → A. It satisfies
a quantitative equation l =ε r iff the distance of α̂ · l, α̂ · r : T[n] → ⟨A,A⟩ is at most ε.

▶ Notation 43.
1. The category of finitary monads on Met (and monad morphisms) is denoted by Mndf(Met).

It is enriched via the supremum metric: the distance of morphisms σ, τ : T → T′ in
Mndf(Met) is supX∈Met d(σX , τX). We use the same enrichment for its full subcategory
of strongly finitary monads, denoted by Mndsf(Met).

2. Analogously for monads on UMet we use Mndf(UMet) and Mndsf(UMet). Again for CUMet
we use Mndf(CUMet) and Mndsf(CUMet).

▶ Lemma 44. The category Mndf(UMet) has weighted colimits, and Mndsf(UMet) is closed
under them.

Proof sketch.
(1) The category Mndc(UMet) of countably accessible monads, i.e., monads preserving

countably directed colimits (enriched again by the supremum metric), is locally countably
presentable as an enriched category, thus it has weighted colimits.

(2) Both Mndf(UMet) and Mndsf(UMet) are coreflective subcategories of Mndc(UMet). The
coreflection of a countably accessible monad T in Mndsf(UMet) is given by the left Kan
extension T̃ = LanK(T · K). Analogously for Mndf(UMet): let K : UMetf → UMet be
the full embedding of all finite metric spaces. The coreflection is T̃ = LanK(T ·K). ◀

▶ Remark 45.
1. The same result holds for the base category CUMet.
2. Unfortunately, we do not know whether the above result holds for Met. The problem is

that for the coreflection of a monad T in Mndsf(Met) to be given by T̃ = LanKT · K,
we need to know that T̃ · T̃ is strongly finitary. Whereas this holds in every cartesian
closed category by [12], thus in UMet and CUMet, we do not know whether it also holds
for monads on Met.

3. The categories Met and UMet have a factorization system (E ,M) where E consists
of surjective morphisms and M of isometric embeddings, i.e., morphisms preserving
distances.
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▶ Lemma 46. Every monad morphism α : TΣ → S in the category Mndf(UMet) factorizes
as a morphism TΣ → S with surjective components followed by a morphism S → S whose
components are isometric embeddings.

▶ Theorem 47. For every variety V of ultra-quantitative algebras the free-algebra monad
TV is strongly finitary on UMet.

Proof sketch.
(1) Let V be given by a signature Σ and quantitative equations li =εi ri (i ∈ I), each

containing ni variables. For every i ∈ I we consider the signature [n(i)] of one symbol
δi of arity n(i). Then the terms li, ri yield the corresponding monad morphisms li, ri :
T[n(i)] → TΣ of Notation 40. An algebra α : TΣA → A lies in V iff the distance of
α̂ · li, α̂ · ri : T[n(i)] → ⟨A,A⟩ is at most εi for each i (Lemma 42).

(2) We verify that TV is a weighted colimit of strongly finitary monads in Mndf(UMet).
Then TV is strongly finitary by Lemma 44. The domain D of the weighted diagram
D : D → Mndf(UMet) is the discrete category I (indexing the equations) enlarged by a
new object a, and by morphisms λi, ρi : i → a (for every i ∈ I) of distance εi. Then put
Di = T[n(i)] and Da = TΣ; further Dλi = li and Dρi = ri. The weight W : Dop → Met
takes i to the space {l, r} with d(l, r) = εi and a to {0}. We define Wλi(0) = l and
Wρi(0) = r. The monads TΣ and T[n(i)] are strongly finitary by Example 36. Proving
that TV = colimWD will finish the proof by Lemma 44.
We denote by T the weighted colimit T = colimWD in Mndf(UMet). The proof is
concluded by proving that V is isomorphic, as a concrete category, to the category UMetT

of algebras for T. Then T is the free-algebra monad of V. For T we have the unit
ν : W → [Dop,Mndf(UMet)](D−,T) (Definition 14). Its component νa assigns to 0 a
monad morphism γ = νa(0) : TΣ → T, whereas for i ∈ I the component νi is given by
l 7→ γ ·li and r 7→ γ ·ri. Since νi is nonexpanding, we conclude that γ ·λi, γ ·ρi : T[n(i)] → T
have distance at most εi. We thus obtain a functor E : UMetT → V assigning to every
algebra α : TA → A the Σ-algebra corresponding to α · γA : TΣA → A: it satisfies
li =εi ri due to Lemma 42. Moreover, γ has surjective components, which can be derived
from Lemma 46. Therefore, E is a concrete isomorphism, which concludes the proof. ◀

▶ Remark 48. The same result holds for varieties of quantitative algebras in CUMet.

▶ Open Problem 49. Is the free-algebra monad of every variety of quantitative algebras
strongly finitary on Met?

▶ Construction 50. In the reverse direction we assign to every strongly finitary monad
T = (T, µ, η) on Met, UMet or CUMet a variety VT, and prove that T is its free-algebra
monad.

For every morphism k : X → A in Met together with an algebra α : TA → A, let us
denote by

k∗ = α · Tk : TX → A

the corresponding homomorphism in MetT. Recall our fixed set V = {xi | i ∈ N} of variables,
and form, for each n ∈ N, the finite discrete space Vn = {xi | i < n}. The signature we use
has as n-ary symbols the elements of the space TVn:

Σn = |TVn| for n ∈ N.

The variety VT is given by the following quantitative equations, where each symbol σ ∈ Σn

is considered as the term σ(x0, . . . , xn−1), and n,m range over N:
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(1) σ =ε σ
′ for all σ, σ′ ∈ Σn with d(σ, σ′) ≤ ε in TVn.

(2) k∗(σ) = σ(k(xi))i<n for all σ ∈ Σn and all maps k : Vn → Σm in Set.
(3) ηVn

(xi) = xi for all i < n.

▶ Lemma 51. Every algebra α : TA → A in MetT yields an algebra A in VT with operations
σA : An → A defined by

σA(a(xi)) = a∗(σ) for all σ ∈ Σn and a : Vn → A.

Moreover, every homomorphism in MetT is also a Σ-homomorphism between the corresponding
algebras in VT.

Proof sketch.
(a) The mapping σA is nonexpanding: given d((ai)i<n, (bi)i<n) = ε in An, the corresponding

maps a, b : Vn → A fulfil d(a, b) = ε. Since T is enriched, this yields d(Ta, Tb) ≤ ε.
Finally α is nonexpanding and a∗ = α · Ta, b∗ = α · Tb, thus d(a∗, b∗) ≤ ε. In particular
d(a∗(σ), b∗(σ)) ≤ ε.

(b) The quantitative equations (1)-(3) hold:
Ad (1) Given l, r ∈ TVn with d(l, r) ≤ ε, then for every map a : Vn → A we have
d(a∗(l), a∗(r)) ≤ ε. Thus d(lA(ai), rA(ai)) ≤ ε for all (ai) ∈ An.

Ad (2) Given a : Vn → A we prove (k∗(σ))A(aj) = σA(k(xi))(aj). The left-hand side is
a∗(k∗(σ)) = (a∗k)∗(σ) since a∗ · k∗ = (a∗ · k)∗ holds in general. The right-hand one is
a∗(σA(k(xi))) = (a∗k)∗(σ), too.

Ad (3) Recall that α ·ηA = id and Ta ·ηVn = ηA ·a for every map a : Vn → A. Therefore

(ηVn(xi))A(aj) = a∗(ηVn(xi))
= α · Ta · ηVn(xi)
= a(xi) = ai.

(c) Given a morphism h : (A,α) → (B, β) in MetT (i.e., h · α = β · Th) we are to prove
that h · σA = σB · hn for all σ ∈ TVn. This follows easily from h · a∗ = (h · a)∗ for each
a : Vn → A. ◀

▶ Theorem 52. Every strongly finitary monad T on UMet is the free-algebra monad of the
variety VT.

Proof. For every ultrametric space M we need to prove that the Σ-algebra associated with
(TM,µM ) in Lemma 51 is free in VT w.r.t. the universal map ηM . Then the theorem follows
from Proposition 38.

We have two strongly finitary monads, T and the free-algebra monad of VT (Theorem 47).
Thus, it is sufficient to prove the above for finite discrete spaces M . Then this extends to all
finite spaces because we have M = colimW0DM (Lemma 25) and both monads preserve this
colimit by Theorem 28. Since they coincide on all finite discrete spaces, they coincide on all
finite spaces. Finally, the above extends to all spaces M : by Lemma 16 we have a directed
colimit M = colim

i∈I
Mi of the diagram of all finite subspaces Mi (i ∈ I) which both monads

preserve.
Given a finite discrete space M , we can assume without loss of generality M = Vn for

some n ∈ N. For every algebra A in VT and an interpretation f : Vn → A, we prove that
there exists a unique Σ-homomorphism f : TVn → A with f = f · ηVn

.
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Existence. Define f(σ) = σA(f(xi))i<n for every σ ∈ TVn. The equality f = f · ηVn

follows since A satisfies the equations (3) above: ηVn
(xi) = xi, thus the operation of

A corresponding to ηVn
(xi) is the i-th projection. The map f is nonexpanding: given

d(l, r) ≤ ε in TVn, the algebra A satisfies the equation (1) above: l =ε r. Therefore given
an n-tuple f : Vn → A we have

d(lA(f(xi)), rA(f(xi))) ≤ ε.

To prove that f is a Σ-homomorphism, take an m-ary operation symbol τ ∈ TVm. We
prove f · τVm

= τA · fm. This means that every k : Vm → TVn fulfils

f · τVm(k(xj))j<m = τA · fm(k(xj))j<m.

The definition of f yields that the right-hand side is τA(k(xj)A(f(xi))). Due to equation
(2) in Construction 50 with τ in place of σ, this is k∗(τ)A(f(xi)). The left-hand side
yields the same result since

τA · fm(k(xj)) = τA(k(xj))A(f(xi)) = k∗(τ)A(f(xi)).

Uniqueness. Let f be a nonexpanding Σ-homomorphism with f = f · ηVn
. In TVn the

operation σ asigns to ηVn
(xi) the value σ. (Indeed, for every a : n → |TVn| we have

σT Vn
(ai) = a∗(σ) = µVn

· Ta(σ). Thus due to µ · Tη = id we get σT Vn
(ηVn

(xi)) =
µVn · TηVn(σ) = σ.) Since f is a homomorphism, we conclude

f(σ) = σA(f · ηVn
(xi)) = σA(f(xi))

which is the above formula. ◀

▶ Corollary 53. Varieties of ultra-quantitative algebras correspond bijectively, up to iso-
morphism, to strongly finitary monads on UMet.

Indeed, a stronger result can be deduced from Theorems 47 and 52: let Var(UMet) denote
the category of varieties of quantitative algebras and concrete functors (Remark 37 (2)).
Recall that Mndsf(UMet) denotes the category of strongly finitary monads.

▶ Theorem 54. The category Var(UMet) of varieties of ultra-quantitative algebras is equivalent
to the dual of the category Mndsf(UMet) of strongly finitary monads on UMet.

Proof. Morphisms φ : S → T between monads in Mndsf(UMet) bijectively correspond
to concrete functors φ : UMetT → UMetS ([7], Theorem 3.3): φ assigns to an algebra
α : TA → A of UMetT the algebra α · φA : SA → A in UMetS. We know that for every
variety V the comparison functor KV is invertible (Proposition 38). This yields a functor
Φ : Var(UMet)op → Mndsf(UMet) assigning to a variety V the monad TV (Theorem 47).
Given a concrete functor F : V → W between varieties, there is a unique monad morphism
φ : TW → TV such that φ = KW · F · K−1

V : UMetTV → UMetTW . We define ΦF = φ

and get a functor which is clearly full and faithful. Thus Theorem 52 implies that Φ is an
equivalence of categories. ◀

4 Varieties of Complete Quantitative Algebras

If we take CUMet as our base category, the development of Section 3 works for Σ-CUMet as
well. The main difference is in Lemma 46: instead of the factorization system in UMet of
Remark 45, we use the factorization system in CUMet where E = dense morphisms f : A → B
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(f [A] is a dense subset of B) and M = isometric embeddings of closed subspaces. Another
difference is that for the enrichment of the category Mndf(CUMet) of finitary monads (cf.
Notation 43) we must verify that the metric space of monad morphisms (with the supremum
metric) is complete; this is easy.

By Example 31 (2) for every complete space M the space TΣM is complete. The resulting
monad TΣ on the category CUMet is strongly finitary (as in Example 36).

▶ Example 55. We describe the monad T of free complete ultra-quantitative semilattices.
It assigns to every complete ultrametric space M the space TM of all compact subsets with
the Hausdorff metric (Example 39).

This holds for separable complete spaces: see [15], Theorem 9.6. To extend this result to
all complete spaces, first observe that the subset Z of TM of all finite sets is dense. Indeed,
every compact set K ⊆ M lies in the closure of Z: given ε > 0, let K0 ⊆ K be a finite set
such that ε-balls with centers in K0 cover K. Then K0 ∈ Z and the Hausdorff distance of
K0 and K is at most ε.

Given a complete ultrametric space M , let Xi (i ∈ I) be the collection of all countable
subsets. Each closure Xi is a complete separable space, and M =

⋃
i∈I Xi is a directed

colimit preserved by T . Since TXi is the space of all compact subsets of Xi, and since finite
subsets of M form a dense set, we conclude that TM is the space of all compact subsets
of M .

Every variety V of complete ultrametric quantitative algebras yields a monad TV on
CUMet which is strongly finitary, and V is isomorphic to UMetTV . The proof is analogous to
that of Theorem 47, just at the end we use the above factorization system of CUMet. The
proof that every strongly finitary monad on CUMet is the free-algebra monad of a variety is
completely analogous to that of Theorem 52. We thus obtain

▶ Theorem 56. The category Var(CUMet) of varieties of complete ultra-quantitative algebras
is equivalent to the dual of the category Mndsf(CUMet) of strongly finitary monads on CUMet.

5 Conclusions and Open Problems

Varieties (aka 1-basic varieties) of quantitative algebras of Mardare et al. [15, 16], restricted
to ultrametrics, correspond bijectively to strongly finitary monads on the category UMet.
This is the main result of our paper. It is in surprising contrast to the fact that ω-varieties
in op. cit. (where distance restrictions on finitely many variables in equations are imposed)
do not even yield finitary monads in general, as demonstrated in [1].

For varieties in Met we do not whether the same is true.

▶ Open Problem 57. Is the free-algebra monad of every variety of quantitative algebras
strongly finitary?

Our proof would show this is the case provided that strongly finitary endofunctors on
Met are closed under composition.

For varieties of complete ultra-quantitative algebras the same result holds: they correspond
bijectively to strongly finitary monads on CUMet. This relates the quantitative algebraic
reasoning of Mardare et al. closely to the classical equational reasoning of universal algebra
where varieties are known to correspond to finitary (= strongly finitary) monads on Set [14].

▶ Open Problem 58. Characterize monads on Met or CMet corresponding to ω-varieties of
quantitative algebras.
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In [1] a partial answer has been given: enriched monads on UMet corresponding to
ω-varieties of ultra-quantitative algebras are precisely the enriched monads preserving
(1) directed colimits of split monomorphisms and
(2) surjective morphisms.
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