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—— Abstract

We are interested in connections between the theory of fractal sets obtained as attractors of iterated
function systems and process calculi. To this end, we reinterpret Milner’s expressions for processes
as contraction operators on a complete metric space. When the space is, for example, the plane,
the denotations of fixed point terms correspond to familiar fractal sets. We give a sound and
complete axiomatization of fractal equivalence, the congruence on terms consisting of pairs that
construct identical self-similar sets in all interpretations. We further make connections to labelled
Markov chains and to invariant measures. In all of this work, we use important results from process
calculi. For example, we use Rabinovich’s completeness theorem for trace equivalence in our own
completeness theorem. In addition to our results, we also raise many questions related to both
fractals and process calculi.
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1 Introduction

Hutchinson noticed in [13] that many familiar examples of fractals can be captured as the
set-wise fixed-point of a finite family of contraction (i.e., distance shrinking) operators on
a metric space. He called these spaces (strictly) self-similar, since the intuition behind the
contraction operators is that they are witnesses for the appearance of the fractal in a proper
(smaller) subset of itself. For example, the famous Sierpinski gasket is the unique nonempty
compact subset of the plane left fixed by the union of the three operators oq, 03, 0. : R2 — R?
in Figure 1. The Sierpinski gasket is a scaled-up version of each of its thirds.

The self-similarity of Hutchinson’s fractals hints at an algorithm for constructing them:
FEach point in a self-similar set is the limit of a sequence of points obtained by applying the
contraction operators one after the other to an initial point. In the Sierpinski gasket, the
point (1/4,+/3/4) is the limit of the sequence

b, O'b(p)a abaa(p), UbGaUa(p), O'bo'ao'aa'a(p)7 (1)

where the initial point p is an arbitrary element of R? (note that oy, is applied last). Hutchinson
showed in [13] that the self-similar set corresponding to a given family of contraction operators
is precisely the collection of points obtained in the manner just described. The limit of the
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sequence in (1) does not depend on the initial point p because oy, 03, 0. are contractions.
Much like digit expansions to real numbers, every stream of a’s, b’s, and ¢’s corresponds to a
unique point in the Sierpinski gasket. The point (1/4,+/3/4), for example, corresponds to
the stream (b, a,a,a,...) ending in an infinite sequence of a’s. Conversely, every point in the
Sierpiriski gasket comes from (in general more than one) corresponding stream.

From a computer science perspective, the languages of streams considered by Hutchinson
are the traces observed by one-state labelled transition systems, like the one in Figure 1. We
investigate whether one could achieve a similar effect with languages of streams obtained from
labelled transition systems having more than one state. Observe, for example, Figure 2. This
twisted version of the Sierpinski gasket is constructed from a two-state labelled transition
system. Fach point in the twisted Sierpinski gasket corresponds to a stream of a’s, b’s, and
¢’s, but not every stream corresponds to a point in the set: The limit corresponding to
(c,a,b,c,c,c,...) is (3/4,4/3/8), for example.

A labelled transition system paired with an interpretation of its labels as contractions on a
complete metric space is the same data as a directed-graph iterated function system (GIFS), a
generalization of iterated function systems introduced by Mauldin and Williams [18]. GIFSs
generate their own kind of self-similar set, and much work has been done to understand the
geometric properties of fractal sets generated by GIFSs [7-10,18]. We take this work in a
slightly different direction by presenting a coalgebraic perspective on GIFSs, seeing each
labelled transition system as a “recipe” for constructing fractal sets.

In analogy with the theory of regular languages, we call the fractals generated by finite
labelled transition systems regular subfractals, and give a logic for deciding if two labelled
transition systems represent the same recipe under all interpretations of the labels. By
identifying points in the fractal set generated by a labelled transition system with traces
observed by the labelled transition system, it is reasonable to suspect that two labelled
transition systems represent equivalent fractal recipes — i.e., they represent the same fractal
under every interpretation — if and only if they are trace equivalent. This is the content of
Theorem 4.4, which allows us to connect the theory of fractal sets to mainstream topics in
computer science.

Labelled transition systems are a staple of theoretical computer science, especially in
the area of process algebra [1], where a vast array of different notions of equivalence and
axiomatization problems have been studied. We specifically use a syntax introduced by
Milner in [22] to express labelled transition systems as terms in an expression language with
recursion. This leads us to a fragment of Milner’s calculus consisting of just the terms that
constitute recipes for fractal constructions. Using a logic of Rabinovich [25] for deciding
trace equivalence in Milner’s calculus, we obtain a complete axiomatization of fractal recipe
equivalence.

1 1
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Figure 1 The Sierpiniski gasket is the unique nonempty compact subset S of R? such that
S = 04(S) Uow(S) Uoc(S). Each of its points corresponds to a stream emitted by the state .
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Figure 2 A twisted Sierpinksi gasket, depicted in red. In the construction of this set, o, and
o. are applied twice to a single copy of o, applied to the set. This has the effect of systematically
removing the “top” part of the Sierpinski gasket from its bottom thirds.

In his study of self-similar sets, Hutchinson also makes use of probability measures
supported on self-similar sets, called invariant measures. Each invariant measure is specified
by a probability distribution on the set of contractions generating its support. In the
last technical section of the paper, we adapt the construction of invariant measures to a
probabilistic version of labelled transition systems called labelled Markov chains, which
allows us to give a measure-theoretic semantics to terms in a probabilistic version of Milner’s
specification language, the calculus introduced by Stark and Smolka [27]. Our measure-
theoretic semantics of probabilistic process terms can be seen as a generalization of the trace
measure semantics of Kerstan and Konig [14]. We offer a sound axiomatization of equivalence
under this semantics and pose completeness as an open problem.

In sum, the contributions of this paper are as follows.

In Section 3, we give a fractal recipe semantics to process terms using a generalization of
iterated function systems.

In Section 4, we show that two process terms agree on all fractal interpretations if and
only if they are trace equivalent. This implies that fractal recipe equivalence is decidable
for process terms, and it allows us to derive a complete axiomatization of fractal recipe
equivalence from Rabinovich’s axiomatization [25] of trace equivalence of process terms.

Finally, we adapt the fractal semantics of process terms to the probabilistic setting in
Section 5 and propose an axiomatization of probabilistic fractal recipe equivalence.
We start with a brief overview of trace semantics in process algebra and Rabinovich’s Theorem
(Theorem 2.7) in Section 2.

2 Labelled Transition Systems and Trace Semantics

Labelled transition systems are a widely used model of nondeterminism. Given a fixed finite
set A of action labels, a labelled transition system (LTS) is a pair (X, «) consisting of a
set X of states and a transition function o : X — P(A x X). We generally write z %, y
if (a,y) € a(x), or simply z 2 y if « is clear from context, and say that = emits a and
transitions to y.

Given a state x of an LTS (X, ), we write (z),, for the LTS obtained by restricting the
relations s to the set of states reachable from x, meaning there exists a path of the form
) e Xy =2 1,. We refer to (x), as either the LTS generated by x, or as the
process starting at x. An LTS (X, «) is locally finite if (x),, is finite for all states x.
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e1 % f e2 5 f elpv e/v] = f
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Figure 3 The relation 2y C Term X Term defining (Term,~).

Traces

In the context of the current work, nondeterminism occurs when a process branches into
multiple threads that execute in parallel. Under this interpretation, to an outside observer
(without direct access to the implementation details of an LTS), two processes that emit the
same set of sequences of action labels are indistinguishable.

Formally, let A* be the set of words formed from the alphabet A. Given a state x of an
LTS (X, a), the set try(z) of traces emitted by x is the set of words a; ...a, € A* such that
there is a path of the form z 2% z1 — -+ — zp_1 22 x, through (X, a). Two states z and
y are called trace equivalent if tr(z) = tr(y). Each trace language tr(z) is prefiz-closed, which
for a language L means that w € L whenever wa € L.

Trace equivalence is a well-documented notion of equivalence for processes [3,11], and we
shall see it in our work on fractals as well.

» Definition 2.1. A stream is an infinite sequence (a1,as,...) of letters from A. A state x
in an LTS (X, ) emits a stream (a1,...) if for anyn >0, ay - - ap, € tr(z). We write str(z)
for the set of streams emitted by x.

In our construction of fractals from LTSs, points are represented only by (infinite) streams.
We therefore focus primarily on LTSs with the property that for all states x, tr(z) is precisely
the set of finite prefixes of streams emitted by x. We refer to an LTS (X, a) satisfying this
condition as productive. Productivity is equivalent to the absence of deadlock states, states
with no outgoing transitions.

» Lemma 2.2. Let (X, ) be an LTS. Then the following are equivalent: (i) for any x,y € X,
str(z) = str(y) if and only if tr(z) = tr(y); (¥) for any x € X, a(x) # 0.

Specification

We use the following language for specifying processes: Starting with a fixed countably
infinite set {v1,ve, ...} of variables, the set of terms is given by the grammar

v ae|er +ex|pve

where v is v; for some i € N, a € A, and e, e, es are terms.

Intuitively, the process ae emits a and then turns into e, and e; + es is the process that
nondeterministically branches into e; and es. The process pv e is like e, but with instances
of v that appear free in e acting like goto expressions that return the process to pv e.

» Definition 2.3. A (process) term is a term e in which every occurrence of a variable v
appears both within the scope of a uv (=) (e is closed) and within the scope of an a(—) (e
is guarded). The set of process terms is written Term. The set of process terms themselves
form the LTS (Term, ) defined in Figure 3.

In Figure 3, we use the notation e[g/v] to denote the expression obtained by replacing
each free occurrence of v in e (one which does not appear within the scope of a pv (—)
operator) with the expression g. Given e € Term, the process specified by e is the LTS (e)..
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(ID) e+e=e (CN) M)e—lsz
(CM) es+ep=e; +eo gle/v) = g[f/7]
(AS) e1+ (eate3)=(e1+e2)+es (AE) = o
(DS) ale; + e3) = aey + aey b Z ; Z[T;/i;]} v
(FP) p e = eluv e/v] (UA) J=we

Figure 4 The axioms and rules of the provable equivalence relation in addition to those of
equational logic (not shown). Here, e, e;, f, fi, g € Term for all i. In (CN), g has precisely the free
variables v1, ..., vn, and no variable that appears free in f; is bound in g for any . In (AE), v does
not appear free in e.

» Remark 2.4. The set of process terms, as we have named them, is the fragment of Milner’s
fixed-point calculus from [22] consisting of only the terms that specify productive LTSs.

Labelled transition systems specified by process terms are finite and productive, and
conversely, every finite productive process is trace-equivalent to some process term.

» Lemma 2.5 ([22, Proposition 5.1]). For any e € Term, the set of terms reachable from e in
(Term, ) is finite. Conversely, if x is a state in a finite productive LTS (X, ), then there is
a process term e such that tr(e) = trq(z).

Axiomatization of trace equivalence

Given an interpretation of process terms as states in an LTS, and given the notion of
trace equivalence, one might ask if there is an algebraic or proof-theoretic account of trace
equivalence of process terms. Rabinovich showed in [25] that a complete inference system for
trace equivalence can be obtained by adapting earlier work of Milner [22]. The axioms of the
complete inference system include equations like e; +es = ea + €1 and a(e; +e2) = ae; + aea,
which are intuitively true for trace equivalence.

To be more precise, given any function with domain Term, say ¢ : Term — Z, call an
equivalence relation ~ sound with respect to o if e ~ f implies o(e) = o(f), and complete
with respect to o if o(e) = o(f) implies e ~ f. Then the smallest equivalence relation = on
Term containing all the pairs derivable from the axioms and inference rules appearing in
Figure 4 is sound and complete with respect to tr = tr,: Term — P(A*).

» Definition 2.6. Given ej,eo € Term, we say that e; and eo are provably equivalent if
e1 = eq, and call = provable equivalence.

» Theorem 2.7 (Rabinovich [25]). Let e1,ea € Term. Then eq = ez iff tr(e1) = tr(eq).

» Example 2.8. Consider the processes specified by e; = pw pv (a1a2v + ajasw) and
es = uv (ay(azv 4+ azv)). The traces emitted by both e; and ey are those that alternate
between a; and either as or ag. We can show these expressions are trace equivalent via the
formal deduction in Figure 5.

Rabinovich’s theorem tells us that, up to provable equivalence, our specification language
consisting of process terms is really a specification language for languages of traces. In what
follows, we are going to give an alternative semantics to process terms by using LTSs to
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er = pw p (a1av + ajazw) ay

(FP) e1 az f1 €2
=" v (arasv + ajazey)

(g) aiaser + ajasex as < > ap ai < > a2 az, as < > ax
(DS)

ai(azer + azeq) asep o fi age2 + ages
) 1
pv (a1(agv + azv))

(

[
1IES

Figure 5 Deducing e; = ez. Above, fi = pv (a1a2v + aiaser).

generate fractal subsets of metric spaces. The main result of our paper is that these two
semantics coincide: Two process terms are trace equivalent if and only if they generate the
same fractals. This is the content of Sections 3 and 4 below.

3 Fractals from Labelled Transition Systems

In the Sierpinski gasket S from Figure 1, every point of S corresponds to a stream of letters
from the alphabet {a,b,c}, and every stream corresponds to a unique point. To obtain
the point corresponding to a particular stream (aq, ag, as,...) with each a; € {a,b, ¢}, start
with any p € R? and compute the limit lim,en 04, - 04, (p). The point in the fractal
corresponding to (a1, asg,as,...) does not depend on p because oy, 0,0, in Figure 1 are
contraction operators.

» Definition 3.1. Given a metric space (M,d), a contraction operator on (M, d) is a function
h: M — M such that for some r € [0,1), d(h(x),h(y)) <r d(z,y) for any x,y € M. The
number r is called a contraction coefficient of h. The set of contraction operators on (M, d)
is written Con(M,d).

For example, with the Sierpiriski gasket (Figure 1) associated to the contractions oy, oy,
and 0., r = 1/2 is a contraction coefficient for all three maps. Now, given p,q € R?

1
d(0ay -+ 0a, (D), 0ay =+ 0a, (q)) < on d(p, q)

for all n, so it follows that lim,en 04, « - 0q, (p) = limpen 04, - - 04, (¢). For any finite set of
contraction operators {og,,...,0,, } indexed by A and acting on a complete metric space
(M, d), every stream from A corresponds to a unique point in M.

» Definition 3.2. A contraction operator interpretation is a function o: A — Con(M,d).
We usually write o, = o(a). Given o: A — Con(M,d) and a stream (aq,...) from A, define

0w: AY = M ou(al,...)=limo,, - 04, () (2)
neN
where x € M 1is arbitrary. The self-similar set corresponding to a contraction operator
interpretation o is the set S, = {oy,(a1,...) | (a1,...) is a stream from A}.

» Remark 3.3. Note that in (2), the contraction operators corresponding to the initial trace
(a1,...,ay) are applied in reverse order. That is, o, is applied before o4, _,, 04, _, is applied
before o, ,, and so on.
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Regular Subfractals

Generalizing the fractals of Mandelbrot [17], Hutchinson introduced self-similar sets in [13]
and gave a comprehensive account of their theory. In op. cit., Hutchinson defines a self-similar
set to be the invariant set of an iterated function system. In our terminology, an iterated
function system is equivalent to a contraction operator interpretation of a finite set A of
actions, and the invariant set is the total set of points obtained from streams from A. The
fractals constructed from a LTS paired with a contraction operator interpretation generalize
Hutchinson’s self-similar sets to nonempty compact sets of points obtained from certain
subsets of the streams, namely the subsets emitted by the LTS.

Write K(M,d) for the set of nonempty compact subsets of (M,d). Given a state x of
a productive LTS (X, o) and a contraction operator interpretation o : A — Con(M, d), we
define [-], , : X — K(M,d) by

[z], , = {ow(a1,...) | (a1,...) emitted by z} (3)

and call this the set generated by the state x. As we will see, [x] ,  is always nonempty and

a,0

compact.

» Definition 3.4. Given a process term e € Term and a contraction operator interpretation
o : A — Con(M,d), the regular subfractal semantics of e corresponding to o is [e], = [e], -

For example, the set of points depicted in Figure 2 is the regular subfractal semantics of

uv (av + b(bv 4 cv) 4+ ¢(bv + cv)) corresponding to the interpretation o given in that figure.

The regular subfractal semantics of e is a proper subset of the Sierpinski Gasket, and in
particular does not contain the point corresponding to (¢, a,b, ¢, b,c,...).

Systems and Solutions

Self-similar sets are often characterized as the unique nonempty compact sets that solve
systems of equations of the form

K =01(K)U- Uy (K)

with each o; a contraction operator on a complete metric space. For example, the Sierpinski
gasket is the unique nonempty compact solution to K = o, (K) U op(K) U o.(K). In this
section, we are going to provide a similar characterization for regular subfractals that will
play an important role in the completeness proof in Section 4.

One way to think of an n-state LTS (X, «) is as a system of formal equations

T = Qg Ty, + -+ 0k, Ty,

indexed by X = {x1,...,2,}, where z; S xj, for ki, ... km,J1, .., Jm < 1.
» Definition 3.5. Given a contraction operator interpretation o : A — Con(M,d), and an
LTS (X, ), we call a function ¢ : X — K(M,d) a (o-)solution to (X, &) if for any x € X,
o) = oale®)
e
» Example 3.6. Let S be the Sierpinski gasket as a subset of R%. Let (X, a) be the LTS in

Figure 1. Then we have a single state, z, with z “%% z. The function ¢: X — K(R2, d)
given by ¢(s) = S is a solution to (X, a), because S = 0,(S) U 0(S) U o.(S).
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Finite productive LTSs have unique solutions.

» Lemma 3.7. Let (M,d) be a complete metric space, o : A — Con(M,d), and (X,a) be a
finite productive LTS. Then (X, «) has a unique solution ¢, .

The proof of Lemma 3.7 makes use of the Hausdorff metric on K(M,d), defined

d(Ky,Ks) = max{ sup inf d(u,v), sup inf d(u,v)} (4)

uekK, VK2 vEK, WK

This equips K(M, d) with the structure of a metric space. If M is complete, so is K(M, d).
Incidentally, we need to restrict to nonempty sets in (4). This is the primary motivation
for the guardedness condition which we imposed on our terms. We also recall the Banach
fized-point theorem, which allows for the computation of fixed-points by iteration.

» Theorem 3.8 (Banach [2]). Let (M, d) be a complete nonempty metric space and f: M — M
a contraction map. Then lim,cyn f™(q) is the unique fized-point of f.

Fix a complete nonempty metric space (M,d), a productive finite LTS (X, «), and a
contraction operator interpretation o : A — Con(M, d). To compute the solution to (X, a),
we iteratively apply a matrix-like operator to the set K(M,d)* of vectors [K,,..., K, ]
with entries in K (M, d) indexed by X. Formally, we define

[a],: K(M, )X = K(M,d)* ([a]ol?)ﬂi = U oa(Ky)
223y
for each x € X. Intuitively, [a], acts like an X x X-matrix of unions of contractions.

Proof of Lemma 3.7. Every fixed-point of [a]_ corresponds to a solution of (X, a). Given
a fixed-point F\, i.e., [a] F = F, and defining ¢: X — K(M,d)* by p(z) = F,, we see that

(@) = Fo = ([a], F)e = | 0a(Fy) = | oale(®))
e e

Conversely, if ¢ : X — K(M,d) is a solution to (X, «), then defining Fy, = ¢(z) we have

By =p(z) = U oa(p(y)) = U oa(Fy) = ([O‘]aﬁ)r

a a
T—>y T—Y

for each z € X. Thus, it suffices to show that [, has a unique fixed-point. By the Banach
Fixed-Point Theorem 3.8, we just need to show that [«], is a contraction operator. That is,
[a], € Con(K(M,d)), where d is the Hausdorff metric. This point is standard in the fractals
literature; cf. [13]. <

Fractal Semantics and Solutions

Recall that the fractal semantics of a process term e with respect to a contraction operator
interpretation o: A — Con(M, d) is the set [e] of limits of streams applied to points in the
complete metric space (M, d).

» Theorem 3.9. Let (X, ) be a finite productive LTS and let x € X. Given a complete
metric space (M,d), and o: A — Con(M,d),

L. [z],, € K(M,d), ie., [z],, is nonempty and compact.

2. [-],o: X = K(M,d) is the unique solution to (X, ).
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In particular, (Term,~) is locally finite, and so by Lemma 3.7 has a unique solution.

Theorem 3.9 therefore implies that this solution is [—]. .

Given a solution ¢ and a state z, call p(z) the z-component of the solution p. We
obtain the following, which can be seen as an analogue of Kleene’s theorem for regular
expressions [15], as a direct consequence of Theorem 3.9.

» Theorem 3.10. A subset of a self-similar set is a reqular subfractal if and only if it is a
component of a solution to a finite productive LTS.

4 Fractal Equivalence is Traced

We have seen that finite productive LTSs (LTSs that only emit infinite streams) can be
specified by process terms. We also introduced a family of fractal sets called regular
subfractals, those subsets of self-similar sets obtained from the streams emitted by a finite
productive LTS. An LTS itself is representative of a certain system of equations, and set-wise
the system of equations is solved by the regular subfractals corresponding to it. Going from
process terms to LT'Ss to regular subfractals, we see that a process term is representative of
a sort of uninterpreted fractal recipe, which tells us how to obtain a regular subfractal from
an interpretation of action symbols as contractions on a complete metric space.

» Definition 4.1. Given e, f € Term, we write e = f if for every complete metric space
(M,d) and every contraction operator interpretation o : A — Con(M,d), [e], = [f],. We
say that e and f are fractal equivalent or that they are equivalent fractal recipes when e =~ f.

» Theorem 4.2. Let e, f € Term. Then e = f if and only if str(e) = str(f).

In essence, this is a soundness/completeness theorem for our version of Rabinovich’s
logic with respect to its fractal semantics that we presented. Our proof relies on the logical
characterization of trace equivalence that we saw in Theorem 2.7.

» Lemma 4.3 (Soundness). For any e, f € Term, if e = f, thene = f.

» Theorem 4.4 (Completeness). For any e, f € Term,if e = f, thene = f.

Proof. Consider the space (A%, d) of streams from A with the metric below:
d((ay,...), (by,...)) =inf {27 | (Vi <n) a; = b;}

This space is the Cantor set on A symbols, a compact metric space. For any productive LTS
(X,a) and z € X, str(z) is a nonempty closed subset of (A“,d), for the following reason:
Given a Cauchy sequence {(agl), ... ) bien in str(z), let (aq,...) be its limit in (A, d). Then

2 emits every finite initial segment of (aq, ... ) because for any N € N there is an m € N such
that (aq,..., am,aml, ...) € str(z) for m > N. By compactness of (A%, d), we therefore

have str(z) € K(A¥,d), so str: X — K(A4%,d).

For each a € A, let 0, : AY — A* be the map o4(a1,...) = (a,a1,...). Theno: A —
Con(A%,d). By construction, str(z) = Uzi)y oq(str(y)) for any x € X. By the uniqueness
of fixed points we saw in Lemma 3.7, we therefore have str(z) = [z], -

To finish the proof, consider (Term,v). If e, f € Term and e = f, then in particular,
str(e) = str(f), because str =[], , with 0: A — Con(A“,d) as above. Since (Term,~) is
productive, tr(e) = str(e) and tr(f) = str(f), so in particular, e and f are trace equivalent.
By Rabinovich’s Theorem, Theorem 2.7, e = f, as desired. <
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5 A Calculus of Subfractal Measures

Aside from showing the existence of self-similar sets and their correspondence with contraction
operator interpretations (in Hutchinson’s terminology, iterated function systems), Hutchinson
also shows that every probability distribution on the contractions corresponds to a unique
measure, called the invariant measure, that satisfies a certain recursive equation and whose
support is the self-similar set. In this section, we replay the story up to this point, but
with Hutchinson’s invariant measure construction instead of the invariant (self-similar) set
construction. We make use of a probabilistic version of LTSs called labelled Markov chains,
as well as a probabilistic version of Milner’s specification language introduced by Stark and
Smolka [27] to specify fractal measures. Similar to how fractal equivalence coincides with
trace equivalence, fractal measure equivalence is equivalent to a probabilistic version of trace
equivalence due to Kerstan and Konig [14].

Invariant measures

Recall that a Borel probability measure on a metric space (M, d) is a [0, oo]-valued function
p defined on the Borel subsets of M (the smallest o-algebra containing the open balls of
(M,d)) that is countably additive and assigns p(#) = 0 and p(M) = 1.

Hutchinson shows in [13] that, given o: A — Con(M, d), each probability distribution
p: A —]0,1] on A gives rise to a unique Borel probability measure p, called the invariant
measure, satisfying the equation below and supported by the self-similar set S, :

p(B) =Y pla) o 4(B)

acA

Here and elsewhere, the pushforward measure f#p with respect to a continuous map f is
defined by f#p(B) = p(f~1(B)) for any Borel subset B of (M, d).

We can view the specification p of the invariant measure p as a one-state Markov process
with a loop labelled with each letter from A, similar to how self-similar sets are specified with
a one-state productive LTS. We can adapt this construction to multiple states by moving
from probability distributions on A to labelled Markov chains, where again, the labels are
interpreted as contraction maps.

Labelled Markov Chains

Let D denote the finitely supported probability distribution functor on the category of sets.

» Definition 5.1. A labelled Markov chain (LMC) is a pair (X, 3) consisting of a set X of
states and a function 8: X — D(A x X). A homomorphism of LMCs h: (X, fx) — (Y, fy)
is a function h: X =Y such that D(h) o fx = By o h. We write x ngﬁ y if B(x)(a,y) =T,
often dropping the symbol 8 if it is clear form context.

As we have already seen, given a contraction operator interpretation o: A — Con(M, d),
every state z of a productive LTS (X, «) with labels in A corresponds to a regular subfractal
[«],, , of S;. This regular subfractal is defined to be the continuous image of the set str(z)
under the map o,,: (A%, d,) — (M, d), where d, is determined by the contraction coefficients
of the o,’s as follows: Given a nonzero contraction coefficient ¢, of o, for each a € A, define
dy((ar,...),(b1,...)) = [1i; ca;, where n is the least index such that a,41 # by+1. The
family [z],, , is characterized by its satisfaction of the equations representing the LTS (X, a).
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Every LMC (X, 8) has an underlying LTS (X, 3), where B(z) = {(a,v) | B(z)(a,y) > 0}.
For each x € X, we are going to define a probability measure Bg (z) on S, whose support
is []5,,, and that satisfies a recursive system of equations represented by the LMC (X, 3).
Roughly, 3, (x) is the pushforward of a certain Borel probability measure B () on A“ that
does not depend on the contraction operator interpretation o.

We begin by topologizing A“, using as a basis the sets of the form
Bal"'an = {(al, . ,an,bl, .. ) | (b17 .. ) c Aw}

Given a state x of a LMC (X, 8) and a word w = ay - - - a,,, we follow Kerstan and Konig [14]
and define the trace measure of the basic open set B,, by

B(a)(Bu) =Y {rr-orn o 2% gy oy oo Ioliny gy (5)

where 3(B.) = $(A*) = 1. This defines a unique Borel probability measure on (A%, d).

» Proposition 5.2. Let j: A* — [0,1] satisfy j(w) = > ,c4j(wa) for any w € A* and
j(e) = 1, where € is the empty word. Then there is a unique Borel probability measure p on
(A¥,d) such that for any w € A*, p(By) = j(w).

Proof. This is an easy consequence of the Identity and Extension Theorems for o-finite
premeasures. See Propositions 2.3 to 2.5 of [14]. <

In particular, given any LMC (X, 8), (z)(By) = D oacA B(2)(Buwa), so there is a unique
Borel probability measure 3(z) on A such that (5) holds for any basic open set Bi,.

» Definition 5.3. Let (X, ) be a LMC, and o: A — Con(M,d) be a contraction operator
interpretation in a complete metric space. For each x € X, we define the regular subfractal
measure corresponding to x to be By (x) = o B(z).

Intuitively, the regular subfractal measure of a state in a LMC under a contraction
operator interpretation computes the probability that, if run stochastically according to the
probabilities labelling the edges, the sequence of points of M observed in the run eventually
lands within a given Borel subset of (M, d).

Systems of Probabilistic Equations

Given a complete metric space (M, d), let P(M,d) be the set of Borel probability measures
on (M,d). In previous sections, we made use of the fact that, when o: A — Con(M,d),
we can see K(M,d) as a semilattice with operators, i.e., union acts as a binary operation
U: K(M,d)? - K(M,d) and each o,: K(M,d) — K(M, d) distributes over U. Analogously,
equipped with o: A — Con(M,d), P(M,d) is a convez algebra with operators. Formally, for
any r € [0, 1], there is a binary operation @,.: P(M,d)? — P(M,d) defined (p1 @, p2)(B) =
rp1(B) + (1 — 7)pa(B), over which each o7 distributes, i.e.,

o (p1 @, p2) = 0¥ p1 @y 0¥ po

We also make use of a summation notation defined by

T1 Tn—1
T1'P1€9"'@7“n'/)n=ﬂn@rn( pi DD 'pz‘)
1—r, T

for any 71,...,7, € [0,1).
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Given a contraction operator interpretation, an LMC (X, 8) can be thought of as a system
of equations with one side a polynomial term in a convex algebra with operators,

T; =151 Qi1 Tk, D Ti2 - 2Tk, D - - D Ty » Aim Tk,

o lass o
where X = {z1,...,z,} and x; M xy,, for each i,7 < m.

» Definition 5.4. Let (X, ) be a LMC, and let o: A — Con(M,d). A solution to (X, f) is
a function ¢: X — P(M,d) such that for any © € X and any Borel set B,

p@)(B)= Y rof(ey))(B)

rla
T—Yy

Every finite LMC admits a unique solution, and moreover, the unique solution is the
regular subfractal measure from Definition 5.3.

» Theorem 5.5. Let (X,5) be a LMC, x € X, and o: A — Con(M,d). Then the map
Bo: X — P(M,d) is the unique solution to (X, ).

Since the support of 3(x) is precisely str(z), the support of 3,(z) is precisely o, (str(z)),
which we have already seen is the regular subfractal determined by the state x of the
underlying LTS of (X, 3).

Probabilistic Process Algebra

Finally, we introduce a syntax for specifying LMCs. Our specification language is essentially
the productive fragment of Stark and Smolka’s process calculus [27], meaning that the
expressions do not involve deadlock and all variables are guarded.

» Definition 5.6. The set of probabilistic terms is given by the grammar
v|ae| el Brex | pve

Here r € [0,1], and otherwise we make the same stipulations as in Definition 2.3. The set of
probabilistic process terms PTerm consists of the closed and guarded probabilistic terms.

Instead of languages of streams, the analog of trace semantics appropriate for probabilistic
process terms is a measure-theoretic semantics consisting of trace measures introduced earlier
in this section (Equation (5)).

» Definition 5.7. We define the LMC (PTerm,§) in Figure 6 and call it the syntactic
LMC. The trace measure semantics trm(e) of a probabilistic process term e is defined
to be trm(e) = 8(z). Given o: A — Con(M,d), the subfractal semantics of e € PTerm
corresponding to o is 04 (e).

Intuitively, the trace measure semantics of a process term e assigns a Borel set of streams
B the probability that e eventually emits a word in B. Trace measure semantics can be
computed inductively as follows.

» Lemma 5.8. For any w € A*, a € A, e,e; € PTerm, and r € [0,1], trm(e)(4A¥) =1 and

trm(e)(By,) w =au

0 otherwise

trm(ae)(By) = {

trm(ey @y e2)(By) = rtrm(e1)(By) + (1 — ) trm(e2)(By)
trm(puv €)(By) = trm(efuv e/v])(By)
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1 f=eandb=a

0 otherwise

d(ae)(b, f) = {

d(er @ e2)(b, f) = rd(ex)(b, f) + (1 —)d(e2)(b, f)
(v €)(b, f) = d(e[uv e/v])(b, f)

Figure 6 The LMC structure (PTerm,§). Above, a,b € A, > . r; =1, and e, e;, f € PTerm.

(ID) e@re=e (CN) L‘Efl
(CM) e1Drea=e2D1_, €1 g[g/ﬂ Eg[f/{;]
(AS)  (e1 By e2) Bs ez =e1 Brs (2 Boa-n €3) (AE)

1=rs pw e = pv efv/w
(DS) aler P, e2) = aer B, aey g = elg/v]
(FP) wo e = efuv e/v) (UA) g= e

Figure 7 Axioms for probabilistic trace equivalence. Above, e,e1,e2 € PTerm, a € A, r, s € [0, 1],
and rs # 1. Also, in (AE), v is not free in e.

Similar to the situation with trace semantics and regular subfractals, trace measure
semantics and subfractal measure semantics identify the same probabilistic process terms.

» Theorem 5.9. Let e, f € PTerm. Then trm(e) = trm(f) if and only if for any contraction

A

operator interpretation o: A — Con(M,d), d,(e) = 0,(f).

Axiomatization

Figure 7 outlines an inference system for determining when the subfractal measures corres-
ponding to two expressions coincide.

» Definition 5.10. Given e, f € PTerm, write ¢ = f and say that e and f are provably
equivalent if the equation e = f can be derived from inference rules in Figure 7.

» Theorem 5.11 (Soundness). For any e, f € PTerm, if e = f, then for any complete metric
space (M,d) and any o: A — Con(M,d), d,(€) = d,(f).

Unlike the situation with trace equivalence, it is not known if these axioms are complete
with respect to subfractal measure semantics. We leave this as a conjecture.

» Conjecture 5.12 (Completeness). Figure 7 is a complete axiomatization of trace measure
semantics. That is, for any e, f € PTerm, if for any complete metric space (M,d) and any
o: A — Con(M,d) we have d,(e) = d,(f), then e = f.

We expect that Conjecture 5.12 can be proven in a similar manner to Theorem 4.4.

6 A Question about Regular Subfractals

Certain regular subfractals that have been generated by LTSs with multiple states happen
to coincide with self-similar sets using a different alphabet of action symbols and under a
different contraction operator interpretation. For example, the twisted Sierpinski gasket in
Figure 2 is the self-similar set generated by the iterated function system consisting of the
compositions o, 0404, OO, 0c0p, and o.0c.
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» Question 1. Is every regular subfractal a self-similar set? In other words, are there regular
subfractals that can only be generated by a multi-state LTS?

» Example 6.1. To illustrate the subtlety of this question, consider the following LTS.

aC x b Db

The state x emits (a,a,...) (an infinite stream of a’s) and (a,...,a,b,b,...), a stream with
some finite number (possibly 0) of a’s followed by an infinite stream of b’s. Now let M =R
with Euclidean distance and consider the contraction operator interpretation o, (r) = %r and
op(r) =ir+ 1. Let K = {0} U{5|n > 0}. Then K is the component of the solution at z.
This example is interesting because unlike the Twisted Sierpiniski gasket in Figure 2, there is
no obvious finite set of compositions o, and o} such that K is the self-similar set generated
by that iterated function system.

There is an LTS (X, a) with X a singleton set {z}, and a contraction operator inter-
pretation o, whose solution is K. We take the set of action labels underlying X to be
B = {f,g,h} and use the contraction operator interpretation os(r) = 0, o4(r) = 1 and
on(r) = ir. It is easy to verify that K = Uies,g.ny i (K-

But we claim that K is not obtainable using a single-state LTS and the same contractions
0q(r) = ir and oy(r) = 1r + 1, or using any (finite) compositions of o, and o,. Indeed,
suppose there were such a finite collection o1, ... o, consisting of (finite) compositions of o,
and oy, such that K = |J_, 0;(K). Since 1 € K, we must be using the stream (b,b,b,...)
(since if there is an a at position n, the number obtained would be < 1 — QL < 1), so some o;
must consist of a composition of o, some number m > 1 of times with itself. Similarly, the
only way to obtain 0 is with (g, a,a,...), so there must be some ¢; which is a composition of
04 some number of times p > 1 with itself. But then lim,, o, 0500007 (1) =1— (S:L—;,lj) > 1
since m,p > 1. That point must be in the subset of R generated by this LTS. However, it is
not in K, since 1 <1 — (an—],{) < 1.

More generally, we cannot obtain K using a single-state LTS even if we allowed finite
sums of compositions of o, and oy.

Once again, it is possible to find a single state LTS whose corresponding subset of R
is K, but to do this we needed to change the alphabet and also the contractions. Perhaps
un-coincidentally, the constant operators are exactly the limits of the two contractions from

the original interpretation. Our question is whether this can always be done.

On the other hand, the thesis of Boore [7] may contain an answer to Question 1. Boore
presents a (family) of 2-state GIFS whose attractors, total unions of their regular subfractals,
are not self-similar. Attractors of GIFSs are not precisely the same as regular subfractals, so
additional work is required to adapt Boore’s work to answer Question 1.

7 Related Work

This paper is part of a larger effort of examining topics in continuous mathematics from the
standpoint of coalgebra and theoretical computer science. The topic itself is quite old, and
originates perhaps with Pavlovic and Escardd’s paper “Calculus in Coinductive Form” [23].
Another early contribution is Pavlovic and Pratt [24]. These papers proposed viewing some
structures in continuous mathematics — the real numbers, for example, and power series
expansions — in terms of final coalgebras and streams. The next stage in this line of work was
a set of papers specifically about fractal sets and final coalgebras. For example, Leinster [16]
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offered a very general theory of self-similarity that used categorical modules in connection
with the kind of gluing that is prominent in constructions of self-similar sets. In a different
direction, papers like [4] showed that for some very simple fractals (such as the Sierpiniski
gasket treated here), the final coalgebras were Cauchy completions of the initial algebras.

Generalizations of IFSs. Many generalizations of Hutchinson’s self-similar sets have ap-
peared in the literature. The generalization that most closely resembles our own is that of
an attractor for a directed-graph iterated function system (GIFS) [18]. A LTS paired with
a contraction operator interpretation is equivalent data to that of a GIFS, and equivalent
statements to Lemma 3.7 can be found for example in [9,18,19]. As opposed to the regular
subfractal corresponding to one state, as we have studied above, the geometric object studied
in the GIFSs literature is typically the union of the regular subfractals corresponding to all
the states (in our terminology), and properties such as Hausdorff dimension and connectivity
are emphasized. We also distinguish our structures from GIFSs because we need to allow the
interpretations of the labels to vary in our semantics.

Another generalization is Mihail and Miculescu’s notion of attractor for a generalized
iterated function system [19]. A generalized IFS is essentially that of Hutchinson’s IFS
with multi-arity contractions — equivalent to a single-state labelled transition system where
labels have “higher arity”. A common generalization of GIFSs and generalized IFSs could
be achieved by considering coalgebras of the form X — P([],,cy An x X™) and interpreting
each a € A,, as an n-ary contraction. We suspect that a similar story to the one we have
outlined in this paper is possible for this common generalization.

Process algebra. The process terms we use to specify labelled transition systems and
labelled Markov chains are fragments of known specification languages. Milner used process
terms to specify LTSs in [22], and we have repurposed his small-step semantics here. Stark and
Smolka use probabilistic process terms to specify labelled Markov chains (in our terminology)
in [27], and we have used them for the same purpose. Both of these papers also include
complete axiomatizations of bisimilarity, and we have also repurposed their axioms.

However, fractal semantics is strictly coarser than bisimilarity, and in particular, bisim-
ilarity of process terms is trace equivalence. Rabinovich added a single axiom to Milner’s
axiomatization to obtain a sound and complete axiomatization of trace equivalence of ex-
pressions [25], which allowed us to derive Theorem 4.4. In contrast, the axiomatization of
trace equivalence for probabilistic processes is only well-understood for finite traces, see Silva
and Sokolova’s [26], which our probabilistic process terms do not exhibit. We use the trace
semantics of Kerstan and Konig [14] because it takes into account infinite traces. Infinite
trace semantics has yet to see a complete axiomatization in the literature.

Other types of syntax. In this paper, we used the specification language of u-terms as
our basic syntax. As it happens, there are two other flavors of syntax that we could have
employed. These are iteration theories [5], and terms in the Formal Language of Recursion
FLR, especially its FFLR, fragment. The three flavors of syntax for fixed point terms are
compared in a number of papers: In [12], it was shown that there is an equivalence of
categories between F LR, structures and iteration theories, and Bloom and Esik make a
similar connection between iteration theories and the p-calculus in [6]. Again, these results
describe general matters of equivalence, but it is not completely clear that for a specific
space or class of spaces that they are equally powerful or equally convenient specification
languages. We feel this matter deserves some investigation.
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Equivalence under hypotheses. A specification language fairly close to iteration theories
was used by Milius and Moss to reason about fractal constructions in [21] under the guise of
interpreted solutions to recursive program schemes [20]. Moreover, [21] contains important
examples of reasoning about the equality of fractal sets under assumptions about the
contractions. Based on the general negative results on reasoning from hypotheses in the
logic of recursion [12], we would not expect a completeness theorem for fractal equivalence
under hypotheses. However, we do expect to find sound logical systems which account for
interesting phenomena in the area.

8 Conclusion

This paper connects fractals to trace semantics, a topic originating in process algebra. This
connection is our main contribution, because it opens up a line of communication between two
very different areas of study. The study of fractals is a well-developed area, and like most of
mathematics it is pursued without a special-purpose specification language. When we viewed
process terms as recipes for fractals, we provided a specification language that was not present
in the fractals literature. Of course, one also needs a contraction operator interpretation to
actually define a fractal, but the separation of syntax (the process terms) and semantics (the
fractals obtained using contraction operator interpretations of the syntax) is something that
comes from the tradition of logic and theoretical computer science. Similarly, the use of a
logical system and the emphasis on soundness and completeness is a new contribution here.

All of the above opens questions about fractals and their specifications. Our most concrete
question was posed in Section 6. We would also like to know if we can obtain completeness
theorems allowing for extra equations in the axiomatization. Lastly, and most speculatively,
since LTSs (and other automata) appear so frequently in decision procedures from process
algebra and verification, we would like to know if our semantics perspective on fractals can
provide new complexity results in fractal geometry.

We hope we have initiated a line of research where questions and answers come from
both the analytic side and from theoretical computer science.

—— References

1 Jos C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci., 335(2-3):131-146,
2005. doi:10.1016/j.tcs.2004.07.036.

2 Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales. Fundamenta Mathematicae, 3:133-181, 1922.

3 Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of Process Algebra.
North-Holland / Elsevier, 2001. doi:10.1016/b978-0-444-82830-9.x5017-6.

4  Prasit Bhattacharya, Lawrence S. Moss, Jayampathy Ratnayake, and Robert Rose. Fractal sets
as final coalgebras obtained by completing an initial algebra. In Franck van Breugel, Elham
Kashefi, Catuscia Palamidessi, and Jan Rutten, editors, Horizons of the Mind. A Tribute to
Prakash Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion of His 60th
Birthday, volume 8464 of Lecture Notes in Computer Science, pages 146—167. Springer, 2014.

5 Stephen L. Bloom and Zoltén Esik. Iteration Theories - The Equational Logic of Iterative
Processes. EATCS Monographs on Theoretical Computer Science. Springer, 1993. doi:
10.1007/978-3-642-78034-9.

6  Stephen L. Bloom and Zoltan Esik. Solving polynomial fixed point equations. In Mathematical
foundations of computer science 1994 (Kosice, 1994), volume 841 of Lecture Notes in Comput.
Sci., pages 52—67. Springer, Berlin, 1994.


https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1016/b978-0-444-82830-9.x5017-6
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-78034-9

T. Schmid, V. Noquez, and L.S. Moss

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Graeme C. Boore. Directed graph iterated function systems. PhD thesis, University of St.
Andrews, 2011. URL: http://hdl.handle.net/10023/2109.

G. A. Edgar and R. Daniel Mauldin. Multifractal decompositions of digraph recursive
fractals. Proceedings of the London Mathematical Society, s3-65(3):604-628, 1992. doi:
10.1112/plms/s3-65.3.604.

Gerald A. Edgar. Measure, Topology, and Fractal Geometry. Springer New York, NY, 1 edition,
1990. d0i:10.1007/978-1-4757-4134-6.

Kenneth J. Falconer. The Geometry of Fractal Sets. Cambridge Tracts in Mathematics. Cam-
bridge University Press, 1986. URL: https://www.cambridge.org/us/academic/subjects/
mathematics/abstract-analysis/geometry-fractal-sets.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666-677, 1978.
doi:10.1145/359576.359585.

A. J. C. Hurkens, Monica McArthur, Yiannis N. Moschovakis, Lawrence S. Moss, and Glen T.
Whitney. Erratum: “The logic of recursive equations”. J. Symbolic Logic, 64, 1999.

John E. Hutchinson. Fractals and self similarity. Indiana University Mathematics Journal,
30(5):713-747, 1981. URL: http://www.jstor.org/stable/24893080.

Henning Kerstan and Barbara Koénig. Coalgebraic Trace Semantics for Continuous Probabilistic
Transition Systems. Logical Methods in Computer Science, Volume 9, Issue 4, December 2013.
do0i:10.2168/LMCS-9(4:16)2013.

S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 3—41. Princeton University Press,
Princeton, NJ, 1956.

Tom Leinster. A general theory of self-similarity. Adv. Math., 226(4):2935-3017, 2011.
Benoit B. Mandelbrot. Fractals: Form, Chance, and Dimension. Mathematics Series. W. H.
Freeman, 1977. URL: https://books.google.com/books?id=avw_AQAATAAJ.

R Daniel Mauldin and S. C. Williams. Hausdorff dimension in graph directed constructions.
Transactions of the American Mathematical Society, 309(2):811-829, 1988. doi:10.1090/
S0002-9947-1988-0961615-4.

Alexandru Mihail and Radu Miculescu. Generalized ifss on noncompact spaces. Fized Point
Theory and Applications, 1(584215), 2010. doi:10.1155/2010/584215.

Stefan Milius and Lawrence S. Moss. The category-theoretic solution of recursive program
schemes. Theor. Comput. Sci., 366(1-2):3-59, 2006. doi:10.1016/j.tcs.2006.07.002.
Stefan Milius and Lawrence S. Moss. Equational properties of recursive program scheme
solutions. Cah. Topol. Géom. Différ. Catég., 50(1):23-66, 2009.

Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439-466, 1984. doi:10.1016/0022-0000(84)90023-0.

Dusko Pavlovic and Martin Hétzel Escard6. Calculus in coinductive form. In Thirteenth
Annual IEEE Symposium on Logic in Computer Science, Indianapolis, Indiana, USA, June
21-24, 1998, pages 408-417. IEEE Computer Society, 1998.

Dusko Pavlovic and Vaughan R. Pratt. The continuum as a final coalgebra. Theor. Comput.
Sci., 280(1-2):105-122, 2002.

Alexander Moshe Rabinovich. A complete axiomatisation for trace congruence of finite state
behaviors. In Stephen D. Brookes, Michael G. Main, Austin Melton, Michael W. Mislove,
and David A. Schmidt, editors, Mathematical Foundations of Programming Semantics, 9th
International Conference, New Orleans, LA, USA, April 7-10, 1993, Proceedings, volume
802 of Lecture Notes in Computer Science, pages 530-543. Springer, 1993. doi:10.1007/
3-540-58027-1_25.

Alexandra Silva and Ana Sokolova. Sound and complete axiomatization of trace semantics
for probabilistic systems. In Michael W. Mislove and Joél Ouaknine, editors, Twenty-seventh
Conference on the Mathematical Foundations of Programming Semantics, MFPS 2011, Pitts-
burgh, PA, USA, May 25-28, 2011, volume 276 of FElectronic Notes in Theoretical Computer
Science, pages 291-311. Elsevier, 2011. doi:10.1016/j.entcs.2011.09.027.

14:17

CALCO 2023


http://hdl.handle.net/10023/2109
https://doi.org/10.1112/plms/s3-65.3.604
https://doi.org/10.1112/plms/s3-65.3.604
https://doi.org/10.1007/978-1-4757-4134-6
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/geometry-fractal-sets
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/geometry-fractal-sets
https://doi.org/10.1145/359576.359585
http://www.jstor.org/stable/24893080
https://doi.org/10.2168/LMCS-9(4:16)2013
https://books.google.com/books?id=avw_AQAAIAAJ
https://doi.org/10.1090/S0002-9947-1988-0961615-4
https://doi.org/10.1090/S0002-9947-1988-0961615-4
https://doi.org/10.1155/2010/584215
https://doi.org/10.1016/j.tcs.2006.07.002
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1007/3-540-58027-1_25
https://doi.org/10.1016/j.entcs.2011.09.027

14:18 Fractals from Regular Behaviours

27  Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state probabilistic
processes. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language,
and Interaction, Essays in Honour of Robin Milner, pages 571-596. The MIT Press, 2000.



	1 Introduction
	2 Labelled Transition Systems and Trace Semantics
	3 Fractals from Labelled Transition Systems
	4 Fractal Equivalence is Traced
	5 A Calculus of Subfractal Measures
	6 A Question about Regular Subfractals
	7 Related Work
	8 Conclusion

