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Abstract
Aczel-Mendler bisimulations are a coalgebraic extension of a variety of computational relations
between systems. It is usual to assume that the underlying category satisfies some form of axiom of
choice, so that the theory enjoys desirable properties, such as closure under composition. In this paper,
we accommodate the definition in a general regular category – which does not necessarily satisfy
any form of axiom of choice. We show that this general definition 1) is closed under composition
without using the axiom of choice, 2) coincides with other types of coalgebraic formulations under
milder conditions, 3) coincides with the usual definition when the category has the regular axiom of
choice. We then develop the particular case of toposes, where the formulation becomes nicer thanks
to the power-object monad, and extend the formalism to simulations. Finally, we describe several
examples in Stone spaces, toposes for name-passing, and modules over a ring.
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1 Introduction

Bisimulations and coalgebra have a rich literature and theory (see for example the text-
book [13]). They cover a large variety of systems: non-deterministic, probabilistic [8, 7],
quantum [1], name-passing [22], Kripke models [5], and so on. The reason for this success is
that, if the underlying notions are on very different types of systems, those share common
grounds: relations with logic, games, fixpoints, or even some form of decidability that have the
same flavour. This suggested that those theories could be abstracted away into a meta-theory
that would witness the essence of these common grounds.

In the present paper, we are interested in Aczel-Mendler bisimilarity [2], which defines a
bisimulation as an abstract relation (that is, a subobject of a product) which itself carries
a structure of coalgebra, and from which we can recover the coalgebra structures of the
systems we are comparing by projections. This abstract notion has the privilege to be very
close to usual notions of bisimulations in terms of relations, but this comes with the cost
that they are too set-flavoured. For example, some basic properties (such as closure under
composition, or their relation to bisimulation maps) only hold when the underlying category
has some form of axiom of choice.

These issues prevent the usage of Aczel-Mendler bisimulations in some interesting cat-
egories. Regular categories, and particularly toposes, are a class of categories which enjoy
very nice properties, and particularly that they have a very convenient theory of relations,
crucial for abstract bisimulations. However, they do not satisfy the axiom of choice. This is
the case for example of the effective topos [12], which encompass in a category concepts such
as decidable sets and computable functions, or the topos of nominal sets [18] which models
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19:2 Aczel-Mendler Bisimulations in a Regular Category

name-passing, or more generally, infinite systems that have some form of decidability. Being
able to abstract bisimulations in such categories then becomes crucial, as a possible way to
obtain some general decidability results.

The rest of the paper is organised as follows. In Section 2, we recall some necessary
knowledge about relations in a general category and allegories, and particularly maps. In
Section 3, we recall the definition of Aczel-Mendler bisimulations, and some of their properties
that only hold under some form of the axiom of choice. We then extend them to regular
AM-bisimulations that work nicely in any regular category. In Section 4, we describe a nicer
reformulation of regular AM-bisimulations in toposes, thanks to the power-object monad.
In Section 5, we extend this nicer formulation to simulations. Finally, in Section 6, we
investigates examples of regular AM-bisimulations, for Stone spaces, toposes of name-passing,
and for linear weighted systems.

Contributions

Our contributions can be summarised as follows: 1) An extension of the theory of Aczel-
Mendler bisimulations that works in any regular category, without any usage of the axiom
of choice. In particular, we prove that the closure under composition (Proposition 27)
and the coincidence with other notions of coalgebraic bisimulations (Theorem 29) does not
utilise the axiom of choice. 2) A nicer formulation in the case of toposes thanks to the
power-object monads, whose connection to tabulations of coalgebra homomorphisms can be
proved (Corollary 38), again without the axiom of choice. 3) We extend this nicer formulation
to simulations in a topos (Section 5).

Background and Related Work

Section 2 is a summary of what is needed from the textbook [9] about allegories and
particularly allegories of relations. Applications of allegories, and their extensions, to computer
science cover fuzzy logic [25], compilation of logic programs [3], and generic programming [4].
Topos theory has a rich literature on different aspects. We recommend [14, 15] for a thorough
reference on the matter. Coalgebra theory, and particularly bisimulations for them, also has
a recent rich literature. Most of the development in this paper about bisimulations relies
on concepts that can be found in the textbook [13]. A careful comparison between various
notion of coalgebraic bisimilarities has been done in [23]. Aczel-Mendler bisimulations can
be traced back to [2]. Simulations has been studied in the coalgebraic language in [11] for
example. The connection with bisimulation and simulation maps in a categorical framework
is also the core of the theory of open maps [16, 26].

Notations

Given two morphisms f : X −→ Y and g : X ′ −→ Y ′ in a category with binary products,
we denote the pairing by ⟨f, g⟩ : X −→ Y × Y ′ (if X = X ′), and the product by f × g :
X ×X ′ −→ Y × Y ′.

2 Allegory of Relations

In this section, we cover the general notion of relations in a category, and in particular that
they form a tabular allegory. Definitions, propositions, and proofs can be found in [9].
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2.1 Subobjects and Factorisations
In this paper, subobjects will play a crucial role throughout. Let us then spend some time on
their definition. Fix an object A of C. There is a preorder on the class of monos of the form
m : X ≻→ A defined by m : X ≻→ A ⊑ m′ : X ′ ≻→ A if and only if there is a morphism
u : X −→ X ′ such that m′ · u = m. In this case, u is unique and is a mono. A subobject
of A is then an equivalence class of monos with m : X ≻→ A ≡ m′ : X ′ ≻→ A if m ⊑ m′

and m ⊒ m′, that is, there are u and u′ such that m′ · u = m and m · u′ = m′. In this case,
u and u′ are inverse of each other. The preorder on the monos becomes a partial order on
subobjects, also denoted by ⊑. Throughout the paper, when reasoning on subobjects, we
will instead reason on a representing mono. This is harmless when dealing with notions such
as pullbacks and factorisations that are unique only up to isomorphims.

▶ Example 1. In Set, since monos are injective functions, subobjects of a set are in bijection
with its subsets. The order ⊑ then corresponds to the usual inclusion ⊆ of sets.

Given a morphism f : A −→ B, there is a particular subobject of B called the image
of f . In general, it is defined as the smallest (for ⊑) subobject Im(f) of B such that f can
be factorised as m · e, where m is any representing mono. The existence of the image is not
guaranteed in general. It is however when the category C has a nice (epi,mono)-factorisation
system, as it is the case for regular categories (and so for toposes). In a regular category,
every morphism f can be uniquely (up to unique isomorphism) factorised as m · e, where m
is a mono and e is a regular epi, and furthermore, this factorisation is the image factorisation.
In addition, this factorisation is functorial and is preserved by pullbacks, meaning that if we
have a commutative diagram of the following form (outer rectangle):

A Im(f) B

A′ Im(f’) B′

g h

f

f ′

e

e′

m

m′

k

there is a (dotted) morphism that makes the two squares commute, and if the outer rectangle
is a pullback, then the rightmost square is also a pullback.
▶ Remark 2 (Pullbacks vs. weak-pullbacks). The preservation of images by pullbacks and the
functoriality also imply the preservation of images by weak pullbacks, in the sense that, if
the outer rectangle is a weak pullback, then the rightmost square is also a weak pullback.

▶ Example 3. In Set, the image of a function is the usual notion of image, that is, the
subset {f(a) | a ∈ A} of B. Since Set is regular, and regular epis are surjective functions,
the image factorisation is given by the (surjection,injection)-factorisation of the function f .

2.2 Relations in a Regular Category
From now on, let us assume that the category C is regular, that is, it has finite limits
and a pullback-stable (regular epi,mono)-factorisation as described in the previous section.
Everything in this section can be done in locally regular category, but less conveniently. In
general:

▶ Definition 4. A relation from X to Y is a subobject of X × Y .

CALCO 2023



19:4 Aczel-Mendler Bisimulations in a Regular Category

Objects of C and relations between them form a category, denoted by Rel(C). The
composition is defined as follows. Let mr : R ≻→ X × Y and ms : S ≻→ Y × Z be two
monos, representing two relations, r from X to Y and s from Y to Z. Form the following
pullback and (regular epi,mono)-factorisation:

R ⋆ S

R

S

Y

µ1

µ2

π2 · mr

π1 · ms

R ⋆ S X × Z

R; S

⟨π1 · mr · µ1, π2 · ms · µ2⟩

er;s mr;s

The composition r; s from X to Z is then the subobject represented by the mono part mr;s.
▶ Remark 5 (Pullbacks vs. weak pullbacks, continued). In the definition of the composition,
we chose to form a pullback, because we know it exists. However, the definition is unchanged
if we take any weak pullback instead.
The identity relation ∆X is represented by the diagonal ⟨id, id⟩ : X ≻→ X ×X.

▶ Proposition 6. Rel(C) is a category.

▶ Example 7. In Set, the composition of relations is the usual one:

R;S = {(x, z) ∈ X × Z | ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S},

while the identity relation is the usual diagonal ∆X = {(x, x) | x ∈ X}.

Of course, Rel(C) has much more structure. First, since subobjects are naturally ordered
by ⊑, and that this order is compatible with the composition, Rel(C) has a structure of
locally ordered 2-category. Furthermore, it comes equipped with an anti-involution which
makes it into a dagger 2-poset. This means there is a functor (_)† : Rel(C)op −→ Rel(C)
such that for every relation R, R†† = R and for every other relation S with R ⊑ S, R† ⊑ S†.
This involution is given by the inverse of a relation, as follows. If the relation r is represented
by the mono mr : R ≻→ X×Y , then r† is represented by mr† = ⟨π2, π1⟩·mr : R ≻→ Y ×X.
Finally, the meet of two relations for the partial order ⊑ is defined and is called the intersection.
Given mr : R ≻→ X × Y and ms : S ≻→ X × Y representing r and s respectively, the
intersection r ∩ s is then represented by the pullback of mr and ms. Altogether:

▶ Theorem 8. Rel(C) is an allegory, meaning that all this data satisfies the modular law:

(R;S) ∩ T ⊑ (R ∩ (T ;S†));S.

▶ Example 9. In Set, R† is the usual inverse of the relation R: R† = {(y, x) | (x, y) ∈ R}.
The intersection ∩ is the intersection of relations as sets. Finally, the modular law is trivial
in Rel(Set). More generally, this law is crucial to make adjoints in an allegory behave like
direct/inverse images, (see next section, and the Frobenius reciprocity [17]).

2.3 Maps in Allegories
From an allegory (intuitively of relations), it is possible to recover the morphisms of the
original category through the notion of maps. In a general allegory A, a map is a morphism
which is a left adjoint (in the 2-categorical sense). Maps form a subcategory of A denoted by
Map(A). In the case of an allegory of relations:

▶ Theorem 10. Map(Rel(C)) is isomorphic to C.
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The reason for it is that maps (left adjoints) in Rel(C) are precisely the relations represented
by a mono of the form ⟨id, f⟩ for some morphism f of C, justifying the remark from Example 9
that left adjoints in an allegory behave like direct images. Similarly, their right adjoints
are relations represented by ⟨f, id⟩, corresponding to inverse images. This also implies that
Rel(C) is tabular, that is, it is generated by maps in the following sense. A tabulation of a
morphism ϕ : X −→ Y in an allegory is a pair of maps ψ : Z −→ X and ξ : Z −→ Y such
that ϕ = ψ†; ξ and ψ;ψ† ∩ ξ; ξ† = idZ .

▶ Theorem 11. In an allegory of relations, the tabulations of a relation R are exactly those
pairs of relations (S, T ) represented by monos of the form ⟨id, f⟩ and ⟨id, g⟩ respectively,
with f and g jointly monic, and such that R = S†;T . In particular, every relation has a
tabulation, that is, Rel(C) is tabular.

The intuition of this theorem is that relations are precisely jointly monic spans.

▶ Example 12. In Set, maps are graphs of functions, that is, relations of the form {(x, f(x)) |
x ∈ X} for some function f : X −→ Y . Consequently, every relationR is the same as the span
of f : R −→ X (x, y) 7→ x and g : R −→ Y (x, y) 7→ y, that is, R = {(f(r), g(r)) | r ∈ R}.

3 Aczel-Mendler Bisimulations, in Regular Categories

We now start investigating our original problem: a nice general theory of bisimulations
in terms of relations. The development of this section will start with the notion of Aczel-
Mendler bisimulations [2], where systems are described as coalgebras. We will witness that
one bottleneck of this theory is the role of the axiom of choice that is necessary to prove even
some basic properties of this notion of bisimulation. This prevents to use this notion in most
regular categories. We will then show that we can fix this issue by a careful use of relations.

3.1 Systems as Coalgebras
In this section, we briefly recall coalgebras, and how to model systems with them. For a
more complete introduction, see for example [13].

Coalgebras require two ingredients: a category C that describes the type of state spaces
of our systems and an endofunctor F on C that describes the type of allowed transitions. A
coalgebra is then a morphism of type α : X −→ FX. Intuitively, X is the state space of the
system and α maps a state to the collection of transitions from this state.

▶ Example 13. For example, deterministic transition systems labelled in the alphabet Σ
can be modelled with the Set-functor X 7→ Σ ⇒ X, mapping X to the set of functions
from Σ to X. A coalgebra for this functor is a function X → Σ ⇒ X. It maps a state
to a function from Σ to X, describing what is the next state after reading a particular
letter. Non-deterministic labelled transition systems can be described using the functor
X 7→ P(Σ ×X). A coalgebra then maps a state to a set of transitions, given by a letter
and a state, describing the states we can reach from another state reading a particular
letter. Another typical example are probabilistic systems, that can be described using the
distribution functor D. A transition for those systems is then a distribution on the states,
describing what is the probability to reach a state in the next step.

A morphism of coalgebras from α : X −→ FX to β : Y −→ FY is a morphism
f : X −→ Y of C such that β · f = Ff · α. Coalgebras on F and morphisms of coalgebras
form a category, which we denote by CoAlg(F ).

CALCO 2023



19:6 Aczel-Mendler Bisimulations in a Regular Category

3.2 Aczel-Mendler Bisimulations of Coalgebras
In this section, we follow closely the development of [13]. We recall the definition of Aczel-
Mendler bisimulations and give some of their properties.

▶ Definition 14. We say that a relation is an Aczel-Mendler bisimulation (AM-bisimulation
for short) from the coalgebra α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→
X × Y representing it, there is a morphism W : R −→ FR, called witness, such that:

R

X × Y

F R

F (X) × F (Y )

F (X × Y )

α × β

W

⟨F π1, F π2⟩
r

F r

▶ Example 15. In the case of non-deterministic labelled transition systems, AM-bisimulations
correspond to usual strong bisimulations. The function W maps a pair (x, y) of states of α
and β to a subset of triples (a, x′, y′) such that (a, x′) ∈ α(x), (a, y′) ∈ β(y), and (x′, y′) ∈ R.
The commutation means that the set of transitions α(x) from x exactly corresponds to the
set {(a, x′) | ∃y′. (a, x′, y′) ∈ W (x, y)}, and similarly for y. This implies the property of a
bisimulation: if there is a transition (a, x′) from x, then there is a transition (a, y′) from y

with (x′, y′) ∈ R; and vice versa.

We show now that AM-bisimulations behave well under the regular axiom of choice:

▶ Proposition 16. Assume that C has the regular axiom of choice, that is, every regular epi
is split, and that F preserves weak pullbacks. Then the following is a dagger 2-poset, denoted
by Bis(F ): objects are coalgebras on F , morphisms are AM-bisimulations, ⊑, identities,
composition, and (_)† are defined as in Rel(C). That is, diagonals are AM-bisimulations,
and AM-bisimulations are closed under composition and inverse.

Proof. Let us focus on proving that Aczel-bisimulations are closed under composition. We
then have two witnesses:

R1

X × Y

F R1

F (X) × F (Y )

F (X × Y )

α × β

W1

⟨F π1, F π2⟩

r1

F r1

R2

Y × Z

F R2

F (Y ) × F (Z)

F (Y × Z)

β × γ

W2

⟨F π1, F π2⟩

r2

F r2

We then want to construct a morphism W : R1;R2 −→ F (R1;R2) such that

R1; R2

X × Z

F (R1; R2)

F (X) × F (Z)

F (X × Z)

α × γ

W

⟨F π1, F π2⟩

r1; r2

F (r1; r2)

Since F preserves weak pullbacks and by definition of composition, we have the following
weak pullback and (regular epi,mono)-factorisation:

F (R1 ⋆ R2)

F R1

F R2

F Y

F µ1

F µ2

F (π2 · r1)

F (π1 · r2)

R1 ⋆ R2 X × Z

R1; R2

⟨π1 · r1 · µ1, π2 · r2 · µ2⟩

er1;r2 r1; r2



J. Dubut 19:7

Denote by s the section of er1;r2 , which exists by the regular axiom of choice. By the universal
property of weak pullbacks, we have ϕ : R1;R2 −→ F (R1 ⋆ R2), such that

F (R1 ⋆ R2)

F R1

F R2

F Y

R1; R2

F µ1

F µ2

F (π2 · r1)

F (π1 · r2)
W1 · µ1 · s

W2 · µ2 · s
ϕ

Now W = Fer1;r2 · ϕ is the expected witness:
⟨F π1, F π2⟩ · F (r1; r2) · W = ⟨F π1, F π2⟩ · F (r1; r2) · F er1;r2 · ϕ (definition of W )

= ⟨F π1, F π2⟩ · F ⟨π1 · r1 · µ1, π2 · r2 · µ2⟩ · ϕ

(definition of r1; r2)
= F (π1 · r1) × F (π2 · r2) · ⟨F (µ1) · ϕ, F (µ2) · ϕ⟩

(computation on products)
= F (π1 · r1) × F (π2 · r2) · ⟨W1 · µ1 · s, W2 · µ2 · s⟩

(definition of ϕ)
= α × γ · ⟨π1 · r1 · µ1, π2 · r2 · µ2⟩ · s

(definition of the Wi and computation on products)
= α × γ · (r1; r2) (definition of s)

◀

▶ Remark 17. The preservation of weak pullbacks is a crucial property for a functor related to
relations. More surprisingly, the dependence on the axiom of choice is necessary for proving
the closure under composition. This was already observed in [13, 23].

In the proof we make the following usage of the regular axiom of choice: we need that the
epi part er1;r2 : R1 ⋆ R2 −→→ R1;R2 of a (regular epi,mono)-factorisation to be split, that is,
has a section s : R1;R2 ≻→ R1 ⋆ R2. In Set, R1 ⋆ R2 is given by triples (x, y, z) such that
(x, y) ∈ R1 and (y, z) ∈ R2, so this section is then a choice of such a y for every (x, z) in the
composition. This kind of choice is usual for example to prove that strong bisimulations are
closed under composition: assuming that one has a transition (a, x′) from x, to prove that
one also has such a transition from z, one should pick an intermediate y, prove that there is
such a transition for y using that R1 is a bisimulation, then concluding using the fact that
R2 is a bisimulation.

In this dagger 2-poset of bisimulations, we can also talk about maps and tabulations,
as we did for relations. Furthermore, since the 2-categorical structure of Bis(F ) is given
by that of Rel(C), and particularly that the local posets of bisimulations are embedded in
the corresponding local poset of relations, results from Section 2.3 can be used here. In
particular, we can prove the following:

▶ Theorem 18. Map(Bis(F )) is isomorphic to CoAlg(F ).

Using results from Section 2.3, proving this theorem boils down to proving that bisimula-
tions that are maps are precisely graphs of coalgebra morphisms:

▶ Proposition 19. A morphism h : X −→ Y of C is a coalgebra morphism from α to β if
and only if the mono ⟨id, h⟩ : X ≻→ X × Y represents an AM-bisimulation from α to β.

Using this characterisation of maps for AM-bisimulations, and using the tabularity of the
allegory of relations, we can prove that an AM-bisimulation can be described as a span of

CALCO 2023



19:8 Aczel-Mendler Bisimulations in a Regular Category

morphism of coalgebras, under some form of axiom of choice (see [13]). We can formulate
this in terms of tabulations:

▶ Proposition 20. If U is an AM-bisimulation from α to β, and if f : Z −→ X, g : Z −→ Y

is a tabulation of U , then there is a coalgebra structure γ on Z such that f is a coalgebra
morphism from γ to α and g is a coalgebra morphism from γ to β.

▶ Corollary 21. Assume C has the regular axiom of choice. Assume given two coalgebras
α : X −→ F (X) and β : Y −→ F (Y ), and two points p : ∗ −→ X and q : ∗ −→ Y . There
is an AM-bisimulation r : R ≻→ X × Y from α to β, and a point c : ∗ −→ R such that
r · c = ⟨p, q⟩ if and only if there is a span X

f←−− Z
g−−→ Y , an F -coalgebra structure

γ on Z such that f is a coalgebra morphism from γ to α and g from γ to β, and a point
w : ∗ −→ Z such that f · w = p and g · w = q.

▶ Remark 22. Here ∗ is usually the final object of C, but it can be any object used to describe
initial states in the systems under consideration.

3.3 Picking vs. Collecting: AM-Bisimulations for Regular Categories
We have seen that several results about AM-bisimulations depend on the regular axiom of
choice, preventing its use in more exotic toposes and regular categories. Actually, the only
occurrences are of similar flavour: one wants to prove some property of elements (x, z) in a
composition of relations, and for that, one has to pick a witness y in between. The main
idea of our proposal is that, instead of picking a witness (which would require the axiom
of choice), it is enough to collect all the witnesses, prove properties about all of them, and
make sure that there is enough of them. This can be done in any regular category as follows:

▶ Definition 23. We say that a relation is a regular AM-bisimulation from the coalgebra
α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→ X × Y representing it, there is
another relation represented by w : W ≻→ FR×R such that π2 ◦ w is a regular epi and:

W

R X × Y

F R

F (X) × F (Y )

F (X × Y )

π2 ◦ w

π1 ◦ w ⟨F π1, F π2⟩

α × β
r

F r

The intuition is as follows: W collects all the witnesses that R is a bisimulation. In
particular, for a given pair (x, y) in R, there might be several witnesses. The fact π2 ◦w is a
regular epi guarantees that every pair of R has at least one witness. Of course, we have to
prove that this extends plain AM-bisimulations:

▶ Proposition 24. If C is a regular category with the regular axiom of choice, then a relation
is a regular AM-bisimulation if and only if it is a AM-bisimulation.

Also, regular bisimulations are closed under composition. This requires a milder condition
on F as already observed in [23].

▶ Definition 25. We say that F covers pullbacks if for every pair of pullbacks:

R

X

Y

Z

u

v

f

g

R′

F X

F Y

F Z

u′

v′

F f

F g
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the unique morphism γ : FR −→ R′ such that u′ ◦ γ = Fu and v′ ◦ γ = Fv is a regular epi.

▶ Remark 26. When F preserves weak pullbacks, then F covers pullbacks. When C has the
regular axiom of choice, then both notions coincide.

▶ Proposition 27. When F covers pullbacks, then regular AM-bisimulations are closed under
composition.

In [23], Staton described conditions for several coalgebraic notions of bisimulations to
coincide. In this picture, AM-bisimulations were quite weak, as they would coincide with
other notions only under some form of axiom of choice (again). Here, we will show that the
picture is much nicer with regular AM-bisimulations.

▶ Definition 28. A relation from X to Y is a Hermida-Jacobs bisimulation (HJ-bisimulation
for short) from α : X −→ FX to β : Y −→ FY if if there is a mono r : R ≻→ X × Y
representing it and a morphism w : R −→ FR where FR is obtained by the (epi,mono)-
factorisation on the left, and such that the square on the right commutes:

F R F X × F Y

F R

⟨F π1, F π2⟩ · F r

er mr

R

X × Y

F R

F X × F Y

r

w

α × β

mr

A relation is a behavioural equivalence from α : X −→ FX to β : Y −→ FY if it
is represented by a pullback of coalgebra homomorphisms, that is, if there are a coalgebra
γ : Z −→ FZ and two coalgebra homomorphisms f : α −→ γ and g : β −→ γ such that
the mono ⟨u, v⟩ : R ≻→ X × Y obtained from their pullback in C represents it.

R

X

Y

Z

u

v

f

g

▶ Theorem 29. Assume that C is a regular category. Then:
a relation is a regular AM-bisimulation if and only if it is a HJ-bisimulation,
if C has pushouts, then a regular AM-bisimulation is included in a behavioural equivalence,
if F covers pullbacks, then a behavioural equivalence is a regular AM-bisimulation.

The last two bullets are a consequence of the first bullet and [23]. In Section 3.2,
we described that AM-bisimilarity coincides with the existence of a span of coalgebra
homomorphisms. This can also be formulated in the context of regular AM-bisimulations.
The witness w : W ≻→ FR × R can be seen as a coalgebra in Rel(C) (although F is
technically not a functor on it). The coalgebra α : X −→ FX can also be seen as a coalgebra
in Rel(C) as ⟨α, id⟩ : X ≻→ FX×X. Then π1 ◦r can be seen as a coalgebra homomorphism
from w to α, since the following diagram commutes

W

X

F R × R

F X × X

π1 · r · π2 · w F (π1 ◦ r) × π1 ◦ r

⟨α, id⟩

w
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4 The Case of Toposes

Here, we investigate the particular case of toposes. The first part of this section recalls
folklore about toposes and particularly power-objects, namely, that they form a commutative
monad whose Kleisli category is isomorphic to the category of relations. Finally, we will
show that regular AM-bisimulations can be formulated much more nicely in this context.

4.1 Toposes, as Relation Classifiers
▶ Definition 30. A topos is a finitely complete category with power objects. The latter
condition means that for every object X, there is a mono∈X : EX ≻→ X ×PX such that for
every mono of the form m : R ≻→ X × Y there is a unique morphism ξm : Y −→ PX such
that there is a pullback diagram of the form:

R

X × Y

EX

X × PX

m ∈X

θm

id × ξm

This formulation passes to relations since ξm = ξm′ if and only if m and m′ represent the
same relation r. In that case, we will write ξr for ξm = ξm′ . Another formulation of toposes
uses sub-object classifiers which can be recovered as T =∈1: 1 ≃ E1 → 1×P1 ≃ P1 = Ω.
The formulation by power-objects implies that a topos is cartesian closed, which is not the
case of the sub-object classifier alone. Conversely, PX is equal to ΩX and∈X is any mono
corresponding to the evaluation morphism X × ΩX → Ω of the cartesian-closed structure.

▶ Example 31. In Set, PX is given by the usual power-set and EX is the subset of X×PX
consisting of pairs (x, U) such that x ∈ U . In Scha – the Schanuel topos Scha [18], equivalent
to the category of nominal sets and equivariant functions – PX is the nominal set of finitely
supported subsets of X. In Eff – the effective topos [12], intuitively, the category of effective
set and computable functions – PX is intuitively given by the set of decidable subsets of X
(although the formal description is much harder).

4.2 The Power-Object Monad
The following is a folklore result about power-objects, that can be proved for example by
noticing that the proof in Set does not use either the law of excluded-middle nor the axiom
of choice and the fact that any such statement is true in any topos:

▶ Theorem 32. In a topos C, P extends to a commutative monad whose Kleisli category is
isomorphic to the category of relations Rel(C).

Let us describe some parts of this statement that will be useful in the following discussion.
First, the structure of covariant functor (not to be confused with the more traditional
contravariant structure) is given as follows. Given a morphism f : X −→ Y , Pf : PX −→
PY is defined as follows. Consider first the following (epi,mono)-factorisation:

EX Y × PX

Ef

(f × id)·∈X

ef mf

Then Pf : PX −→ PY is the unique morphism corresponding to mf .
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The unit ηX : X −→ PX is defined as ξ∆X
, that is, the unique morphism such that

there is a pullback of the form:

X

X × X

X

X × PX

⟨id, id⟩

θX

id × ηX

∈X

for some θX . The multiplication µX : PPX −→ PX is defined as the unique morphism
associated with the composition of relations∈X;∈PX.

4.3 AM-Bisimulations in a Topos
Since toposes are regular categories, the notion of regular AM-bisimulation makes sense. We
show here that it can be reformulated as follows.

▶ Definition 33. We say that a relation is a toposal AM-bisimulation from the coalgebra
α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→ X × Y representing it, there is
a morphism W : R −→ PFR such that:

R

X × Y

PF R

F (X) × F (Y )

PF (X × Y )

PF (X) × PF (Y )

⟨PF π1, PF π2⟩

ηF (X) × ηF (Y )

α × β

W

r

PF r

In other words, an F -toposal AM-bisimulation between α and β is a PF -AM-bisimulation
between η · α and η · β. Intuitively, this means that toposal bisimulations look at systems as
non-deterministic. This allows to collect witnesses as a morphism W : R −→ PFR instead
of picking some, very much like regular AM-bisimulations.

We have to make sure that toposal and regular AM-bisimulations coincide.

▶ Proposition 34. Assume that C is a topos. Then for every relation U from X to Y , every
coalgebra α : X −→ FX and β : Y −→ FY , U is a toposal AM-bisimulation from α to β if
and only if it is a regular AM-bisimulation between them.

This nicer formulation allows us to prove a much nicer tabularity property, which could
only be informally described for regular AM-bisimulations:

▶ Proposition 35. Assume that C is a topos and that F covers pullbacks. Then the following
is a dagger 2-poset: objects are coalgebras on F , morphisms are toposal AM-bisimulations,
⊑, identities, composition, and (_)† are defined as in Rel(C).

▶ Remark 36. This Proposition is similar to Proposition 16, without the axiom of choice and
assuming only that F covers pullbacks, but by replacing plain AM-bisimulations by toposal
AM-bisimulations.

Obviously, the category of maps of the dagger 2-poset of toposal bisimulations is then not
isomorphic to CoAlg(F ), but to the category of F -coalgebras with PF -coalgebra morphisms
between them. Then tabularity can be formulated as follows:

▶ Proposition 37. If U is a toposal bisimulation from the F -coalgebra α to the F -coalgebra β,
and if f : Z −→ X, g : Z −→ Y is a tabulation of U , then there is a PF -coalgebra structure
γ on Z such that f is a PF -coalgebra morphism from γ to ηX · α and g is a PF -coalgebra
morphism from γ to ηY · β.
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▶ Corollary 38. Assume given two coalgebras α : X −→ F (X) and β : Y −→ F (Y ), and
two points p : ∗ −→ X and q : ∗ −→ Y . There is a toposal bisimulation r : R ≻→ X × Y
from α to β, and a point c : ∗ −→ R such that r · c = ⟨p, q⟩ if and only if there is a span
X

f←−− Z
g−−→ Y , a PF -coalgebra structure γ on Z, and a point w : ∗ −→ Z such that f

is a PF -coalgebra morphism from γ to ηX · α, g from γ to ηY · β, f · w = p, and g · w = q.

5 From Bisimulations to Simulations

In this section, we extend the analysis of the previous sections to deal with simulations.
Classically, simulations for coalgebras require a notion of order on morphisms of the form
X −→ FY , to allow one to define that there is fewer transitions coming out of a state
than another. This allows to easily modify the definition of AM-bisimulations to obtain
AM-simulations. We will show that toposal bisimulations can also be extended to simulations
in a nice way to mitigate those issues. The only reason we chose to stay in a topos and not
in a general regular category is because theorems have a nicer formulation there, but most of
the discussion here can be done in a regular category.

5.1 Order-Structure on Functors, and Lax Coalgebra Morphisms
We want to be able to compare two morphisms of the form X −→ FY . So assuming a
preorder ≤ on each Hom-set C(X,FY ), we can define lax morphisms of coalgebras, as follows:

▶ Definition 39. A lax morphism of coalgebras from α : X −→ FX to β : Y −→ FY is a
morphism f : X −→ Y of C such that Ff · α ≤ β · f in C(X,FY ).

Unfortunately, coalgebras and lax morphisms of coalgebras do not form a category in general,
and some axioms are required for the interaction of ≤ with the composition.

▶ Definition 40. A good order structure on F is a preorder ≤ on each C(X,FY ) such that:
1) if α ≤ β in C(X,FY ), f : X ′ −→ X, and g : Y −→ Y ′, then Fg · α · f ≤ Fg · β · f in
C(X ′, FY ′); 2) if h : X −→ FZ, k : X −→ FY , g : Y −→ Z, and h ≤ Fg · k in C(X,FZ),
then there is k′ : X −→ FY such that k′ ≤ k in C(X,FY ) and h = Fg · k′.

▶ Lemma 41. When ≤ is a good order structure on F , then coalgebras and lax morphisms
of coalgebras form a category, denoted by CoAlglax(F ).

▶ Example 42. When F is the functor modelling non-deterministic labelled systems and ≤
is given by point-wise inclusion, lax morphisms are exactly morphisms in the sense of [16].
Those morphisms are intuitively morphisms whose graphs are simulations. More generally,
we will see that lax morphisms are simulation maps.

5.2 AM-Simulations
▶ Definition 43. We say that a relation is an AM-simulation from the coalgebra α : X −→
FX to β : Y −→ FY , if for any mono r : R ≻→ X×Y representing it, there is a morphism
W : R −→ FR such that:

R

X × Y

F R

F (X) × F (Y )

F (X × Y )

≤ × ≥

α × β

W

⟨F π1, F π2⟩
r

F r

meaning that α · π1 · r ≤ Fπ1 · Fr ·W and β · π2 · r ≥ Fπ2 · Fr ·W.
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▶ Proposition 44. When ≤ is a good order structure, it is equivalent to require that the left
inequality is actually an equality α · π1 · r = Fπ1 · Fr ·W.

▶ Example 45. When F : X 7→ P(Σ×X), AM-simulations correspond to strong simulations.
The left part of the commutativity means that for every (x, y) ∈ R and (a, x′) ∈ α(x), there is
y′ such that (a, (x′, y′)) ∈W (x, y). The right part then implies that necessarily (a, y′) ∈ β(y).

Much as in the case of AM-bisimulations, diagonals (and actually all AM-bisimulations)
are AM-simulations and AM-simulations are closed under composition, only under some con-
ditions. However, they are not closed under inverse. These observations can be encompassed
as follows:

▶ Proposition 46. When C has the regular axiom of choice and F preserves weak pullbacks,
then the following is a locally ordered 2-category: objects are F -coalgebras, morphisms are
AM-simulations, identitites, compositions, and ⊑ are given by Rel(C). We denote this
category by Sim(F ).

We can formalise the relationship between lax coalgebra morphisms and simulation maps:

▶ Theorem 47. Maps in Rel(C) that are AM-simulations are precisely lax morphisms of
coalgebra.

Note that this theorem cannot have a form as nice as Theorem 18 because AM-simulations
are not closed under inverse, and the right adjoint of a map has to be its inverse. At this
point, we can also describe the tabulations of AM-simulations:

▶ Proposition 48. If U is an AM-simulation from α to β, and if f : Z −→ X, g : Z −→ Y

is a tabulation of U then, there is a coalgebra structure γ on Z such that f is a coalgebra
morphism from γ to α and g is a lax coalgebra morphism from γ to β.

▶ Corollary 49. Assume C has the regular axiom of choice. Assume given two coalgebras
α : X −→ F (X) and β : Y −→ F (Y ), and two points p : ∗ −→ X and q : ∗ −→ Y . There
is an AM-simulation r : R ≻→ X×Y from α to β, and a point c : ∗ −→ R with r ·c = ⟨p, q⟩
if and only if there is a span X

f←−− Z
g−−→ Y , an F -coalgebra structure γ on Z such that

f is a coalgebra morphism from γ to α and g is a lax coalgebra morphism from γ to β, and
a point w : ∗ −→ Z such that f · w = p and g · w = q.

This formalises some observations that simulations are spans of a bisimulation map and a
simulation map (see [24] for examples of this fact in the context of open maps).

5.3 Extending the Order-Structure
In Section 5.1, we started by assuming a relation ≤ on the Hom-sets of the form C(X,FY )
satisfying some properties. This good order structure was necessary to prove the properties
of Section 5.2. In the coming section, we will pass again from plain to toposal, by considering
F -coalgebras as PF -coalgebras. It is then needed to extend good order structures on F to
good order structures on PF .

Assume given a relation ≤ on all Hom-sets of the form C(X,FY ). We define ≤P on
C(X,PFY ) as follows. A morphism f : X −→ PFY uniquely (up to isos) corresponds to
a mono of the form mf : Rf −→ FY ×X by definition of P. Then given two morphisms
f, g : X −→ PFY , f ≤P g if there exist a morphism u : Z −→ Rg and an epi e : Z −→→ Rf

such that: π1 ·mf · e ≤ π1 ·mg · u and π2 ·mf · e = π2 ·mg · u.
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▶ Example 50. The order ≤P seems complicated but can be interpreted easily in Set, when
the order structure on C(X,FY ) is a point-wise order, assuming that FY itself is preordered.
Indeed, given two functions f, g : X −→ PFY , f ≤P g if and only if for every x ∈ X, and
every a ∈ f(x) ⊆ FY there is b ∈ g(x) such that a ≤ b in F (Y ).

To make it consistent with the previous section, we show that this preserves goodness:

▶ Proposition 51. ≤P is a good order structure if ≤ is.

5.4 Toposal AM-Simulations
With all those ingredients, we can easily deduce the right notion of AM toposal-simulations:

▶ Definition 52. We say that a relation is a toposal AM-simulation from the coalgebra
α : X −→ FX to β : Y −→ FY , if for any mono r : R ≻→ X × Y representing it, there is
a morphism W : R −→ PFR such that:

R

X × Y

PF R

F (X) × F (Y )

PF (X × Y )

PF (X) × PF (Y )

⟨PF π1, PF π2⟩

ηF (X) × ηF (Y )

≤P × ≥P

α × β

W

r

PF r

Plain and toposal AM-simulations also coincide under the axiom of choice:

▶ Proposition 53. Assume that C has the regular axiom of choice. Then for every relation
U from X to Y , every coalgebra α : X −→ FX and β : Y −→ FY , U is an AM-simulation
from α to β if and only if it is a toposal AM-simulation between them.

Finally, we can prove the closure under composition and the characterisation with spans
without the axiom of choice:

▶ Proposition 54. Proposition 46 holds without regular axiom of choice when replacing
AM-simulations by toposal AM-simulations.

▶ Theorem 55. Assume given two coalgebras α : X −→ F (X) and β : Y −→ F (Y ), and
two points p : ∗ −→ X and q : ∗ −→ Y . There is a toposal AM-simulation r : R ≻→ X×Y
from α to β, and a point c : ∗ −→ R such that r · c = ⟨p, q⟩ if and only if there is a
span X

f←−− Z
g−−→ Y , a PF -coalgebra structure γ on Z such that f is a PF -coalgebra

morphism from γ to ηX ·α and g a lax PF -coalgebra morphism from γ to ηY · β, and a point
w : ∗ −→ Z such that f · w = p and g · w = q.

6 Examples

In this section, let us develop some examples in different regular categories.

6.1 Vietoris Bisimulations
In [5], Bezhanishvili et al. are studying bisimulations for the Vietoris functor – the functor
mapping a topological space to it set of closed subspaces equipped with a suitable topology –
in the category Stone of Stone spaces and continuous functions. More concretely, they show
that so-called descriptive models coincide with coalgebras of the form X → V(X)×A where
V is the Vietoris functor and A is some fixed Stone space (usually, A = PS =

∏
s∈S{0, 1}



J. Dubut 19:15

equipped with the product topology and {0, 1} equipped with the discrete topology). They
are interested in describing relation liftings (much as the one defining HJ-bisimulations)
that coincide with behavioural equivalences. They actually proved that in this case AM-
bisimilarity does not coincide with behavioural equivalence, and that the main reason is
because the Vietoris functor does not preserves weak-pullbacks. In [23], Staton proved that
the Vietoris functor is a so-called S-powerset functor, and that in particular it covers pullbacks.
Together with the (well-known) fact that the category of Stone spaces is regular and has
pushouts, Theorem 29 holds in this case, and all three notions – regular AM-bisimulations,
HJ-bisimulations, and behavioural equivalences – coincide.

Let us develop the counter-examples described in [5]. Let N being N∪{∞}, obtained as the
Alexandroff-compactification of N equipped with the discrete topology. Concretely, the open
sets of N are {U ⊆ N}∪ {U ∪{∞} | U ⊆ N∧∃n ∈ U.∀m ≥ n.m ∈ u}. Denote N⊕N⊕N, the
coproduct of three copies of N, by 3N. Let us also consider A = P(N×{+,−}) as above. Define
the continuous function τ : 3N −→ V(3N) as follows: τ(i1) = {i2, i3} and τ(i2) = τ(i3) =
∅, where ij denotes the j-th copy of i ∈ N. Define two continuous functions λ, λ′ : 3N −→ A

λ(i1) = λ′(i1) = {} for all i ∈ N; λ(∞j) = λ′(∞j) = {} for j ∈ {2, 3}; λ(i2) = λ′(i2) = {i+},
λ(i3) = λ′(i3) = {i−}, for i odd; λ(i2) = λ′(i3) = {i+}, λ(i2) = λ′(i3) = {i−} for i even.
Altogether, this defines two coalgebras α = ⟨τ, λ⟩ and β = ⟨τ, λ′⟩. In [5], they proved that the
following relation (for Stone spaces, relations coincide with closed subspaces of a product):

R = {(i1, i1) | i ∈ N} ∪ {(i2, i2), (i3, i3) | i ∈ N odd} ∪ {(i2, i3), (i3, i2) | i ∈ N even}
∪ {(∞j ,∞k) | j, k ∈ {2, 3}}

is a Vietoris bisimulation but not an AM-bisimulation. We can reformulate this as:

▶ Theorem 56. R is a regular AM-bisimulation but not an AM-bisimulation.

For the second part of this statement, this means that there is no continuous function
W : R −→ V(R)×A satisfying the requirement of an AM-bisimulation. However, there is a
relation W ⊆ R× V(R)×A that satisfies the requirement of a regular AM-bisimulation as:

W = {((i1, i1), {(i2, i2), (i3, i3)}, {}) | i ∈ N odd}
∪ {((i1, i1), {(i2, i3), (i3, i2)}, {}) | i ∈ N even}
∪ {((∞1,∞1), {(∞2,∞2), (∞3,∞3)}, {}), ((∞1,∞1), {(∞2,∞3), (∞3,∞2)}, {})}
∪ {((ij , ik),∅, λ(ij)) | i ∈ N ∧ (ij , ik) ∈ R}

The interesting part is that (∞1,∞1) is related to two elements, and that if one of them is
removed, then W is not closed anymore, and so not a relation in Stone. This explains why
this relation cannot be restricted to the graph of a continuous function.

6.2 Toposes for Name-Passing
In [23], Staton studies models of name-passing and their bisimulations. Three toposes and
functors are presented to model different parts of the theory. The first topos is the category of
name substitution, which is the category of presheaves over non-empty finite subsets of a fixed
countable set, together with all functions between them. It comes with a functor combining
non-determinism and name-binding. This functor satisfies strong properties: in particular,
AM-bisimulations coincide with HJ-bisimulations, and the largest AM-bisimulation coincide
with the largest behavioural equivalence. This framework is already nice as AM-bisimulations
describe precisely open bisimulations [20].
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The second topos is a refinement of the first one, as the category of functors over all
finite subsets of the given countable set, together with injections. The proposed functor
in this case is less nice: it does not preserve weak-pullbacks and AM-bisimulations do not
coincide with HJ-bisimulations anymore. However, it is nice enough in our theory: it covers
pullbacks, and the category is a topos, so regular and with pushouts, then HJ-bisimulations
coincide with regular AM-bisimulations, and their existence coincides with the existence of a
behavioural equivalence.

For this topos, it is remarked in [23] that if a relation is a HJ-bisimulation (so a regu-
lar/toposal AM-bisimulation), then its ¬¬-completion is an AM-bisimulation, which means in
particular that this framework for name-passing is much nicer when restricting to ¬¬-sheaves.
One main reason for that is that the sheaf topos for the ¬¬-topology satisfies the axiom of
choice when the base topos is a presheaf topos over a poset [19], which is the case here.

6.3 Weighted Linear Systems
In [6], Bonchi et al. are studying linear weighted systems, that is, coalgebras for the
endofunctor X 7→ K ×XA on KVect, in the category of K-vector spaces, with K a field,
and A a set. The following discussion can also be made in the category of modules over a
ring. The category KVect is abelian, and so is regular and has pushouts. The endofunctor
actually preserves pullbacks, so the three notions of bisimilarity coincide by Theorem 29.
In this paper, they are interested in linear bisimulations, which coincide with behavioural
equivalence, and so to the other two notions of bisimilarities.

In perspective, usual weighted systems are described in the category Set, with the functor
X 7→ A⇒ K(X) where K(X) is the set of functions from X to K which takes finitely many
non-zero values. In this context, this functor does not even cover pullbacks in general, and
they actually prove that AM-bisimilarity (and so regular AM-bisimilarity since Set has the
regular axiom of choice) does not coincide with behavioural equivalence.

7 Conclusion

This paper introduces some foundations of the theory of bisimulations and simulations in a
general regular category, mitigating some known issues about Aczel-Mendler bisimulations.
The relations and power objects are the key ingredients for this mitigation: if the axiom of
choice allows to pick some witnesses of bisimilarity, the relations and power objects allow to
collect them up without need to choose. This paves the way to the study of such bisimulations
in more exotic regular categories and toposes.

One direction of future work is to investigate regular AM-bisimulations for probabilistic
systems, compared to what is done in [8, 7] for behavioural equivalences. The main challenge
is to find a suitable regular category of “probabilistic space” and a “probabilistic distribution
functor” that covers pullbacks. For the first property, the work on Quasi-Borel spaces [10],
producing a quasi-topos, is of interest. For the second one, looking at categories of σ-frames
(see for example [21]), for which pullbacks do not coincide with pullbacks in the category of
measurable spaces is a solution under investigation.
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