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Abstract
Causality appears in various contexts as a property where present behaviour can only depend on
past events, but not on future events. In this paper, we compare three different notions of causality
that capture the idea of causality in the form of restrictions on morphisms between coinductively
defined structures, such as final coalgebras and chains, in fairly general categories. We then focus
on one presentation and show that it gives rise to a traced symmetric monoidal category of causal
morphisms. This shows that causal morphisms are closed under sequential and parallel composition
and, crucially, under recursion.
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1 Introduction

Causality appears in various fields of science as the property that the output of a system at
given time only depends on past and present inputs. This is particularly well-understood
for computations on streams and various approaches to define causal maps on streams have
been proposed [7]. More generally, distributive laws have been identified to give rise, and in
the category of sets also coincide with, causal maps [14]. Such distributive laws provide a
very neat formalism for constructing simultaneously several causal maps but are notoriously
difficult to use in compositional specifications [5]. Our aim here is to provide a compositional
framework for causal maps, in which such maps can be constructed by sequential composition,
parallel composition and recursion. This framework is built around the idea of graphical
calculi that arise from traced monoidal categories that allow us to construct and reason
about morphisms with string diagrams.

The first question that arises is what causal maps are in general. A robust definition
can be given by considering maps on final coalgebras. Suppose that F is a functor on some
category C and that it has a final coalgebra with carrier νF , which arises as the limit of
a sequence of approximations that we denote by ΦF . The final coalgebra νF comes with
projections pi : νF → (ΦF )i that allow us to inspect an element in νF up to stage i of the
approximation. Intuitively, a map f : νF → νF is causal if the ith approximation of its
output only depends on the ith approximation of the input. This notion has been formalised
by Rot and Pous [14] and we recap the formal definition in Section 3. For the purpose of
this introduction, it suffices to say that one can show that causal maps can equivalently be
represented by chain maps ΦF → ΦF , which are families of maps for every approximation
stage that are consistent across approximation stages. Formally, one considers ΦF as a
diagram in C and a chain map is then a natural transformation.

Thus, there are two equivalent ways of approaching causality. Why would we choose one
over the other? Causal maps on final coalgebras have the advantage that they are easy to
understand and calculate. However, to attain our goal of compositional reasoning for causal
maps, it is better to let go of these for a moment and work with chain maps instead. This
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18:2 Composition and Recursion for Causal Structures

gives us access to powerful tools for recursion that is akin to that of domain theory [4, 3].
Using these tools and some ideas from monoidal categories, we will be able to draw diagrams
such as those in Figure 1.

f τ2τ1

σ

g τ3

σ σ

Figure 1 Circuit with feedback loops and parameters.

The interpretation of Figure 1 is that f and g are two causal maps that connected in
various ways, including recursive feedback loops. Each of the maps has a small feedback loop
and then they are tied together in one big loop. On the loops are small boxes that can be
seen as registers that store information in between computation steps. It should be noted
that this is an analogy that works well for streams but may fail for other cases. However, we
like to place these boxes in the loop because we will show that the feedback is only defined if
an initial condition is provided, which can be interpreted as initial values in the registers.
Next, there are blue edges with labels τk. These edges are parameters of the maps that we
cannot do recursion with but have more flexible types. This can be useful if we consider
causal maps that have additional inputs and outputs that may not even stem from final
coalgebras.

The approach to compositional reasoning for causal maps we propose based on the above
ideas is that one starts with a set of known causal maps, obtained either directly as chain
maps or the construction we provide in the paper. Then one can build arbitrarily complex
compositions and loops around these maps using the formalism of traced monoidal and
tensored categories. Once construction and reasoning are done, causal maps can be easily
obtained from the chain maps by taking limits. All of this works fairly generally, as long as
the assumptions in Section 2.2 are fulfilled and that suitable initial conditions for recursion
are provided.

Contributions and Outline
We contribute in Section 4 a framework for working compositionally with chain maps. This
framework consists of a construction of string diagrams that differentiate between interfaces
for recursion and for parameters. These come about as certain symmetric monoidal, enriched,
and tensored categories. For such categories, we show that a trace operator can be obtained
relative to the recursion interface of morphisms. To enable the use of this framework, we
prove in Section 3 the correspondence between chain maps and causal maps, from which we
obtain a very flexible method of composition and recursion for causal maps. We also show in
Section 3.1 a third way to define causal maps in terms of a metric that is induced on νF

by the diagram ΦF . This metric view allows us to understand causality better in certain
examples, like streams and partial computations. In Section 5, we discuss applications to
probabilistic computations and we pay particular attention to linear maps, which turn out
to be automatically causal. Our framework provides then an alternative view on the various
calculi for linear circuits. We end with some concluding remarks in Section 6.

Before we begin with the actual work, we recall in the following Section 2 some background
on (enriched) monoidal categories and guarded recursion, and we prove some small results to
get the theory of the ground.
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2 Preliminaries

We follow the convention to use boldface letters C for categories, capital letters such as X for
objects, lower case letters for morphisms, capital letters such as F for functors, small Greek
letters like µ for natural transformations, and α, β for ordinals. We denote by ω the ordinal
of the natural numbers. Finally, σ, τ, γ will be for αop-indexed diagrams in some category.

Recall [11] that a symmetric monoidal category (SMC) is a category C with tensor product
functor ⊗ : C×C→ C and a tensor unit I ∈ C with the associativity, unit and symmetry
isomorphisms. An SMC is closed if for every object X ∈ C, the functor Id⊗X : C→ C has a
right-adjoint. In particular, a Cartesian closed category (CCC) is a closed SMC with products
acting as tensor and exponentials as their right adjoint: −×X ⊣ −X . Let V be a SMC. A
V-category C is a V-enriched category, which means that its morphisms C(X, Y ) are objects
in V, and composition and identity are morphisms cX,Y,Z : C(Y, Z)⊗C(X, Y )→ C(X, Z)
and uX : I → C(X, X) in V subject to the corresponding associativity and unit axioms [10, 6].
For morphisms f : X → Y in a Cartesian closed category C, we denote by ⌈f ⌉ : 1→ Y X the
“code” of f given by the Cartesian closure. The CCC C is a C-category (self-enriched) by
taking ⌈ id ⌉ : 1→ XX as unit and the composition compX,Y,Z : ZY × Y X → ZX is given by
the exponential adjunction. A functor F : C→ C is called strong if there is a natural family
of morphisms FX,Y : Y X → FY F X , such that FX,Y ◦ ⌈f ⌉ = ⌈Ff ⌉ for all f : X → Y . This
makes F a C-functor for the self-enrichment of C.

Let C be a category and F : C→ C a functor. An F -coalgebra (or just coalgebra) is a
morphism c : X → FX in C. If we need to be explicit about the carrier X, we also write
(X, c). A coalgebra homomorphism from (X, c) to (Y, d) is a morphism f : X → Y in C,
satisfying Ff ◦c = d◦f . A coalgebra (Y, d) is final if it is final in the category of F -coalgebras
CoAlg(F ), i.e., if for every coalgebra (X, c) there exists a unique coalgebra homomorphism
from (X, c) to (Y, d).

Given a category C, the category of descending α-chains in C, here denoted by ←−C, is
the functor category [αop, C]. Objects of ←−C are functors σ : αop → C, which assign each
i < α an object σi of C and each pair i ≤ j a morphism σ(i ≤ j) : σj → σi in C. A
morphism f : σ → τ in ←−C is a natural transformation, which means that it is an α-indexed
family of morphisms such that fi ◦ σ(i ≤ j) = τ(i ≤ j) ◦ fj holds. Such f will often be
called a chain map for simplicity. We also record here that the chain category construction
gives rise to a 2-functor

←−−
(−) : Cat → Cat on the category of categories. In particular, a

functor F : C→ D gives rise to a functor ←−F : ←−C→←−D by post-composition with diagrams
(point-wise application) and similarly for natural transformations. Finally, let us denote by
K : C→←−C the constant functor which assigns an object X of C to the constant chain given
by KXi = X and KX(i ≤ j) = idX . If C has αop-limits, then we assume them to be given
as an adjunction ⟨K ⊣ L, η, ϵ⟩ : C→←−C , where L : ←−C→ C assigns to a chain its limit.

2.1 Domain Theory of Chains
It is well known [1, 8] that if F : C→ C has a final coalgebra, then there is a limit ordinal α

for which F is αop-continuous (preserves limits of αop-diagrams) and the final coalgebra is
given by the limit of the so-called final chain. The main tool of this paper is this final chain
and we shall therefore recap recursion theory for such chains, see [13, 4, 3].

The category ←−C of αop-chains has properties that are akin to that of domains used in
recursion theory, with the main difference that fixed point theorems require guardedness via
the so-called later modality. We assume in what follows that C is Cartesian closed, which
implies that ←−C is also a CCC, and that C has sufficiently many limits, cf. Section 2.2.

CALCO 2023



18:4 Composition and Recursion for Causal Structures

The later modality is a functor ▶ : ←−C→←−C defined on objects by (▶σ)i = limj<i σj and
it comes with a natural transformation next : Id→ ▶. Since products preserve limits, there
are natural isomorphisms δ▶σ,τ : ▶σ × ▶ τ → ▶(σ × τ) and ε▶ : 1 → ▶1. If ω is used as
indexing ordinal, one can easily show that (▶σ)0 ∼= 1 and (▶σ)n+1 ∼= σn via a chain map.

We are interested in the category ←−C here because it allows us to do so-called guarded
recursion, which comes in the form of fixed point solution theorems for morphism and for
functors analogue to those occurring in domain theory. However, what differentiates guarded
recursion from domain theory is that we only find fixed points of contractive morphisms.
A solution or fixed point of a morphism h : τ × γ → γ in ←−C is a morphism s : τ → γ with
s = h ◦ ⟨idτ , s⟩. We call a morphism h : τ × γ → γ contractive if there is g : τ ×▶ γ → γ with
h = g ◦ (idτ ×nextγ). The main point is now that any contractive morphism h has a solution
in ←−C.

The isomorphisms δ▶ and ε▶ make ▶ a (strong) monoidal functor and thus allow us
to change the enriching base and obtain a ←−C-category ←−C▶ with the same objects as ←−C
but ←−C▶(σ, τ) = ▶(τσ) as morphism object. The monoidal natural transformation next
induces a ←−C-functor Next: ←−C→←−C▶ by putting Nσ,τ = nextτσ : τσ → ▶(τσ). A ←−C-functor
F : ←−C→←−C is called locally contractive if there is a←−C-functor G : ←−C▶ →

←−C with G◦Next = F .
Explicitly, there is a family of morphisms Gσ,τ : ▶(στ )→ FσF τ with Fσ,τ = Gσ,τ ◦ nextστ ,
Gσ,σ ◦▶ ⌈ id ⌉ ◦ ε▶ = ⌈ id ⌉ and comp ◦ (Cσ,τ × Cγ,σ) = Cγ,τ ◦▶ comp ◦ δ▶.

Throughout this paper, we will use that ▶ is locally contractive, and that if F and G are←−C-functors and at least one of them is locally contractive, then F ◦G is locally contractive.
Moreover, we will need the following result.

▶ Lemma 1. Given a functor F : C → C, the functor ←−F : ←−C → ←−C is a ←−C-functor if and
only if F is a C-functor.

What makes locally contractive functor interesting, is that they admit unique fixed points:
Given a locally contractive functor F : ←−C→←−C, there is a unique chain νF with isomorphisms
obs : νF → F (νF ) and fold = obs−1 : F (νF ) → νF . In this paper, we pick coinduction as
our main principle and consider (νF, obs) as final object in CoAlg(F ).

▶ Lemma 2. There is a functor Φ: Endo(C)→←−C given on objects by ΦF = ν
(
▶
←−
F

)
, which

exists because ▶ ◦
←−
F is locally contractive. We call ΦF the final chain of F .

Proof. Given a natural transformation α : F → G, we define Φα coinductively as in the
following diagram.

ΦF ΦG

▶
←−
F (ΦF )

▶
←−
G(ΦF ) ▶

←−
G(ΦG)

obs

obs

▶ αΦF

Φα

▶
←−
G(Φα)

Preservation of identities and composition follow by standard arguments from finality. ◀

If F preserves αop-limits, that is, if L
←−
F ∼= FL, then the limit adjunction K ⊣ L lifts to

an adjunction K ⊣ L with K : CoAlg(F )→ CoAlg
(
▶
←−
F

)
, see [3]. In particular, L(ΦF, obs)

is a final F -coalgebra with carrier L(ΦF ).
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2.2 Assumptions
Given the above, we assume the following for the remainder of the paper: C is a Cartesian
closed category; α is a limit ordinal; C has αop-limits and ∂(α ↓ i)op-limits, where ∂(α ↓ i)
is the category that contains all j < i; F is a strong functor on C that preserves αop-limits.

3 Causality

In this section, we extend the definition of ω-causal operators [14, Def. 8.1] to arbitrary
categories but we do not define causal algebra. Although, our definition can be easily
extended to causal algebras. For this purpose, we assume that F preserves αop-limits and
thus LΦF can be taken as the carrier νF of a final F -coalgebra. We denote by (νF, (pi)i<α),
the universal cone defining a limit for ΦF and we define causal morphisms on νF as follows.

▶ Definition 3. A morphism f : νF → νF is causal if for every object X of C, morphisms
e1, e2 : X → νF and i < α: if pi ◦ e1 = pi ◦ e2, then pi ◦f ◦ e1 = pi ◦f ◦ e2. Diagrammatically:

νF

X (ΦF )i

νF

pie1

e2 pi

=⇒

νF νF

X (ΦF )i

νF νF

f

pie1

e2
f

pi

We denote the set of causal morphisms on νF by Caus(νF, νF ) ⊆ C(νF, νF ).

In the following theorem we compare two characterisations of causal morphisms on νF .

▶ Theorem 4. There is a map λ : ←−C(ΦF, ΦF )→ Caus(νF, νF ) with λ(g) = Lg. If there is
a section s : ΦF → KLΦF of ϵΦF in ←−C, i.e. ϵΦF ◦ s = idΦF , then λ is an isomorphism.

Proof. We define λ :←−C(ΦF, ΦF )→ Caus(νF, νF ) such that for each g : ΦF → ΦF , λ(g) =
Lg. To show that λ(g) is causal we need to prove, by Definition 3, that if diagram (1)
below commutes, then the outer diagram must also commute, for any ρ ∈

←−C and morphisms
e1, e2 : ρ→ νF . In the diagram, we use LΦF for νF .

LΦF LΦF

ρ (1) (ΦF )i (ΦF )i

LΦF LΦF

pi (2)

Lg

pi

e1

e2

gi

pi (2)

Lg

pi

To prove that the outer diagram commutes, it is enough to prove that diagram (2) commutes.
Because of naturality of the counit ϵ of the adjunction ⟨K ⊣ L, η, ϵ⟩, the diagram below
commutes.

KLΦF KLΦF

ΦF ΦF

KLg

ϵΦF ϵΦF

g

CALCO 2023



18:6 Composition and Recursion for Causal Structures

Hence diagram (2) commutes, as being the ith component of the above commuting diagram.
Therefore, λ(g) is causal.

Given the section s : ΦF → KLΦF , we define an inverse χ : Caus(νF, νF )→←−C(ΦF, ΦF )
of λ on causal maps f : νF → νF by letting χ(f) = ΦF

s−→ KLΦF
Kf−−→ KLΦF

ϵΦF−−→ ΦF .
χ(g) is a chain map in ←−C because it is a composition of chain maps in ←−C. We have,
(χ ◦ λ)(g) = g, since the following diagram commutes by naturality of ϵ and s being a section.

ΦF KLΦF KLΦF

ΦF ΦF

s

idΦF

KLg

ϵΦF ϵΦF

g

We also have (λ ◦ χ)(f) = f : The following diagram commutes because of causality of f ,
naturality of η, and the triangular axiom of adjunction.

LKLΦF LKLΦF

LΦF LΦF LΦF

LKLΦF LKLΦF

LKf

LϵΦF

f

ηLΦF

Ls

ηLΦF

idLΦF

LKf
LϵΦF

Thus λ is an isomorphism with inverse χ. ◀

Importantly, this characterisation allows us to exploit all the domain-theoretic tools that
are available in ←−C to compose and reason about causal morphisms.

Let us pause for a moment to take a look at some examples in the category Set. First
of all, we note that we generally get the required section in Theorem 4 because the limit
projections split if the involved chains are non-empty. Thus, chain and causal maps are
equivalent in Set. Let us explore more concretely the familiar examples of streams and
partial computations.

▶ Example 5. Let S : Set→ Set be the functor defined by S(X) = R×X, for some set R.
The set Rω consists of streams over R, defined by Rω = [N, R]. If we use ω as ordinal for
indexing, then the final chain ΦS is isomorphic to the following chain.

1 R R2 R3 · · ·! π1 π2

That is, (ΦS)0 ∼= 1 and for every i ∈ N, (ΦS)i
∼= Ri via a chain map. Indeed, LΦS ∼= Rω with

the projections (pi)i∈N, such that pi : Rω → Ri giving for every s ∈ Rω its first i elements. It
is well known [7] that a function f : Rω → Rω is causal if and only if for all k ∈ N, s, t ∈ Rω,
if s(i) = t(i) for all i ≤ k, then f(s)(k) = f(t)(k). Which implicitly includes every i ≤ k,
that is f(s)(i) = f(t)(i), and that is exactly Definition 3. From Theorem 4, we now obtain
that we can equivalently see f as a chain map χ(f) : ΦS → ΦS, where for u ∈ Rn we have
χ(f)n+1(u) = f(u : s) for any stream s ∈ Rω. Note that this requires that R is inhabited.

▶ Example 6. For the functor N : Set→ Set given by N(X) = X + 1, where 1 = {∗}, one
has νN ∼= N ∪ {∞}. and we use ω as indexing ordinal. The final chain ΦN is isomorphic to
the following chain, in which [n] = {k ∈ N | 0 ≤ k < n}.

[0] [1] [2] [3] · · ·! q1 q2
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The projections qi are the identity on numbers below i and truncate all higher numbers.
Pictorially this looks as follows.

[0] [1] [2] · · ·

0 0 0 · · ·

1 1 · · ·

2 · · ·

q0 q1 q2

One can show [14, Ex. 8.4] that a map f : νN → νN is causal if for all n, m and i ≤ min(n, m),
then f(n) = f(m) or i ≤ min(f(n), f(m)).

One may wonder where the last condition in Example 6 comes from. Let us, therefore,
digress for a moment and explore yet another characterisation of causal morphisms.

3.1 Causality and Metric Maps
For the purpose of comparing causal maps with metric maps, we assume additionally that C
is locally small and that it has a generator G, which is an object such that the hom-functor
C(G,−) : C→ Set is faithful. We will denote this functor by E = C(G,−) and its action on
a morphism f : X → Y by f∗ : EX → EY . One can think of x ∈ EX as element of X and
f∗(x) ∈ EX as its image under f . Moreover, we need that the functor F is ωop-continuous.
These assumptions allow us to define a metric on final coalgebras and then prove that metric
maps correspond to causal maps.

Let d : E(νF )× E(νF )→ [0, 1] be the metric defined for e1, e2 ∈ E(νF ) as follows.

d(e1, e2) = sup
{

2−i
∣∣ pi ◦ e1 ̸= pi ◦ e2, i ∈ N

}
= inf

{
2−i

∣∣ pi ◦ e1 = pi ◦ e2, i ∈ N
}

One can easily observe from Definition 3 that two outputs of causal morphisms f∗ should
not be more distant than their corresponding inputs. That is, causal functions are metric
maps, in the following sense.

▶ Definition 7. Let (X, dX), (Y, dY ) be two metric spaces. A function f : X → Y is a metric
map when for any elements x, y ∈ X, the following condition is fulfilled.

dY (f(x), f(y)) ≤ dX(x, y)

Metric spaces and metric maps form a category Met.

Now we can show the correspondence between causal morphisms and metric maps.

▶ Theorem 8. The following are equivalent:
1. f ∈ Caus(νF, νF )
2. f ∈Met((νF, d), (νF, d))

Proof. (1→ 2) By the universal property of sup, we need to prove 2−l ≤ d(x, y) for all l

with pl ◦ f∗(x) ̸= pl ◦ f∗(y). Given such an l, we get by causality of f that pl ◦ x ̸= pl ◦ y and
hence 2−l ≤ d(x, y). As this holds for all l, we get d(f∗(x), f∗(y)) ≤ d(x, y).

(2→ 1) Conversely, let us assume that f is a metric map. That is
d(f∗(x), f∗(y) ≤ d(x, y), which implies that l ≥ k. Hence, we have for all i < k the following.

pi ◦ x = pi ◦ y =⇒ f ◦ pi ◦ x = f ◦ pi ◦ y

Since f is a metric map, we also have pi ◦ f∗(x) = pi ◦ f∗(y). Thus f is causal. ◀

CALCO 2023



18:8 Composition and Recursion for Causal Structures

Birkedal et al. [4] show that there is an adjunction between certain metric spaces and
←−−Set, and that there is a one-to-one correspondence between contractive maps in the metric
sense and contractive maps in ←−−Set, see Section 2.1. One can think of Theorem 8 as a partial
generalisation of this result, although we are mostly interested in it here to understand
causality better in some examples.

▶ Example 9. Recall that we cited in Example 6 a rather odd looking characterisation of
causal maps on partial computations. We can derive this characterisation from Theorem 8
as follows. Since if n = m we must have f(n) = f(m), suppose without loss of generality
n ≠ m. For i ≤ min(n, m), we get d(n, m) = 2−(min(n,m)+1). If f is causal, we either have
f(n) = f(m) or d(f(n), f(m)) = 2−(min(f(n),f(m))+1) ≤ d(n, m). By inspecting the two sides,
we get that i ≤ min(n, m) ≤ min(f(n), f(m)), which is what we wanted to prove.

The results in Theorem 4 and Theorem 8 can be summed up as in the following diagram.

Caus(νF, νF )

←−C(ΦF, ΦF ) Met((νF, d), (νF, d))

∼= ∼=

∼=

4 Composition and Recursion

In this section, we construct for a fixed chain σ a symmetric monoidal category Pσ together
with a trace-like operator. This category allows us to construct diagrams of arbitrary causal
morphisms with feedback loops. The SMC Pσ will have as morphisms something one may
think of building blocks with two kinds of interfaces: one for things of type σ over which
we do recursion via traces and one type for parameter of arbitrary type. The diagram in
Figure 1 displays the kind of circuit that we intend to build. Here, we build a circuit out
of two causal morphisms f and g, where τk are types of the parameters (blue wires) and
the three loops going through small boxes indicate recursive feedback that goes through a
register that can store elements of type σ (black wires). Such diagrams can be built, in the
usual way, by parallel and sequential composition of morphisms and by looping interfaces of
type σ back to inputs. What is not allowed are loops of types other than σ.

Let us first explain the nature of Pσ and then we prove that it is a traced SMC. Recall
that we can associate to any SMC, in this case, ←−C, a canonical PROP [12] Hσ with objects
being natural numbers and morphisms given by Hσ(n, m) =←−C(σn, σm). In fact, any PROP
is of this form [2]. In Hσ, we could build diagrams with only black wires and our result
Corollary 18 below will have as special case that this category is a traced SMC. However, we
wish to have the extra flexibility of additional parameters, which we can achieve by creating
a symmetric monoidal ←−C-category that is tensored over ←−C.

▶ Theorem 10. Let (V,⊗, I) be a closed SMC and v ∈ V some object. Denote by Hv the
V-enriched PROP with natural numbers as objects and morphisms v⊗n → v⊗m where v⊗n is
the n-fold tensor product of v. There is a V-enriched SMC Pv with a fully faithful monoidal
V-functor (−) : Hv → Pv that is tensored over V, which means that there is a monoidal
functor ⊙ : V ×Pv → Pv with natural isomorphisms Pv(u ⊙X, Y ) ∼= V(u, Pv(X, Y )) for
u ∈ V and X, Y ∈ Pv.

Proof. We define Pv to have as objects pairs (u, n) with u ∈ V and n ∈ N, and as morphisms
we take

Pv((u, n), (w, m)) = V
(
u⊗ v⊗n, w ⊗ v⊗m

)
.
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Since V is closed, this makes Pv immediately a V-category. It is also symmetric monoidal
with the product (u, n) ⊗Pv

(w, m) = (u ⊗ w, n + m) and unit IPv
= (I, 0). The functor

Hv → Pv is given by n = (I, n) and f = I ⊗ f . It is obviously monoidal and faithful,
and that it is full follows from I being the monoidal unit. Finally, the tensor is defined by
u⊙ (w, n) = (u⊗ w, n) and we get immediately

Pv(u⊙ (x, n), (y, m)) = Pv((u⊗ x, n), (y, m))
= V

(
u⊗ x⊗ v⊗n, y ⊗ v⊗m

)
∼= V

(
u⊗, V

(
x⊗ v⊗n, y ⊗ v⊗m

))
= V(u⊗, Pv((x, n), (y, m)))

by V being closed. Thus Pv is also tensored over V. ◀

We now apply Theorem 10 to our situation of αop-chains to obtain for σ ∈
←−C a←−C-category

Pσ with pairs (τ, n) of τ ∈
←−C and n ∈ N and

Pσ((τ, n), (γ, m)) =←−C(τ × σn, γ × σm)

as hom-objects. We denote the monoidal product of Pσ simply by ⊗ and its unit by I. Since
morphisms in Pσ are particular morphisms in ←−C, we make no distinction between, e.g.,
id(τ,n) and idτ×σn to lighten notation a bit.

Our goal now is to enable recursion in Pσ via a trace operator [9]. Except that our trace
will be relative to Hσ in the sense that there is a family of maps

Trk
X,Y : Pσ(X ⊗ k, Y ⊗ k)→ Pσ(X, Y )

indexed by X, Y ∈ Pσ and k ∈ Hσ that fulfils the usual trace axioms. Since the functor
Hσ → Pσ is fully faithful, this will expose Hσ as a proper traced SMC.

Whenever morphisms are defined by recursive equations, one has to provide boundary
conditions to obtain a well-defined solution to the equations, even if they are implicit. In
analogy with registers to create well-defined feedback loops as in Figure 1, an initial value
that we place in the registers will take the role of boundary conditions in our case.

▶ Definition 11. We call a morphism i : ▶σ → σ in ←−C an initial value. It gives rise to a
morphism on powers of σ by îk = ▶

(
σk

) δ▶

−−→ (▶σ)k ik

−→ σk. A morphism g : n→ m in Hσ

is compatible with i if îm ◦▶ g = g ◦ în.

If σ ∈ [ωop, C], then an initial value i : ▶σ → σ consists of morphisms i0 : 1→ σ0 and
in+1 : σn → σn+1 that are compatible with the chain σ. In the case of streams, see Example 5,
i : ▶(ΦS)→ ΦS picks out an element i1 : 1→ R that all ik : Rk → Rk+1 have to return as
the first element. Compatibility of g with i means then that g1 ◦ i1 = i1, which is for example
the case when i1 returns 0 and g is linear, see Section 5.1.

A good source of initial values for the final chain is pointed functors.

▶ Proposition 12. If F : C→ C is a pointed functor, i.e., comes with a natural transformation
η : Id→ F , then there is an initial value ▶ΦF → ΦF .

Proof. The initial value is defined as the composite ▶ΦF
▶←−η ΦF−−−−−→ ▶

←−
F ΦF

fold−−→ ΦF . ◀

In what follows, we assume an initial value to be given and construct the trace relative to
it. Since ←−C is Cartesian closed, we find that the morphism involved in our relative trace has
a special shape.

We give the definition of morphisms with k-feedback loops as follows.

CALCO 2023



18:10 Composition and Recursion for Causal Structures

▶ Definition 13. A k-feedback morphism f ∈ Pσ((τ, n)⊗Pσ k, (γ, m)⊗Pσ k) is of the form

f = ⟨fout, ffb⟩

such that fout ∈ Pσ((τ, n)⊗Pσ k, (γ, m)) refers to the output of f and ffb ∈ Pσ((τ, n)⊗Pσ k, k)
refers to the k-feedback loops of f , given by ffb = îk ◦ nextσk ◦ ffb, where îk ∈ Pσ(k, k) such
that (̂ik)i : (σi)k → (σi+1)k.

The first step to defining a trace operator is to figure out the behaviour of the register
involved in a feedback loop. To this end, let h : (τ, n) ⊗ k → k be a morphism in Pσ

and consider the morphism îk ◦ nextσk ◦ h : τ × σn × σk → σk, which is contractive with
îk ◦ ▶h ◦ δ▶ ◦ (nextτ×σn × id) because next is a monoidal natural transformation, as the
following diagram shows, where X = τ × σn.

X ×▶(σk) X × σk σk

▶X ×▶(σk) ▶(X × σk) ▶(σk) σk

h

next

id×next

next×id

δ▶ ▶ h

next

îk

next×next

We denote by s(h) : (τ, n)→ k a solution for îk ◦nextσk ◦h, that is, the unique morphism
fulfilling the following equation.

s(h) = îk ◦ nextσk ◦ h ◦ ⟨id(τ,n), s(h)⟩ (1)

We collect some properties of s(h) that we need to prove the trace axioms.

▶ Lemma 14. For any h : (τ, n)⊗ k → k and g : (τ ′, n′)→ (τ, n) morphisms in Pσ, if s(h)
is a solution for îk ◦ nextσk ◦ h, then s(h) ◦ g is a solution for îk ◦ nextσk ◦ h ◦ (g × idk).

Proof. s(h) ◦ g is a solution for îk ◦ nextσk ◦ h ◦ (g × idk), because

s(h) ◦ g = îk ◦ nextσk ◦ h ◦ ⟨id(τ,n), s(h)⟩ ◦ g by def. of s(h)
= îk ◦ nextσk ◦ h ◦ ⟨g ◦ id(τ ′,n′), s(h) ◦ g⟩
= îk ◦ nextσk ◦ h ◦ (g × idk) ◦ ⟨id(τ ′,n′), s(h) ◦ g⟩ ◀

The following lemma will allow us to prove the sliding axiom for tracing, but only for
chain maps that are compatible with the initial value.

▶ Lemma 15. Suppose h′ : (τ, n) ⊗ k → k′ and g : k′ → k that is compatible with i. If
s(h′ ◦ (id(τ,n))⊗ g) is a solution for îk′ ◦ nextσk′ ◦h′ ◦ (id(τ,n)⊗g), then g ◦ s(h′ ◦ (id(τ,n))⊗ g)
is a solution for îk ◦ nextσk ◦ g ◦ h′.

Proof. Let sk′ = s(h′ ◦ (id(τ,n))⊗ g), then g ◦ sk′ is a solution for îk ◦ nextσk ◦ g ◦ h′, because

g ◦ sk′
= g ◦ îk

′
◦ nextσk′ ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′

⟩,

= îk ◦▶ g ◦ nextσk′ ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′
⟩ g compatible with i

= îk ◦ nextσk ◦ g ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′
⟩ ◀

We propose a definition of a trace in Pσ in the following theorem, followed by a proof
that it satisfies the axioms of a trace [9].
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▶ Theorem 16. For any X, Y, k ∈ Pσ, we define Trk
X,Y : Pσ(X ⊗ k, Y ⊗ k)→ Pσ(X, Y ) by

Trk
X,Y (f) = fout ◦ ⟨idX , s(ffb)⟩ (2)

a family of morphisms that satisfy the axioms of a trace, with the exception that dinaturality
is relative to i-compatible morphisms.

Proof.
1. Naturality on (τ, n): Trk

−,(γ,m) : Pσ(− ⊗ k, (γ, m) ⊗ k) → Pσ(−, (γ, m)) is a natural
transformation.
Let f : (τ, n)⊗ k → (γ, m)⊗ k be k-feedback and g : (τ ′, n′)→ (τ, n), both morphisms in
Pσ. We need to show that

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = Trk

(τ,n),(γ,m)(f) ◦ g. (3)

Since f is k-feedback, we have

(f ◦ (g ⊗ idk))out = fout ◦ (g ⊗ idk) and (f ◦ (g ⊗ idk))fb = ffb ◦ (g ⊗ idk). (4)

Hence, by Equation (2),

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = fout ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb ◦ (g ⊗ idk))⟩ (5)

where s(ffb ◦ (g ⊗ idk)) is a solution for îk ◦ nextσk ◦ ffb ◦ (g ⊗ idk), and

s(ffb ◦ (g ⊗ idk)) = îk ◦ nextσk ◦ ffb ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb ◦ (g ⊗ idk))⟩.

We also have, Trk
(τ,n),(γ,m)(f) ◦ g = fout ◦ ⟨id(τ,n), s(ffb)⟩ ◦ g, such that, s(ffb) being the

fixed point of îk ◦ nextσk ◦ ffb and s(ffb) = îk ◦ nextσk ◦ f1 ◦ ⟨id(τ,n), s⟩.
By Lemma 14, we get

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = fout ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb) ◦ g⟩,

= fout ◦ ⟨id(τ,n), s(ffb)⟩ ◦ g,

= Trk
(τ,n),(γ,m)(f) ◦ g.

Hence, Equation (3).
2. Naturality on (γ, m): Trk

(τ,n),− : Pσ((τ, n) ⊗ k,− ⊗ k) → Pσ((τ, n),−) is a natural
transformation.
Let f : (τ, n)⊗ k → (γ, m)⊗ k and g : (γ, m)→ (γ′, m′), we need to show that

Trk
(τ,n),(γ′,m′)((g ⊗ idk) ◦ f) = g ◦ Trk

(τ,n),(γ,m)(f). (6)

For the k-feedback morphism (g ⊗ idk) ◦ f ,

((g ⊗ idk) ◦ f)out = g ◦ fout, and ((g ⊗ idk) ◦ f)fb = ffb.

By definition, Trk
(τ,n),(γ′,m′)((g ⊗ idk) ◦ f) = g ◦ fout ◦ ⟨id(τ,n), s(ffb)⟩, and

g ◦ Trk
(τ,n),(γ,m)(f) = g ◦ fout ◦ ⟨id(τ,n), s(ffb)⟩. Hence, Equation (6).

3. Dinaturality on k: Tr−(τ,n),(γ,m) : Pσ((τ, n) ⊗ −, (γ, m) ⊗ −) → Pσ((τ, n), (γ, m)) is a
dinatural transformation, on the full subcategory Hσ with objects of the form n = (K1, n)
for all n ∈ N, and if iσk at every k ∈ N satisfies for each g : k → k′, g ◦ îk = îk′ ◦▶ g.
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18:12 Composition and Recursion for Causal Structures

Let f : (τ, n)⊗ k → (γ, m)⊗ k′ and g : k′ → k, we need to show that

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)). (7)

Note that (id(γ,m)⊗g) ◦ f is k-feedback with ((id(γ,m)⊗g) ◦ f)out =
fout, and ((id(γ,m)⊗g) ◦ f)fb = (g ◦ f)fb; and f ◦ (id(τ,n)⊗g) is k′-feedback, with
(f ◦ (id(τ,n)⊗g))out = fout ◦ (id(τ,n)⊗g), and (f ◦ (id(τ,n)⊗g))fb = ffb ◦ (id(τ,n)⊗g); such
that fout : τ × σn × σk → γ × σm and ffb : τ × σn × σk → σk′

.

Then, by Theorem 16, we have

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = fout ◦ ⟨id(τ,n), s(g ◦ fk′)⟩; (8)

and

Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)) = fout ◦ (id(τ,n)⊗g) ◦ ⟨id(τ,n), s(fk′ ◦ (id(τ,n)⊗g))⟩,

= fout ◦ ⟨id(τ,n), g ◦ s(fk′ ◦ (id(τ,n)⊗g))⟩.

Let sk′ = s(fk′ ◦ (id(τ,n)⊗g)), a solution for iσk′ ◦ nextσk′ ◦ fk′ ◦ (id(τ,n)⊗g), then by
Lemma 15, g ◦ sk′ is a solution for îk ◦ nextσk ◦ g ◦ fk′ . Hence, we can substitute s(g ◦ fk′)
in Equation (8), by g ◦ sk′ , and we get

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = fout ◦ ⟨id(τ,n), s(g ◦ fk′)⟩,

= fout ◦ ⟨id(τ,n), g ◦ sk′
⟩,

= Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)).

▶ Remark 17. In the case where we do not have g ◦ iσk = i
σk′ ◦▶ g, dinaturality is not

satified.
We have now seen that trace in Theorem 16 is a family of natural morphisms, we are left
to check if they fulfill the three axioms of trace in [9], for symmetric monoidal categories.

4. Vanishing 1: Let f : (τ, n) ⊗ 0 → (γ, m) ⊗ 0 and ιr : − ⊗1 → −, where ιr is the right
unitor. Then we need to show, that

Tr0
(τ,n),(γ,m)(f) = ιr(γ,m) ◦ f ◦ ι−1

r(τ,n). (9)

Note that Tr0
(τ,n),(γ,m) : Pσ((τ, n), (γ, m))→ Pσ((τ, n), (γ, m))

In this case, f is 0-feedback, therefore fout = f . Hence

Tr0
(τ,n),(γ,m)(f) = f

= ιr(γ,m) ◦ f ◦ ι−1
r(τ,n).

5. Vanishing 2: Let f : (τ, n)⊗ 1⊗ 1→ (γ, m)⊗ 1⊗ 1 We need to show that

Tr2
(τ,n),(γ,m)(f) = Tr1

(τ,n),(γ,m)(Tr1
(τ,n+1),(γ,m+1)(f)) (10)

We have, f is a 2-feedback with f = ⟨fout, f2⟩ = ⟨fout, f21, f1⟩ = ⟨fout,2out, f1⟩. Then,

Tr1
(τ,n+1),(γ,n+1)(f) = f1 ◦ ⟨id(τ,n+1), s1⟩ (11)

such that s1 is a a solution for î1 ◦ nextσ ◦ f1. Then

Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f)) = (f1 ◦ ⟨id(τ,n+1), s1⟩)1 ◦ ⟨id(τ,n), s2⟩, (12)
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such that s2 is a solution for î1 ◦ nextσ ◦ (fout,2out ◦ ⟨id(τ,n+1), s1⟩)2 and
s2 = î1 ◦ nextσ ◦ f21 ◦ ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩, where

(fout,2out ◦ ⟨id(τ,n+1), s1⟩)1 =fout ◦ ⟨id(τ,n+1) s1⟩ and
(fout,2out ◦ ⟨id(τ,n+1), s1⟩)2 =f21 ◦ ⟨id(τ,n+1), s1⟩ .

Hence Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f)) = fout ◦⟨id(τ,n+1), s1⟩◦⟨id(τ,n), s2⟩. On the other
hand, We have f = ⟨fout, ⟨f21, f1⟩⟩, and Tr2

(τ,n),(γ,m)(f) = fout ◦ ⟨id(τ,n), s⟩, where s is
a solution for î2 ◦ nextσ2 ◦ ⟨f21, f1⟩. We can show that t = ⟨s2, s1 ◦ ⟨id(τ,n), s2⟩⟩ is a
solution for î2 ◦nextσ2 ◦ ⟨f21, f1⟩. We have ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩ = ⟨id(τ,n), t⟩, where
t = ⟨s2, s1 ◦ ⟨id(τ,n), s2⟩⟩ = î2 ◦ nextσ2 ◦ ⟨f21, f1⟩ ◦ ⟨⟨id(τ,n), t⟩. Therefore, t is a solution
for î2 ◦ nextσ2 ◦ ⟨f21, f1⟩. Thus, we have the following.

Tr2
(τ,n),(γ,m)(f) = fout ◦ ⟨id(τ,n), t⟩

= Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f))

6. Superposing: Let f : (τ, n)⊗ 1→ (γ, m)⊗ 1 and g : (τ ′, n′)→ (γ′, m′), we need to show
that

g ◦ Tr1
(τ,n),(γ,m)(f) = Tr1

(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) . (13)

We have Tr1
(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) = (g ⊗ f1) ◦ ⟨id(τ ′,n′)⊗(τ,n), s⟩, where s is a

solution for î1 ◦ nextσ ◦ (g ⊗ f)2 = î1 ◦ nextσ ◦ f1 ◦ π(τ,n+1). If s(f1) is a solution for
î1 ◦ nextσ ◦ f1, then s(f1) ◦ π(τ,n) is a solution for î1 ◦ nextσ ◦ f1 ◦ π(τ,n+1), because of the
following

s(f1) ◦ π(τ,n) = î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n), s(f1)⟩ ◦ π(τ,n),

= î1 ◦ nextσ ◦ f1 ◦ ⟨π(τ,n) ◦ id(τ ′,n′)⊗(τ,n), s(f1) ◦ π(τ,n)⟩.

By definition, Tr1
(τ,n),(γ,m)(f) = f1 ◦ ⟨id(τ,n), s(f1)⟩. Hence,

Tr1
(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) = (g ⊗ f1) ◦ ⟨id(τ ′,n′)⊗(τ,n), s(f1) ◦ π(τ,n)⟩

= g ⊗ Tr1
(τ,n),(γ,m)(f)

Therefore, we have Equation (13).
7. Yanking: We need to show, for the component at (1, 1) of the braiding, i.e. ξ1,1, that

Tr1
(1,1)(ξ1,1) = id1. (14)

Note that ξ1,1 = ⟨π1, π2⟩ , Tr1
(1,1)(ξ1,1) = π1 ◦ ⟨id1, s(π2)⟩, where s(π2) is a solution for

π2. id1 is a solution for π2. Hence, Equation (14).
The dinaturality of Tr−(τ,n),(γ,m) is only on Pσ, and only fulfilled if for any g ∈

←−C(k, k),
îk ◦▶ g = g ◦ îk′ . ◀

The following is a consequence of Theorem 16.

▶ Corollary 18. Trk
n,m is a trace operator on Hσ if all g : k → k are i-compatible.

Proof. This follows from Theorem 16 because the functor Hσ → Pσ is fully faithful. ◀

Going back to causality, by definition Trk
(τ,n),(γ,m)(f) is a morphism in ←−C. Therefore

L(Trk
(τ,n),(γ,m)(f)) is causal by Theorem 4. As Theorem 4 establishes a bijective correspond-

ence, we find that Caus(νF, νF ) is closed under sequential composition, parallel composition
and under recursion via trace. In the following section, we show some applications of this.
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5 Applications

Before we come to concrete applications, we mention here that distributive laws, that is,
natural transformations δ : GF → FG, induce morphisms δ̂ : ←−GΦF → ΦF [3]. In particular,
distributive laws δ : ΣnF → FΣn for the functor Σn : C→ C given by Σn(X) = Xn allow
us to define n-ary causal morphisms. If, moreover, F is pointed with η : Id → F and
δ ◦Σnη = ηΣn, the induced map δ̂ : (ΦF )n → ΦF is compatible with the initial value induced
by η, see Proposition 12.

5.1 Linear Stream Functions
In this section, we look into functions over the set Rω of all streams over a commutative
ring (R, +, ., 0, 1). The set Rω is a commutative ring, with the pointwise addition +, the
convolution product ×, together with their respective unit stream, see [15]. Moreover, for
any n ∈ N, (Rω)n is an Rω-module and module homomorphisms are Rω-linear systems in
the following sense.
▶ Definition 19. A system ⟨f1, · · · , fm⟩ : (Rω)n → (Rω)m is Rω-linear if for every
i ∈ {1, · · · , m}, fi : (Rω)n → Rω is Rω-linear, i.e., for all streams u, v ∈ Rω and
(s1, · · · , sn), (t1, · · · , tn) ∈ (Rω)n

f((u× (s1, · · · , sn)) + (v × (t1, · · · , tn))) = (u× f(s1, · · · , sn)) + (v × f(t1, · · · , tn))

where f(s1, · · · , sn) = (z1 × s1) + · · ·+ (zn × sm) for some fixed rational streams1

z1, · · · , zn ∈ Rω.
We consider the above linear systems because they are characterization of finite stream

circuits, possibly with feedback loops under the condition that each loop passes through at
least one register, see [15].
▶ Theorem 20. Every linear stream operator f : (Rω)n → Rω is causal.
Proof. For every (s1, · · · , sn), (t1, · · · , tn), (z1, · · · , zn) ∈ (Rω)n and k ∈ N, we assume for all
i ≤ k and 1 ≤ j ≤ n that sj(i) = tj(i). We have f(s1, · · · , sn)(k) =

∑n
j=1

∑k
i=0 zj(i)·sj(k−i)

and f(t1, · · · , tn)(k) =
∑n

j=1
∑k

i=0 zj(i) · tj(k − i).
For all i ≤ k, k− i ≤ k. Hence, sj(k− i) = tj(k− i) for all 1 ≤ j ≤ n. Thus, for all k ∈ N,

f(s1, · · · , sn)(k) = f(t1, · · · , tn)(k). ◀

We have seen that Rω ∼= LΦS where ΦS is isomorphic to an ωop-chain as described in
Example 5. We aim to define stream circuits with feedback loops with initial condition [15]
as the trace of functions on the final chain ΦS.

Consider the pointed functor (S, ηS), where S = R× Id, the functor from Example 5 and
ηS : Id→ S is a natural transformation defined for a fixed r ∈ R such that µX(u) = (r, u),
for every u ∈ X . Then we get a chain map i : ▶ΦS → ΦS defined by i0 : 1→ R and
in : Rn → Rn+1 with in(u) = (r, u) for every n ∈ N and u ∈ Rn. Moreover,
(πn ◦ in)(u) = (r, πn−1(u)) as given in the following.

1 1 R R2 · · ·

1 R R2 R3 · · ·

! i0 i1 i2

! ! π1

! π1 π2

1 A rational stream is a product of polynomial streams and inverse of a polynomial stream, see [15,
Def. 3.32].
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The morphism next : ΦS → ▶ΦS is defined for every n ∈ N by nextn : Rn+1 → Rn such
that nextn = πn. Hence, for every u ∈ Rn+1, (in ◦ nextn)(u) = (r, πn−1(u)). Note that, for
r = 0 the latter can be implemented by a register with initial value 0 [15] and the trace of a
function f : (ΦS)n+1 → (Φ)m+1, given by f = ⟨fout, ffb⟩ such that fout : (ΦS)n+1 → (ΦS)m

and ffb : (ΦS)n+1 → ΦS ,is defined by

Trk
n,m(f) = fout ◦ ⟨idn, s(ffb)⟩

where s(ffb) is a fixed point for i ◦ next ◦ ffb.
Since the trace of a chain map is a chain map, it is as well causal by Theorem 4.

5.2 Probabilistic Computations

Let us denote by D : Set→ Set the (functor of the) finite probability distribution monad.
The elements of D(X) are maps d : X → [0, 1] that have only finitely many elements in
the support supp(d) = {x ∈ X | d(x) ̸= 0} and such that

∑
x∈supp(d) d(x) = 1. On maps

f : X → Y , D is defined by D(f)(d)(y) =
∑

f(x)=y d(x). We can now consider probabilistic
stream systems, also known as labelled Markov chains, which are coalgebras for the composed
functor DR = D(R× Id).

sp ∆

Figure 2 Diagram for computing discounted sum dsp.

Let us construct a discounted sum operation dsp : ΦDR → ΦDR for p ∈ [0, 1] as the
diagram displayed in Figure 2. First of all, the convex sum induces a distributive law
cp : Σ2DR → DR given by cp

X(d1, d2)(r, x, y) = pd1(r, x) + (1 − p)d2(r, y). This gives us a
causal map ĉp : (ΦDR)2 → ΦDR. Finally, we obtain dsp as Tr(∆◦ ĉp), where ∆ is the diagonal
map ΦDR → (ΦDR)2.

Note that ĉp is not compatible with the initial value induced by the unit ηD of the
distribution monad, which is defined by ηDX(x) = 1. In particular, we obtain
(sp ◦ Σ2ηD)(x, y) = pηD(x) + (1− p)ηD(y) and this is not a Dirac distribution given by ηD,
unless x = y.

5.3 Remark

A potential example that one could additionally consider is the category of presheaves
PSh(P) = [P op, Set] on a preordered set P . The category PSh(P) is Cartesian closed and
for a limit preserving functor F , the carrier of a final coalgebra for F is a presheaf, which is a
functor νF : P op → Set. Hence a causal morphism f : νF → νF is a natural transformation
and the corresponding chain map is a morphism between a final chain, which is a diagram in←−−−−−
PSh(P) = [αop, PSh(P)] = [αop, [P op, Set]], for a limit ordinal α. Moreover, PSh(P) has a
generator. Therefore, one could investigate the meaning of causality using theorem 4 and
theorem 8.
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6 Summary, Related Work and Future Work

We have defined causal morphisms on the carrier of a final coalgebra νF for a limit preserving
endofunctor F on arbitrary cartesian closed categories C. We have seen, based on the
construction of a final coalgebra via final chains, that there is a one-to-one correspondence
between causal maps in Caus(νF, νF ) and chain maps in←−C(ΦF, ΦF ), where νF is isomorphic
to the limit of ΦF . For a locally small category with a generator, we equipped νF with a
metric and found out that causal morphisms are metric maps and vice versa. Additionally,
we have constructed on a category of descending chains a (parameterised) traced symmetric
monoidal category, on which causal morphisms (simply chain maps between final chains) are
closed under sequential and parallel composition and under recursion via the trace operator.

[16] and [14] both give a definition of causal functions via finite approximations, but
both work on Set and give the equivalence between causal functions on final coalgebras and
morphisms on their finite approximations. We can easily extend our definition to causal
algebras, as in [14], which gives us the inspiration to more general notion of causality. [16]
introduced recursion in their work, which could be achieved in a traced symmetric monoidal
category. They also defined linear causal maps, but for our case, it is enough to talk about
linearity since we show that linear maps are causal.

For future work, we consider working on other cartesian closed categories such as G−Set
of sets with group actions from G, particularly nominal set; and also on the CCC of quasi-
Borel spaces on which one can formalize some probability theory. One could use monoidal
closed categories instead of cartesian closed and see how everything works out. We would
also like to extend the notion of causality to more general continuity properties.
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