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Abstract
We study many-valued coalgebraic logics with primal algebras of truth-degrees. We describe a way
to lift algebraic semantics of classical coalgebraic logics, given by an endofunctor on the variety of
Boolean algebras, to this many-valued setting, and we show that many important properties of the
original logic are inherited by its lifting. Then, we deal with the problem of obtaining a concrete
axiomatic presentation of the variety of algebras for this lifted logic, given that we know one for the
original one. We solve this problem for a class of presentations which behaves well with respect to a
lattice structure on the algebra of truth-degrees.
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1 Introduction

Both many-valued modal logics (see, e.g., [10, 8, 5, 12, 36]) and two-valued coalgebraic logics
(see, e.g., [27, 29, 17, 18]) have received increased attention in recent years. Nonetheless, the
literature on the combination of these two topics seems, as of yet, sparse (examples include
[2, 1, 23]). In this paper, we use methods from universal algebra and category-theory to
study algebraic semantics of many-valued coalgebraic logics.

In the classical (two-valued) case, algebraic semantics for coalgebraic logics have been
described in [17] as follows. Given an endofunctor T on the category Set, an abstract
coalgebraic logic for T consists of an endofunctor L on the variety BA of Boolean algebras
together with a natural transformation δ determining the semantics (see Definition 1). One
can then relate T-coalgebras and L-algebras via δ and a dual adjunction between Set and
BA. In particular, we call such a coalgebraic logic concrete if the functor L comes equipped

Set BA δ : LP ⇒ PT
P

S
T L

Figure 1 Classical abstract coalgebraic logic for T.

with a presentation by operations and equations in the sense of [4, 20, 22]. Essentially, this
corresponds to an axiomatization of the variety Alg(L) of L-algebras. For example, considering
classical modal logic, where T = P is the covariant powerset functor (that is, T-coalgebras
are Kripke frames), the functor L has a presentation by one unary operation □ with two
equations □(x ∧ y) = □x ∧ □y and □1 = 1 (that is, L-algebras are modal algebras).
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It is well-known that the variety BA is generated by the two-element Boolean algebra 2,
that is BA = HSP(2). In this paper, we consider the many-valued case where BA is replaced
by a variety A = HSP(D), generated by another finite algebra D. More specifically, we study
the case where the algebra D is primal.

An algebra D with carrier set D is primal [11, 31, 7] if every map f : Dk → D is definable
by a term tf (x1, . . . , xk) of D. It is well-known that the Boolean algebra 2 is primal,
and primal algebras (e.g., the Post-chains, see Example 6) may be seen as many-valued
generalizations of this algebra. Indeed, Hu [13] showed that if D is primal, then the variety A
it generates is categorically equivalent to the variety of Boolean algebras BA (and vice versa).
Utilizing such a categorical equivalence, we lift an abstract coalgebraic logic (L, δ) over BA to
an abstract coalgebraic logic (L′, δ′) over A (see Figure 4). The logic thus obtained inherits
many useful properties of the original one, such as (one-step) completeness and expressivity.

In particular, if L has a presentation by operations and equations, the same is true for L′,
so at first glance it may seem straightforward to lift concrete coalgebraic logics in a similar
manner. However, as we illustrate in this paper, this task turns out to be far from trivial.
While the lifting guarantees the existence of a presentation of L′, it offers no indication of
what this presentation looks like or how it can be explicitly obtained from a presentation of L.
To answer these questions, we delve deeper into the algebraic structure of D. For certain
classes of functors L, we show that there is a systematic way to obtain a presentation of L′

directly from a presentation of L. In particular, this method applies to classical modal logic
as described above.

This work should be seen in the larger context of many-valued coalgebraic logics which
have been of interest to the community for a range of potential applications, from AI and
cyber-physical systems to the reasoning about software quality. Another (not necessarily
coalgebraic) application of many-valued reasoning are semiring-based algorithms for solving
soft constraints (see, e.g., [34] for a recent example). From the point of view of some of these
applications of many-valued logics, a restriction of our approach is that the dualising algebra
of truth-degrees is finite and, correspondingly, the topological duality is zero-dimensional.
It remains to be seen in future work whether the techniques we develop to extend Boolean
modal logics to many-valued modal logics can be generalized to a continuum of truth-degrees.
Our next step, still keeping to the finite case, will be to generalize from primal to semi-primal
algebras of truth values (see Question 3).

The paper is structured as follows. In Section 2, we give an overview of coalgebraic logic
(Subsection 2.1) and of primal algebras (Subsection 2.2). In Section 3, we show how to lift
abstract coalgebraic logics over BA to ones over A (see Definition 11), and we show that
important properties are preserved under this lifting (see Theorem 12). In Section 4, we
present some methods which, under various circumstances, allow us to obtain a presentation
of the lifted logic from a presentation of the original one (see Theorems 15 and 18). We also
show how these methods can be applied to classical modal logic (see Example 17) and to
neighborhood semantics (see Example 19). Lastly, in Section 5, we give a short summary
and collect some open questions for further research.

2 Preliminaries

In this section, we recall the most important notions used in this paper. In Subsection 2.1, we
give a short summary of coalgebraic logics and their algebraic semantics [17]. We distinguish
between abstract coalgebraic logics, in which the algebraic semantics correspond to an
endofunctor L on a variety without further specification, and concrete coalgebraic logics,
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in which this functor L is given together with an explicit presentation by operations and
equations [4]. We also recall two important properties of coalgebraic logics, namely one-step
completeness [29, 17] and expressivity [30, 16, 35, 15].

In Subsection 2.2, we recall the definition of primality [11] and provide some examples of
primal algebras which have previously been considered in logic. Note that the unary terms
T1 and T0 defined in Example 7 reoccur in later sections of this paper. Regarding the variety
generated by a primal algebra, we recall Hu’s Theorem [13, 14].

2.1 Abstract and Concrete Coalgebraic Logics
Coalgebraic (modal) logic, introduced by Moss [27], offers a uniform framework for the logical
study of transition systems modeled by coalgebras. In this paper, we follow the approach to
coalgebraic logic developed in [17] (for an overview of the various approaches to coalgebraic
logic we refer the reader to [18]). It builds on the following dual adjunction between the
category Set and the variety BA of Boolean algebras, defined by two contravariant functors
P : Set → BA and S : BA → Set. Intuitively, the functor P is the contravariant powerset
functor and S is the functor sending a Boolean algebra to its set of ultrafilters. Formally, we
will describe them in a way which is more convenient to generalize to other algebras later on.

The functor P : Set → BA assigns the Boolean algebra P(X) = 2X to the set X, where
2 = ({0, 1}, ∧, ∨, ¬, 0, 1) is the two-element Boolean algebra. A map f : X → X ′ gets sent to
Pf : 2X′ → 2X defined by composition β 7→ β ◦ f .

The functor S assigns the set of homomorphisms S(B) = BA(B, 2) to a Boolean algebra
B ∈ BA (note that BA(B, 2) can be identified with the set of ultrafilters of B) and sends
a homomorphism h : B → B′ to the map Sh : BA(B′, 2) → BA(B, 2), again defined by
composition u 7→ u ◦ h.

It is well-known that P and S form a dual adjunction between the categories Set and
BA. The corresponding natural transformations η : 1BA ⇒ PS and ε : 1Set ⇒ SP are given by
evaluations, that is, for for all B ∈ BA and X ∈ Set we have

ηB : B → 2BA(B,2) εX : X → BA(2X , 2)
b 7→ evb x 7→ evx

where evb(h) = h(b) and evx(f) = f(x).
Classical coalgebraic logics are built “on top” of this dual adjunction, relating coalgebras

over the base category Set to algebras over the base category BA. Since we are not only
interested in the classical case (that is, we aim to replace BA by other varieties later on), we
use the following general definition.

▶ Definition 1 (Abstract coalgebraic logic). Let V be a variety, Π: Set → V and Σ: V → Set
be two contravariant functors forming a dual adjunction and let T be an endofunctor on Set.
An abstract coalgebraic logic for T is a pair (L, δ), consisting of an endofunctor L on V and
a natural transformation δ : LΠ ⇒ ΠT.

Set V δ : LΠ ⇒ ΠT
Π

Σ
T L

Figure 2 Abstract coalgebraic logic for T over a variety V.
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Given a T-coalgebra γ : X → T(X), applying Π yields Πγ : ΠT(X) → Π(X). Composing
with δX , we obtain an L-algebra Πγ ◦ δX : LΠ(X) → Π(X). To illustrate these notions, we
recall how classical modal logic arises as a special case of a coalgebraic logic (for more details
see [17]).

▶ Example 2 (Classical modal logic). For a general introduction to classical modal logic, we
refer the reader to [3]. The category of Kripke frames with bounded morphisms is isomorphic
to the category Coalg(P) of coalgebras for the covariant powerset functor P : Set → Set.

The variety of modal algebras, on the other hand, can be identified with the category Alg(L)
of algebras for an endofunctor L : BA → BA defined as follows. If B is a Boolean algebra,
L(B) is the free Boolean algebra generated by the set of formal expressions {□b | b ∈ B},
quotiented by the equations □1 = 1 and □(b1 ∧ b2) = □b1 ∧ □b2.

The corresponding natural transformation δ : LP ⇒ PP is defined as follows. For a set X,
the component δX : LP(X) → PP(X) is the unique homomorphism which maps a generator
□Y (where Y ⊆ X) to {Z ⊆ X | Z ⊆ Y }. For a Kripke frame γ : W → P(W ), the algebra
Pγ ◦ δW is known as the complex algebra of the frame.

In this example, the category Alg(L) is a variety, since the functor L has a presentation
by one unary operation □ and two equations □1 = 1 and □(x ∧ y) = □x ∧ □y. For further
information about presentations of functors by operations and equations we refer the reader
to [4, 20, 22].

▶ Definition 3 (Concrete coalgebraic logic). A concrete coalgebraic logic is an abstract
coalgebraic logic (L, δ) together with a presentation of the functor L by operations and
equations.

It is shown in [22, Theorem 4.7] that an endofunctor L on a variety has a presentation by
operations and equations if and only if it preserves sifted colimits.

Two important properties of coalgebraic logics are (one-step) completeness [29, 17] and
expressivity [30, 16, 35, 15].

▶ Definition 4 (One-step completeness, expressivity). A coalgebraic logic (L, δ) is called
one-step complete if δ is a component-wise monomorphism, and
expressive if the adjoint-transpose δ† of δ is a component-wise monomorphism.

Classical modal logic (see Example 2) is one-step complete but not expressive. However,
if we replace P by the finite powerset functor Pfin (i.e., if we only consider image-finite
Kripke frames), the logic becomes expressive.

2.2 Primal Algebras

It is well-known that every function f : {0, 1}k → {0, 1} (where k ≥ 1) is term-definable
in the two-element Boolean algebra 2. In 1953, Foster [11] initiated the general study of
algebras with this property, introducing the following notion.

▶ Definition 5 (Primal algebra). A finite algebra D with carrier set D is called primal if
every function f : Dk → D (where k ≥ 1) is term-definable in D.

Next we give some examples of primal algebras which have a connection to logic, starting
with a well-known example of an early many-valued logic.
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▶ Example 6 (Post chain). The (n + 1)-element Post chain is the algebra

Pn =
(
{0, 1

n , . . . , n−1
n , 1}, ∧, ∨,′ , 0, 1

)
,

where ∧ and ∨ are the usual lattice operations and the unary operation ′ is defined by 0′ = 1
and ( i

n )′ = ( i−1
n ) for 0 < i ≤ n. For every n ≥ 1, the algebra Pn is primal [11, Theorem 35].

In our next example, we show that every finite bounded lattice can be turned into a
primal algebra in a canonical way. Modal expansions of similar structures have been studied
in [25].

▶ Example 7. Let (L, ∧, ∨, 0, 1) be a finite bounded lattice. Consider the algebra

L = (L, ∧, ∨, {Tℓ}ℓ∈L, {ℓ̂}ℓ∈L),

with unary operations

Tℓ(x) =
{

1 if x = ℓ

0 if x ̸= ℓ

as well as constants ℓ̂ for every ℓ ∈ L (in particular, for the bounds 0 and 1). The algebra
L is primal. For instance, every unary function f : L → L is definable by the “generalized
disjunctive normal form”

tf (x) =
∨
ℓ∈L

(Tℓ(x) ∧ f̂(ℓ)).

We can proceed similarly with functions f : Lk → L of higher arity, using the terms
T(ℓ1,...,ℓk)(x1, . . . , xk) = Tℓ1(x1) ∧ · · · ∧ Tℓk

(xk) for every (ℓ1, . . . , ℓk) ∈ Lk.

Other examples of primal algebras in logic which we don’t describe in detail here include
the four-valued bilattice studied in [32] and the “Boolean-like” algebras studied in [33].

Not surprisingly, primal algebras have a lot in common with the two-element Boolean
algebra. From a category-theoretical perspective, this resemblance is subsumed by Hu’s
Theorem, which we will state now.

▶ Theorem 8 (Hu’s Theorem [13, 14]). A variety A is categorically equivalent to BA if and
only if there is a primal algebra D ∈ A such that A = HSP(D).

In the following sections we will relate “classical” coalgebraic logics (L, δ), where L is an
endofunctor on BA, to “primal” coalgebraic logics (L′, δ′) where L′ is an endofunctor on the
variety A generated by a primal algebra. Even though Theorem 8 implies that BA and A
are categorically equivalent, we will see that this is a non-trivial task, since presentations of
functors are usually not preserved under categorical equivalences.

3 Lifting Abstract Coalgebraic Logics

For the remainder of this paper, we adopt the following framework.

▶ Assumption 9. Let D be a primal algebra, based on a bounded lattice D♭ = (D, ∧, ∨, 0, 1).

We use A = HSP(D) to denote the variety generated by D. Note that the assumption that
D comes equipped with a lattice structure can essentially be made without loss of generality,
since every possible lattice-order on D is term-definable in a primal algebra D.

CALCO 2023
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Set BA

A

P

S

P′

S′ S

P

Figure 3 Functors between Set, BA and A.

To set the scene, we now describe various functors relating our base categories Set, BA
and A. The entire constellation is summarized in Figure 3.

Due to Theorem 8, we know that A is categorically equivalent to BA. Since D is based
on a bounded lattice, we have an explicit algebraic description of two functors S : A → BA
and P : BA → A establishing such an equivalence [21].

The Boolean skeleton functor S : A → BA sends an algebra A ∈ A to the Boolean algebra

S(A) = (S(A), ∧, ∨, T0, 0, 1)

on the carrier set

S(A) = {a ∈ A | T1(a) = a}.

Here, ∧ and ∨ are the lattice operations of A, and T0 and T1 are terms defining the unary
operations from Example 7 (such terms exist since D is primal), interpreted in A. It is shown
in [26, Lemma 3.11] that S(A) forms a Boolean algebra. To a homomorphism g : A → A′

the functor S assigns its restriction Sg = g|S(A).
The Boolean power functor P : BA → A sends a Boolean algebra B to the Boolean power

D[B] defined as follows [11, 6]. The carrier set of D[B] is the set of functions ξ : D → B

which satisfy ξ(d1) ∧ ξ(d2) = 0 for all d1 ̸= d2 and
∨

{ξ(d) | d ∈ D} = 1 (for the definition of
the algebra operations we refer the reader to [6]). To a Boolean homomorphism h : B → B′

the functor P assigns the homomorphism defined by composition Ph(ξ) = h ◦ ξ.
A proof of the fact that S and P form a categorical equivalence between BA and A may

be found in [21, Corollary 4.12].
The contravariant functors P : Set → BA and S : BA → Set were already described in

Subsection 2.1, and the contravariant functors P′ : Set → A and S′ : A → BA are defined
similarly.

That is, the functor P′ assigns the algebra P′(X) = DX to a set X and sends a map
f : X → X ′ to the homomorphism P′f : DX′ → DX defined by composition α 7→ α ◦ f .

The functor S′ assigns the set of homomorphisms S′(A) = A(A, D) to an algebra A ∈ A
and sends a homomorphism h : A → A′ to the map S′h : A(A′, D) → A(A, D) defined by
composition u 7→ u ◦ h. Like in the case where D = 2, the functors P′ and S′ establish a dual
adjunction between Set and A. The corresponding natural transformations η′ : 1A ⇒ P′S′

and ε′ : 1Set ⇒ S′P′ are again given by evaluations (see Subsection 2.1).
We collect some useful properties of the functors appearing in Figure 3 and the natural

transformations corresponding to the two dual adjunctions in the following.

▶ Proposition 10. The functors P,S,P′,S′, P,S and the natural transformations ε, η, ε′, η′

satisfy the following properties.
(a) ΦA : A(A, D) → BA(S(A), 2) given by restriction u 7→ u|S(A) defines a natural iso-

morphism S′ ∼= SS. There also exists a natural isomorphism S ∼= S′P.
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(b) ΨX : 2X → S(DX), which identifies 2X with a subset of DX in the obvious way defines
a natural isomorphism P ∼= SP′. There also exists a natural isomorphism P′ ∼= PP.

(c) ε = SΨ ◦ ΦP′ ◦ ε′ and Sη′ = ΨS′ ◦ PΦ ◦ ηS.

Proof. In both (a) and (b), the second statement is an immediate consequence of the first
one because P and S form a categorical equivalence. A proof of the first part of (a) can be
found in [21, Proposition 4.3].

For the first part of (b), note that ΨX is well-defined since β ∈ 2X satisfies T1(β(x)) = β(x)
in every component x ∈ X. Since the Boolean operations are defined component-wise, it is a
homomorphism, and it is clearly injective. It is also surjective, since whenever an element
α ∈ DX has a component with α(x) /∈ {0, 1}, we have T1(α(x)) ̸= α(x). Naturality is
straightforward by definition.

For (c), we need to show that the following diagrams commute for all X ∈ Set and A ∈ A.

X BA(2X , 2) S(A) S(DA(A,D))

A(DX , D) BA(S(DX), 2) 2BA(S(A),2) 2A(A,D)

εX

ε′
X

Sη′
A

ηS(A)

ΦDX

SΨX

PΦA

ΨA(A,D)

For the diagram on the left, given x ∈ X, we compute

SΨX ◦ ΦDX ◦ ε′
X(x) = SΨX ◦ ΦDX (evx) = SΨX(evx|S(DX )) = evx|S(DX ) ◦ ΨX ,

which, on β ∈ 2X , is given by evx|S(DX ) ◦ ΨX(β) = evx|S(DX )(β) = β(x). Thus, it coincides
with εX(x)(β) = evx(β) = β(x).

For the diagram on the right, given b ∈ S(A), similarly we compute

ΨA(A,D) ◦ PΦA ◦ ηS(A)(b) = ΨA(A,D) ◦ PΦA(evb) = ΨA(A,D)(evb ◦ ΦA),

which is given on u ∈ A(A, D) by ΨA(A,D)(evb ◦ ΦA)(u) = ΨA(A,D)(evb(u|S(A))) = u(b).
This coincides with Sη′

A(b)(u) = η′
A|S(A)(b)(u) = u(b), finishing the proof. ◀

Suppose we are given an endofunctor T on Set and an abstract coalgebraic logic (L, δ)
for T which is classical in the sense that L is an endofunctor on BA. We now lift this to an
abstract coalgebraic logic (L′, δ′) where L′ is an endofunctor on A. The entire situation is
summarized in Figure 4.

▶ Definition 11 (Lifting of a coalgebraic logic). Let (L, δ) be an abstract coalgebraic logic for
T : Set → Set with L : BA → BA. Then

L′ = PLS and δ′ = Pδ

defines an abstract coalgebraic logic (L′, δ′) for T, which we call the lifting of (L, δ) to A.

This is well-defined since, by Proposition 10(b), the natural transformation Pδ : PLP → PPT
can be identified with one from PLP ∼= PLSP′ = L′P′ to PPT ∼= P′T.

▶ Theorem 12. Let (L′, δ′) be the lifting of a coalgebraic logic (L, δ) to A.
(a) If L has a presentation by operations and equations, then L′ has one as well.
(b) If (L, δ) is one-step complete, then so is (L′, δ′).
(c) If (L, δ) is expressive, then so is (L′, δ′).

CALCO 2023
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Set BA

A

P

S

P′

S′ S

P

T L

L′

Figure 4 Classical coalgebraic logic and its lifting.

Proof.
(a) Recall that an endofunctor on a variety has a presentation if and only if it preserves sifted

colimits [22, Theorem 4.7]. Of course, if L preserves sifted colimits then, by definition, so
does L′.

(b) If δ is a component-wise monomorphism, then so is δ′, since P preserves monomorphisms.
(c) We show that (δ′)† = δ†S holds up to natural isomorphism, from which the statement

follows since it implies that if δ† is a component-wise monomorphism, then so is (δ′)†.
So we want to show that the following diagram commutes.

TS′ S′P′TS′ S′L′P′S′ S′L′

TSS SPTSS SLPSS SLS

ε′TS′ S′δ′S′ S′L′η′

εTSS SδSS SLηS

D1 D2 D3

Here, by definition, the top edge of the diagram is the adjoint-transpose (δ′)† and
the bottom edge is δ†S. All vertical arrows are natural isomorphisms obtained via Φ
and Ψ from Proposition 10. The diagram D2 commutes by definition of δ′, using that
S′δ′ = S′Pδ and S′P ∼= S by Proposition 10(a). To finish the proof we show that D1 and
D3 commute as well.
To see that D1 commutes, we apply the first equation of Proposition 10(c) to compute

SPTΦ ◦ SΨTS′ ◦ ΦP′TS′ ◦ ε′TS′ = SPTΦ ◦ (SΨ ◦ ΦP′ ◦ ε′)TS′ = SPTΦ ◦ εTS′,

which coincides with εTSS ◦ TΦ.
Similarly, to see that D3 commutes we apply the second equation of Proposition 10(c)
to compute

SLηS ◦ SLPΦ ◦ SLΨS′ ◦ ΦL′P′S′ = SL(ΨS′ ◦ PΦ ◦ ηS) ◦ ΦL′P′S′ = SLSη′ ◦ ΦL′P′S′,

which coincides with ΦL′ ◦ S′L′η′. ◀

If (L, δ) is a concrete coalgebraic logic for T with L : BA → BA, then the initial L-algebra
exists and corresponds to the Lindenbaum-Tarski algebra of the variety Alg(L). If (L, δ) is
a coalgebraic logic for T and γ : X → T(X) is a coalgebra, then the unique map from the
Lindenbaum-Tarski algebra into the L-algebra Pγ ◦ δX determines semantics of formulas.
In this context, it is known that one-step completeness of (L, δ) implies completeness for
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the resulting logic [20, Theorem 6.15]. Since the proof only uses properties of BA which are
invariant under categorical equivalence, it can easily be adapted to coalgebraic logics over A.
Thus, parts (a) and (b) of Theorem 12 imply the following.

▶ Corollary 13. Let (L′, δ′) be the lifting of the coalgebraic logic (L, δ), where L has a
presentation. If (L, δ) is complete, then so is (L′, δ′).

So we showed that the lifting (L′, δ′) of a coalgebraic logic (L, δ) inherits desirable
properties from the original logic, which is satisfactory from a theoretical point of view. From
a more “practical” point of view, one important question still needs to be answered, namely
that of a concrete presentation of L′ and its relationship to a presentation of L. Indeed,
Theorem 12(a) only states that the existence of a presentation is preserved, without any
explicit way of obtaining it from the original one. In the following section, we give some
partial solutions to this problem.

4 Lifting Presentations of Functors

We aim to relate presentations of L : BA → BA to presentations of the corresponding lifted
functor L′ = PLS : A → A. Not surprisingly, to do this we need to delve deeper into the
algebraic structure of D.

Since D is based on a bounded lattice and primal (Assumption 9), for every d ∈ D, the
unary function τd : D → D defined by

τd(x) =
{

1 if d ≤ x

0 if d ̸≤ x

is well-defined and term-definable in D. Note that τ0, being of constant value 1, carries
no relevant information. Thus, we only consider τd for d ∈ D+ := D\{0} in the following.
Also note that τ1 coincides with T1 from Example 7. Given an element e ∈ D, the map
τ(·)(e) : D+ → 2 defined by d 7→ τd(e) fully determines the element e via

e =
∨

{d | τd(e) = 1}.

In the following, we characterize all maps of this form by their lattice-theoretic properties.

▶ Lemma 14. Let T : D+ → 2 be a map which, for all d1, d2 ∈ D+, satisfies

T (d1 ∨ d2) = T (d1) ∧ T (d2). (1)

Then T = τ(·)(e) for e =
∨

{d | T (d) = 1}.

Proof. The case e = 0 can only occur if T (d) = 0 for all d ∈ D+, which implies T (d) = 0 =
τd(0) for all d ∈ D. Now assume that e ̸= 0. First we show that T (e) = 1. Since e is a finite
join we apply (1) to find

T (e) = T (
∨

{d | T (d) = 1}) =
∧

{T (d) | T (d) = 1} = 1.

Furthermore, since (1) implies that T is order-reversing, we have T (c) = 1 for all c ≤ e

as well. Now let c ̸≤ e. Then we have T (c) = 0, since otherwise T (c) = 1 leads to the
contradiction

e =
∨

{d | T (d) = 1} ≥ e ∨ c > e.

Altogether, we have shown that T (d) = 1 if and only if e ≥ d, so T (d) = τd(e). ◀
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Suppose that L : BA → BA has a presentation by one unary operation □ and equations
which are satisfied by the terms τd, in the sense that all the equations obtained by replacing
□ by any τd hold in D. Prominent examples of such equations are □(x ∧ y) = □x ∧ □y and
□1 = 1 from Example 2.

Under these circumstances, we can find a presentation of the corresponding lifted functor
L′ : A → A as follows. The idea is to “approach” a presentation of L′ by introducing a modal
operator for every d ∈ D+, intended to correspond to τd□ for the “lifted” □′. However, only
if these modal operators are “consistent” in the sense of Lemma 14, we can replace them by
a single operator again.

For simplicity, we only consider the case of one unary operation in the following, but there
is a straightforward generalization of Theorem 15 to presentations of L by one operation
which is not necessarily unary (the operations □d and □′ will simply have the same arity).

▶ Theorem 15. Let L : BA → BA have a presentation by one unary operation □ and equations
which are satisfied (in D) by all τd, d ∈ D+. Let L′ = PLS.
(a) The functor L′ can be presented by unary operations □d for every d ∈ D+ and the

following equations.
The equations for □, where □ is replaced by □1.
□1τd(x) = □dx for all d ∈ D+.
T1(□dx) = □dx for all d ∈ D+.

(b) If, in the variety Alg(L′) axiomatized by the presentation of (a), the equation

□d1∨d2x = □d1x ∧ □d2x (2)

holds, then L′ can also be presented by one unary operation □′ and the following equations.
The equations for □, where □ is replaced by □′.
□′τd(x) = τd(□′x) for all d ∈ D+.

Proof.
(a) Let L+ : A → A be the functor presented by the operations □d and equations as in the

statement. We want to show that L′ is naturally isomorphic to L+. Since both these
functors are finitary (because they preserve sifted colimits, in particular they preserve
filtered colimits), it suffices to show that their restrictions to finite algebras are naturally
isomorphic. The restrictions of P and S to the categories Setfin of finite sets and BAfin

of finite Boolean algebras form a dual equivalence. Similarly, the restrictions of P′ and
S′ form a dual equivalence between Setfin and Afin. Therefore, it suffices to show that

S′L+P′ ∼= SLP,

since, due to Proposition 10, for the right-hand side we have further natural isomorphisms
SLP ∼= S′PLSP′ = S′L′P′. Spelling this out, we want to find a bijection between the sets
of homomorphisms A(L+(DX), D) and BA(L(2X), 2) which is natural in X ∈ Set. By
definition of L+, the set A(L+(DX), D) can be naturally identified with the collection of
all maps (whose domain is simply a set of formal expressions)

f : {□da | d ∈ D+, a ∈ DX} → D, where f respects the equations of L+.

Similarly, the set BA(L(2X), 2) can be naturally identified with the collection of all maps

g : {□b | b ∈ 2X} → 2, where g respects the equations of L.
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Given f as above, we assign to it gf defined by

gf (□b) = f(□1b).

This is well-defined, since T1(f(□1b)) = f(□1b) implies f(□1b) ∈ 2, and gf respects the
equations of L, because f does for □ replaced by □1.
Conversely, given g as above, we assign to it fg defined by

fg(□da) = g(□τd(a)).

Since the equations of L are satisfied by τd and respected by g, they are also respected
by fg. The remaining equations of L+ are respected by fg, since, for all d ∈ D+ we can
directly verify

fg(□1τd(a)) = g(□T1(τd(a))) = g(□τd(a)) = fg(□da),

where we used T1(τd(a)) = τd(a) since τd(a) ∈ 2X and

T1(fg(□da)) = T1(g(□τda)) = g(□τda) = fg(□da),

where we used T1(g(□τda)) = g(□τda) since g(□τda) ∈ 2.
Now we show that these two assignments are mutually inverse. For this we compute

fgf
(□da) = gf (□τda) = f(□1τda) = f(□da),

where in the last equation we used that f respects the corresponding equation of L+ and

gfg (□b) = fg(□1b) = g(□T1(b)) = g(□b),

where in the last equation we used b ∈ 2X again.
For naturality, we need to show that, given a map m : X1 → X2, the following diagram
commutes.

A(L+(DX1), D) BA(L(2X1), 2)

A(L+(DX2), D) BA(L(2X2), 2)

g(·)

S′L+P′m SLPm

g(·)

Let f : {□da | d ∈ D+, a ∈ DX1} → D be given as before. On the one hand, for α ∈ DX2

and β ∈ 2X2 we have S′L+P′m(f)(□dα) = f(□d(α◦m)) and therefore gS′L+P′m(f)(□β) =
f(□1(β ◦m)). On the other hand, SLPm(gf )(□β) = gf (□(β ◦m)) = f(□1(β ◦m)). Thus,
the diagram commutes.

(b) Let L⋆ : A → A be defined by one unary operation □′ and equations as in the statement
and let L+ be defined as in the proof of (a). For the same reason as before, it suffices to
show

S′L⋆P′ ∼= S′L+P′.

Again, S′L+P′(X) = A(L+(DX), D) is essentially the collection of maps

f : {□da | d ∈ D+, a ∈ DX} → D, where f respects the equations of L+,
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and S′L⋆P′(X) is essentially the collection of maps

h : {□a | a ∈ DX} → D, where h respects the equations of L⋆.

Given h as above, we assign to it

fh(□da) = h(□′τda).

Checking that this is well-defined is routine by now, the only non-trivial part being

T1(fh(□da) = T1(h(□′τd(a))) = h(□′T1(τd(a))) = fh(□da),

which uses the fact that h respects the corresponding equation □′T1(x) = T1(□′x) of L⋆.
Conversely, given f as above, we assign to it

hf (□′a) =
∨

{c | f(□ca) = 1}.

First, given d ∈ D+, using that τc ◦ τd = τd holds for all c ∈ D+, we note

hf (□′τd(a)) =
∨

{c | f(□cτd(a)) = 1} =
∨

{c | f(□1τc(τd(a))) = 1} =
∨

{c | f(□da) = 1}.

Since, on the right-hand side, the formula f(□da) = 1 is independent of c, this join is
either equal to

∨
∅ = 0 if f(□da) = 0 or

∨
D+ = 1 if f(□da) = 1. On the other hand,

by assumption we can apply Lemma 14, which yields

τd(hf (□′a)) = τd(
∨

{c | f(□ca) = 1}) = f(□da)

as well. The two assignments thus defined are mutually inverse since

fhf
(□da) = hf (□′τd(a)) =

∨
{c | f(□cτd(a)) = 1} = f(□da)

holds again by Lemma 14 and

hfh
(□′a) =

∨
{c | h(□′τc(a)) = 1} =

∨
{c | τc(h(□′a)) = 1} = h(□′a).

Analogous to (a), it is straightforward to show that the isomorphism thus defined is
natural. ◀

In particular, part (b) of this theorem applies if the “original” operation □ preserves
meets, as shown in the following.

▶ Corollary 16. Let L be as in Theorem 15, such that □(x ∧ y) = □x ∧ □y holds in the
variety Alg(L). Then L′ = PLS can be presented by one unary operation □′ and the following
equations.

The equations for □, where □ is replaced by □′.
□′τd(x) = τd(□′x) for all d ∈ D+.

Proof. We verify equation (2) from Theorem 15(b) by

□d1∨d2x = □1τd1∨d2(x) = □1(τd1(x) ∧ τd2(x)) = □1τd1(x) ∧ □1τd2(x) = □d1x ∧ □d2x,

and the statement immediately follows from there. ◀
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If (L, δ) is a concrete coalgebraic logic for T, where L : BA → BA is endowed with a
presentation such that the conditions of Theorem 15 are satisfied, it is now easy to describe
the lifting (L′, δ′) as a concrete coalgebraic logic as well. The only missing piece is an explicit
description of the natural transformation δ′ : L′P′ ⇒ P′T. Similar to the proof of Theorem
15, for a set X, the component δ′

X : L′(DX) → DT(X) is defined on Y ∈ T(X) by

δ′
X(□da)(Y ) = δX(□τd(a))(Y ).

Given that the additional condition of part (b) of Theorem 15 is also satisfied, it can be
described as

δ′
X(□a)(Y ) =

∨
{d | δ(□τd(a)) = 1}.

In the following, we show that the machinery developed works well with respect to the
way classical modal logic is described as a concrete coalgebraic logic in Example 2.

▶ Example 17 (Lifting classical modal logic). Let (L, δ) be the coalgebraic logic for P which
corresponds to classical modal logic as in Example 2, in particular L : BA → BA is presented
by a unary operation □ and the equations □(x ∧ y) = □x ∧ □y and □1 = 1.

Let (L′, δ′) be the lifting of (L, δ) to A. By Corollary 16, we know that L′ has a presentation
by a unary operation □′ and equations

□′(x ∧ y) = □′x ∧ □′y, □′1 = 1 and τd(□′x) = □′τd(x) for all d ∈ D+.

The natural transformation δ′ has components δ′
X : L′(DX) → DP(X), defined by

δ′
X(□′a)(Y ) =

∨
{d | δX(□τd(a))(Y ) = 1}.

Now, since δX(□τd(a))(Y ) = 1 ⇔ ∀y ∈ Y : τd(a(y)) = 1 ⇔ ∀y ∈ Y : a(y) ≥ d we can rewrite
this as∨

{d | δX(□τd(a))(Y ) = 1} =
∨

{d |
∧

y∈Y

a(y) ≥ d} =
∨

{d | τd(
∧

y∈Y

a(y)) = 1} =
∧

y∈Y

a(y).

Thus, this corresponds to the usual semantics of a many-valued box over Kripke frames
defined via meet (see, e.g., [5, 12]). Since we know that (L, δ) is one-step complete (and thus
complete), by Theorem 12(b) (and Corollary 13) the logic (L′, δ′) is one-step complete (and
thus complete) as well (similar results are shown in [25, 12]). Furthermore, from Theorem
12(c) we conclude that, replacing P by the finite-powerset functor Pfin, the logic (L′, δ′) is
expressive for image-finite frames (this can also be proved directly along the lines of [24]).

The applicability of Theorem 15 does depend on the specific choice of a presentation of L.
For instance, the functor L in the example above can also be presented by one unary operator
♢ with equations ♢(x ∨ y) = ♢x ∨ ♢y and ♢0 = 0. If D is not linear, it is easy to check that
τd(x ∨ y) = τd(x) ∨ τd(y) does not hold in general (simply choose incomparable elements
x and y and set d = x ∨ y). Therefore, this presentation can not be lifted by this method.
However, the following order-dual version of Theorem 15 can be applied in this case.

For every d ∈ D− := D\{1}, the unary operation κd : D → D defined by

κd(x) =
{

1 if d ≥ x

0 if d ̸≥ x

is term-definable in D. Not surprisingly, the following can be shown completely analogous to
what we did before.
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▶ Theorem 18. Let L : BA → BA have a presentation by one unary operation ♢ and equations
which are satisfied by all κd, d ∈ D−. Let L′ = PLS.
(a) The functor L′ can be presented by unary operations ♢d for every d ∈ D− and the

following equations.
The equations for ♢, where ♢ is replaced by ♢0.
♢0T0(κd(x)) = ♢dx for all d ∈ D−.
T1(♢dx) = ♢dx for all d ∈ D−.

(b) If, in the variety Alg(L′) axiomatized by the presentation of (a), the equation

♢d1∧d2x = ♢d1x ∨ ♢d2x (3)

holds, then L′ can also be presented by one unary operation ♢′ and the following equations.
The equations for ♢, where ♢ is replaced by ♢′.
♢′κd(x) = κd(♢′x) for all d ∈ D−.

Analogous to Corollary 16, equation (3) of Theorem 18 can be deduced if ♢(x∨y) = ♢x∨♢y

holds in Alg(L). Thus, another way to concretely present the lifting (L′, δ′) of classical modal
logic (Example 17) is by one unary operation ♢′ satisfying

♢′(x ∨ y) = ♢′x ∨ ♢′y, ♢′1 = 1 and κd(♢′x) = ♢′κd(x) for all d ∈ D−.

The semantics of ♢′ are (as usual for many-valued diamonds over Kripke frames) defined by
joins, that is, for a ∈ DX and Y ∈ P(X) we have δ′

X(♢′a)(Y ) =
∨

y∈Y a(y).
We finish this section with an example to illustrate a situation where part (a) of Theorem 15

can be applied, but part (b) can not.

▶ Example 19 (Neighborhood frames). To deal with non-normal modal logics, one typically
considers neighborhood semantics (for an introduction see, e.g., [28]). Neighborhood frames
are coalgebras for the neighborhood functor N : Set → Set, given by N = ℘ ◦ ℘, where ℘ is
the contravariant powerset functor.

Let (L, δ) be the following concrete coalgebraic logic over N . The functor L : BA → BA
has a presentation by one unary operation □ and no (i.e., the empty set of) equations. The
natural transformation δ has components δX : L(2X) → 2N (X) defined by

δX(□b)(N) = N(b),

in other words, δX(□b)(N) = 1 if and only if the subset b ∈ 2X is an element of the collection
of neighborhoods N .

Since the presentation of L doesn’t include any equations, it trivially satisfies the conditions
of Theorem 15. Therefore, the lifting (L′, δ′) of the above logic to A can be described as
follows. The functor L′ : A → A has a presentation by unary operations □d for all d ∈ D+

with equations

□1τd(x) = □dx and T1(□dx) = □dx for all d ∈ D+.

The semantics δ′ can be described by

δ′
X(□da)(N) = δX(□τd(a))(N) = N(τd(a)),

which means that δ′
X(□da) = 1 if and only if the subset {x ∈ X | a(x) ≥ d} is an element

of the collection of neighborhoods N . Since (L, δ) is one-step complete, we again have that
(L′, δ′) is complete.
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Therefore, it can easily be shown by counter-example that □d1∨d2x = □d1x ∧ □d2x does
not hold in Alg(L′), which means that the above presentation can not be simplified to the
one using a single unary operation via Theorem 15(b). At this point, the question whether
or not the presentation can be simplified differently remains open.

However, if we replace the functor N by the one which only allows collections of neigh-
borhoods which are closed under finite intersections and supersets, we know that there is a
corresponding concrete coalgebraic logic (L, δ) such that the presentation of L contains the
equation □(x ∧ y) = □x ∧ □y. Thus, Corollary 16 applies in this case.

This concludes the main sections of this paper. In the last section we briefly summarize
our results and discuss some potential directions for future research along similar lines.

5 Conclusion and Open Questions

We showed how to lift classical coalgebraic logics (L, δ) over BA to many-valued coalgebraic
logics (L′, δ′) over A, the variety generated by a primal algebra D. On the level of abstract
coalgebraic logics, it can be shown by purely category-theoretical means that the logic thus
lifted inherits important properties like one-step completeness and expressivity from the
original logic. On the level of concrete coalgebraic logics, we showed how one may lift a given
presentation of L by operations and equations to a presentation of L′, making use of algebraic
properties and a lattice structure of D. As of yet, there is no fully general method to do this.
However, prominent examples like the modal logics for Kripke frames and neighborhood
frames are covered by our results. In the following, we propose some open questions for
future research.

As Example 19 illustrates, applying Theorem 15 does not always yield a presentation by
a single unary operation. However, such a presentation could still exist in such situations.

▶ Question 1. Suppose that L : BA → BA has a presentation by a single unary operation and
equations. Does there always exist a presentation of L′ by a single unary operation as well?

If it is true, a follow-up question would be how these two presentations relate to each
other in general. If it is false, a follow-up problem would be to classify the presentations of L
for which it is true.

The following question arises if we start with a presentation of L with more than one,
possibly infinitely-many, operations (for example, the multi-modal logic for the distribution
functor described in [9]).

▶ Question 2. Given that the functor L : BA → BA has a presentation by more than one
operations operations and equations, can we still obtain a presentation of L′ with methods
similar to the ones developed in this paper?

Further generalizations of results of this paper may be obtained by weakening Assumption 9
about D being primal. We summarize this in the following general question.

▶ Question 3. Let V be some variety generated by some algebra. Is there a canonical way to
lift abstract coalgebraic logics (L, δ) over BA to abstract coalgebraic logics (L′, δ′) over V and
to relate presentations of L and L′?

We plan to generalize the results of this paper to the case of D being semi-primal in
future work (the first step towards that direction has been taken in [21], where we study the
category-theoretical relationship between V and BA in this case).

Lastly, one could keep Assumption 9, but change the approach to coalgebraic logic (for
an overview of the various approaches see [18]).
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▶ Question 4. Develop and study the theory of coalgebraic logic with a primal algebra D of
truth-degrees using other approaches to coalgebraic logic.

Many-valued nabla modalities and many-valued predicate liftings have, for example, been
investigated in [2] and [1, 23]. As follow-up research, one could study the relationship between
the various approaches to coalgebraic logic in the many-valued setting (similar to [19]).
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