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Abstract
We present a slick proof of completeness and cocompleteness for categories of F -automata, where the
span of maps E

d←− E ⊗ I
s−→ O that usually defines a deterministic automaton of input I and output

O in a monoidal category (K,⊗) is replaced by a span E ← F E → O for a generic endofunctor
F : K → K of a generic category K: these automata exist in their “Mealy” and “Moore” version and
form categories F -Mly and F -Mre; such categories can be presented as strict 2-pullbacks in Cat and
whenever F is a left adjoint, both F -Mly and F -Mre admit all limits and colimits that K admits.
We mechanize our main results using the proof assistant Agda and the library agda-categories.
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1 Introduction

One of the most direct representations of deterministic automata in the categorical settings
consists (cf. [1, 4, 5]) of a span of morphisms E

d←− E × I
s−→ O, where the left leg provides a

notion of dynamics or next state function, given a current state E and an input I, and the
right leg provides an final state or output O.

According to whether the output morphism depends on both the current state and an
input or just on the state, one can then talk about classes of Mealy and Moore automata,
respectively. This perspective of “automata in a category” naturally captures the idea that
morphisms of a category can be interpreted as a general abstraction of processes/sequential
operations.
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The above notion of deterministic automaton carries over to any monoidal category, on
which the various classical notions of automata, e.g., minimization, bisimulation, powerset
construction, can be equivalently reconstructed; this is studied, to a large extent, in the
monograph [5].

In [1, 7], automata are generalized to the case in which, instead of taking spans from
the monoidal product of states and inputs E ⊗ I, one considers spans E ← FE → O for
a generic endofunctor F : K → K, providing an abstraction for the ambient structure that
allows the automata to advance to the “next” state and give an output.

A general theorem asserting that the category of Mealy and Moore automata MlyK(I, O),
MreK(I, O) in a monoidal category (K,⊗) are complete and cocomplete whenever K is itself
complete and cocomplete can be obtained with little conceptual effort, cf. [5, Ch. 11], but
the proof given therein is a bit ad-hoc, and provides no intuition for why finite products and
terminal objects tend to be so complicated.

With just a little bit more category-theoretic technology, some general considerations can
be made about the shape of limits in such settings: colimits and connected limits can be
computed as they are computed in K (as a consequence of the fact that the forgetful functor
from the category of machines creates them, cf. [16]), whereas products (and in particular the
empty product, the terminal object) have dramatically different shapes than those provided
in K. The profound reason why this happens is the fact that such a terminal object (which
we refer to O∞) coincides with the terminal coalgebra of a specific endofunctor, which, for
Moore or Mealy automata, is respectively given by A 7→ O ×RA and A 7→ RO ×RA. The
complicated shape of the terminal object O∞ in MlyK(I, O) is then explained by Adámek’s
theorem, which presents the terminal object O∞ as an (usually intricate) inverse limit in K.

In this paper, we show that under the same assumption of completeness of the underlying
categoryK, the completeness of F -automata can be obtained by requiring that the endofunctor
F admits a right adjoint R. The proof we provide follows a slick argument proving the
existence of (co)limits by fitting each MlyK(I, O) and MreK(I, O) into a strict 2-pullback in
Cat, and deriving the result from stability properties of limit-creating functors.

1.1 Outline of the paper
The present short note develops as follows:

First (Section 2) we introduce the language we will employ and the structures we will
study:1 categories of automata valued in a monoidal category (K,⊗) (in two flavours:
“Mealy” machines, where one considers spans E ← E ⊗ I → O, and “Moore”, where
instead one consider pairs E ← E ⊗ I, E → O) and of F -automata, where F is an
endofunctor of K (possibly with no monoidal structure). “Mealy” automata are known as
“deterministic automata” in today’s parlance, but since we need to distinguish between
the two kinds of diagram from time to time, we stick to an older terminology.
Then (Theorem 3.6), to establish the presence of co/limits of shape J in categories of
F -automata, under the two assumptions that F : K → K is a left adjoint in an adjunction
F η

ϵ
R, and that co/limits of shape J exist in the base category K.

Last (Subsection 3.1), to address the generalisation to F -machines of the “behaviour as
an adjunction” perspective expounded in [18, 19].

1 An almost identical introductory short section appears in [2], of which the present note is a parallel
submission –although related, the two manuscripts are essentially independent, and the purpose of this
repetition is the desire for self-containment.
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Similarly to the situation for Mealy/Moore machines, where F = ⊗ I, discrete limits in
F -Mly and F -Mre exist but tend to have a shape that is dramatically different than the one
in K.

A number of examples of endofunctors F that satisfy the previous assumption come
from considering F as the (underlying endofunctor of the) comonad LG of an adjunction
L ⊣ G ⊣ U , since in that case LG ⊣ UG: the shape-flat and flat-sharp adjunctions of a
cohesive topos [13, 14], or the base-change adjunction Lanf ⊣ f∗ ⊣ Ranf for a morphism
of rings, or more generally, G-modules in representation theory, any essential geometric
morphism, or any topological functor V : E → B [3, Prop. 7.3.7] with its fully faithful left
and right adjoints L ⊣ V ⊣ R gives rise to a comodality LV , left adjoint to a modality RV .

The results we get are not particularly surprising; we have not, however, been able to
trace a reference addressing the co/completeness properties of F -Mly, F -Mre nor an analogue
for the “behaviour as an adjunction” theorems expounded in [18, 19]; in the case F = ⊗ I

co/completeness results follows from unwieldy ad-hoc arguments (cf. [5, Ch. 11]), whereas in
Theorem 3.6 we provide a clean, synthetic way to derive both results from general principles,
starting by describing F -Mly and F -Mre as suitable pullbacks in Cat, in Proposition 3.5.

We provide a mechanisation of our main results using the proof assistant Agda and the
library agda-categories: we will add a small Agda logo ( ) next to the beginning of a
definition or statement whenever it is accompanied by Agda code: this is a hyperlink pointing
directly to the formalisation files. The full development is freely available for consultation
and is available at https://github.com/iwilare/categorical-automata.

2 Automata and F -automata

The only purpose of this short section is to fix notation; classical comprehensive references
for this material are [1, 5]; in particular, [1, Ch. III] is entirely devoted to the study of what
here are called F -Moore automata, possibly equipped with an “initialization” morphism.

2.1 Mealy and Moore automata
For the entire subsection, we fix a monoidal category (K,⊗, 1).

▶ Definition 2.1 (Mealy machine). ( ) A Mealy machine in K of input object I and output
object O consists of a triple (E, d, s) where E is an object of K and d, s are morphisms in a
span

e :=
(

E E ⊗ I
doo s // O

)
(2.1)

▶ Remark 2.2 (The category of Mealy machines). Mealy machines of fixed input and output
I, O form a category, if we define a morphism of Mealy machines f : (E, d, s)→ (T, d′, s′) as
a morphism f : E → T in K such that

E

f

��

E ⊗ I
doo

f⊗I

��

s // O

T T ⊗ I
d′
oo

s′
// O

(2.2)

Clearly, composition and identities are performed in K.
The category of Mealy machines of input and output I, O is denoted as MlyK(I, O).
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▶ Definition 2.3 (Moore machine). ( ) A Moore machine in K of input object I and output
object O is a diagram

m :=
(

E E ⊗ I ; E
doo s // O

)
(2.3)

▶ Remark 2.4 (The category of Moore machines). Moore machines of fixed input and output
I, O form a category, if we define a morphism of Moore machines f : (E, d, s)→ (T, d′, s′) as
a morphism f : E → T in K such that

E

f

��

E ⊗ I
doo

f⊗I

��

E

f

��

s // O

T T ⊗ I
d′
oo T

s′
// O

(2.4)

2.2 F -Mealy and F -Moore automata
The notion of F -machine arises by replacing the tensor E ⊗ I in (2.1) with the action FE of
a generic endofunctor F : K → K on an object E ∈ K, in such a way that a Mealy/Moore
machine is just a ( ⊗ I)-Mealy/Moore machine; cf. [7, ff. 2.1.3°], or Chapter III of the
monograph [1]. This natural idea acts as an abstraction for the structure that allows the
machine to advance to the “next” state and give an output, and it leads to the following two
definitions (where we do not require K to be monoidal).
▶ Definition 2.5 (F -Mealy machine). ( ) Let O ∈ K be a fixed object. The objects of
the category F -Mly/O (or simply F -Mly when the object O is implicitly clear) of F -Mealy
machines of output O are the triples (E, d, s) where E ∈ K is an object and s, d are morphisms
in K that fit in the span

E FE
doo s // O (2.5)

A morphism of F -Mealy machines f : (E, d, s)→ (T, d′, s′) consists of a morphism f : E → T

in K such that

E

f

��

FE
doo

F f

��

s // O

T FT
d′
oo

s′
// O

(2.6)

Unsurprisingly, we can generalise in the same fashion Definition 2.3 to the case of a generic
endofunctor F : K → K.
▶ Definition 2.6 (F -Moore machine). ( ) Let O ∈ K be a fixed object. The objects of
the category F -Mre/O (or simply F -Mre when the object O is implicitly clear) of F -Moore
machines of output O are the triples (E, d, s) where E ∈ K is an object and s, d are a pair of
morphisms in K

E FE ; E
doo s // O (2.7)

A morphism of F -Moore machines f : (E, d, s)→ (T, d′, s′) consists of a morphism f : E → T

in K such that

E

f

��

FE
doo

F f

��

E

f

��

s // O

T FT
d′
oo T

s′
// O

(2.8)

https://github.com/iwilare/categorical-automata/blob/published-version-2023/Moore.agda
https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMealy.agda
https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMoore.agda
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▶ Remark 2.7 (Interdefinability of notions of machine). All the concepts of machine introduced
so far are interdefinable, provided we allow the monoidal base K to change (cf. [7, ff.
Proposition 30]): a Mealy machine is, obviously, an F -machine where F : K → K is the functor
⊗ I : E 7→ E ⊗ I; an F -machine consists of a Mealy machine in a category of endofunctors:

in fact, F -machines are precisely the Mealy machines of the form E ← F ◦ E → O, where
E, O are constant endofunctors on objects of K and F is the input object: more precisely,
the category of F -machines is contained in the category Mly([K,K],◦)(F, cO), where cO is the
constant functor on O ∈ K, as the subcategory of those triples (E, d, s) where E is a constant
endofunctor.

3 Completeness and behaviour in F -Mly and F -Mre

The first result that we want to generalise to F -machines is the well-known fact that,
considering for example Mealy machines, if (K,⊗) has countable coproducts preserved by
each I ⊗ , then the span (2.1) can be “extended” to a span

E E ⊗ I+d+
oo s+

// O (3.1)

where d+, s+ can be defined inductively from components dn, sn : E ⊗ I⊗n → E, O.
Under the same assumptions, each Moore machine (2.3) can be “extended” to a span

E E ⊗ I∗d∗
oo s∗

// O (3.2)

where d∗, s∗ can be defined inductively from components dn, sn : E ⊗ I⊗n → E, O.2

▶ Remark 3.1. In the case of Mealy machines, the object I+ corresponds to the free semigroup
on the input object I, whereas for Moore machines one needs to consider the free monoid
I∗: this mirrors the intuition that in the latter case an output can be provided without any
previous input. Note that the extension of a Moore machine gives rise to a span of morphisms
from the same object E ⊗ I∗, i.e., a Mealy machine that accepts the empty string as input.
A similar construction can be carried over in the category of F -Mealy machines, using the
F -algebra map d : FE → E to generate iterates E

dn←− F nE
sn−→ O, for n ≥ 1.

From now on, let F be an endofunctor of a category K that has a right adjoint R.
Examples of such arise naturally from the situation where a triple of adjoints L ⊣ G ⊣ R is
given, since we obtain adjunctions LG ⊣ RG and GL ⊣ GR:

every homomorphism of rings f : A→ B induces a triple of adjoint functor between the
categories of A and B-modules (cf. [3, 4.7.4]);
similarly, every homomorphism of monoids f : M → N induces a “base change” functor
f∗ : N -Set→M -Set (this is usuall treated as a fact all category theorists know; however,
an elementary exposition of this fact can be found in [21, Prop. 4.1.4.11]);
every essential geometric morphism between topoi E ⇆ F , i.e. every triple of adjoints
f! ⊣ f∗ ⊣ f∗ (cf. [10, 1.16]);
every topological functor V : E → B [3, Prop. 7.3.7] with its fully faithful left and right
adjoints L ⊣ V ⊣ R (this gives rise to a comodality LV , left adjoint to a modality RV ).

2 Assuming countable coproducts in K, the free monoid I∗ on I is the object
∑

n≥0 In; the free semigroup
I+ on I is the object

∑
≥1 In; clearly, if 1 is the monoidal unit of ⊗, I∗ ∼= 1 + I+, and the two objects

satisfy “recurrence equations” I+ ∼= I ⊗ I+ and I∗ ∼= 1 + I ⊗ I∗.

CALCO 2023
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▶ Construction 3.2 (Dynamics of an F -machine). ( ) For any given F -Mealy machine

E FE
doo s // O (3.3)

we define the family of morphisms sn : F nE → O (for n ≥ 1) inductively, as the composites
s1 = FE

s−→ O

s2 = FFE
F d−−→ FE

s−→ O

sn = F nE
F n−1d−−−−→ F n−1E → · · · F F d−−−→ FFE

F d−−→ FE
s−→ O

(3.4)

Under our assumption that F has a right adjoint R, this is equivalent to the datum of their
mates s̄n : E → RnO for n ≥ 1 under the adjunction F n

ηn
Rn obtained by composition,

iterating the structure in F η
ϵ

R.
Such a sn is called the nth skip map. Observe that in case K has countable products, the

family of all nth skip maps (sn | n ∈ N≥1) is obviously equivalent to a single map of type
s̄∞ : E →

∏
n≥1 RnO.

▶ Remark 3.3. Reasoning in a similar fashion, one can define extensions s : E → O,
s ◦ d : FE → E → O, s ◦ d ◦ Fd : FFE → O, etc. for an F -Moore machine.
This is the first step towards the following statement, which will be substantiated and
expanded in Theorem 3.6 below:

▷ Claim 3.4. The category F -Mre of Definition 2.6 has a terminal object o = (O∞, d∞, s∞)
with carrier O∞ =

∏
n≥0 RnO; similarly, the category F -Mly has a terminal object with

carrier O∞ =
∏

n≥1 RnO. (Note the shift in the index of the product, motivated by the fact
that the skip maps for a Moore machine are indexed on N≥0, and on N≥1 for Mealy.)

The “modern” way to determine the presence of a terminal object in categories of automata
relies on the elegant coalgebraic methods in [9]; the interest in such completeness theorems
can be motivated essentially in two ways:

the terminal object O∞ in a category of machines tends to be “big and complex”, as
a consequence of the fact that it is often a terminal coalgebra for a suitably defined
endofunctor of K, so Adámek’s theorem presents it as inverse limit of an op-chain.
Coalgebra theory allows us to define a bisimulation relation between states of different
F -algebras (or, what is equivalent in our blanket assumptions, R-coalgebras), which in
the case of standard Mealy/Moore machines (i.e., when F = ⊗ I) recovers the notion
of bisimulation expounded in [9, Ch. 3].

The following universal characterisation of both categories as pullbacks in Cat allows us to
reduce the whole problem of completeness to the computation of a terminal object, and thus
prove Theorem 3.6.

▶ Proposition 3.5. ( )
cx1) the category F -Mly of F -Mealy machines given in Definition 2.5 can be characterised

as the top left corner in the pullback square

F -Mly U ′
//

V ′

��

(F/O)

V

��
Alg(F )

U
// K

(3.5)

where F/O is the comma category defined by F and the constant functor on O, V is
the forgetful functor defined by the universal property of comma categories and U is the
canonical forgetful functor of F -algebras.

https://github.com/iwilare/categorical-automata/blob/published-version-2023/FMoore/Limits.agda#L44
https://github.com/iwilare/categorical-automata/blob/published-version-2023/AsPullbacks.agda.agda
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cx2) the category F -Mre of F -Moore machines given in Definition 2.6 can be characterised
as the top left corner in the pullback square

F -Mre U ′
//

V ′

��

(K/O)

V

��
Alg(F )

U
// K

(3.6)

where V is the forgetful functor from the slice category K/O to K, sending an arrow to its
domain and U is the canonical forgetful functor of F -algebras.

Proof. Straightforward inspection of the definition of both pullbacks. ◀

As a consequence of this characterization, by applying [16, V.6, Ex. 3] we can easily show the
following completeness result, provided we recall that in both (3.5) and (3.6) U is monadic,
and since F is a left adjoint, V preserves connected limits.

▶ Theorem 3.6 (Limits and colimits of F -machines). ( )3

Let K be a category admitting colimits of shape J ; then, F -Mre and F -Mly have colimits
of shape J , and they are computed as in K;
Equalizers (and more generally, all connected limits) are computed in F -Mre and F -Mly
as they are computed in K; if K has countable products and pullbacks, F -Mre and F -Mly
also have products of any finite cardinality (in particular, a terminal object).

Proof of Theorem 3.6. It is worth unraveling the content of [16, V.6, Ex. 3], from which
the claim gets enormously simplified: the theorem asserts that in any strict pullback square
of categories

A U ′
//

V ′

��

B

V
��

C
U
// K

(3.7)

if U creates, and V preserves, limits of a given shape J , then U ′ creates limits of shape J .
Thus, thanks to Proposition 3.5, all connected limits (in particular, equalizers) are created in
the categories of F -Mealy and F -Moore machines by the functors U ′ : F -Mly→ (F/O) and
are thus computed as in (F/O), i.e. as in K; this result is discussed at length in [5, Ch. 10]
in the case of ( ⊗ I)-machines, i.e. classical Mealy machines, to prove the following:

assuming K is cocomplete, all colimits are computed in F -Mly as they are computed in
the base K;
assuming K has connected limits, they are computed in F -Mly as they are computed in
the base K.

Discrete limits have to be treated with additional care: for classical Moore machines (cf.
Definition 2.3) the terminal object is the terminal coalgebra of the functor A 7→ AI×O (cf. [9,
2.3.5]): a swift application of (the analogue of) Adámek’s theorem (for a Cartesian category
other than Set) yields the object [I∗, O]; for classical Mealy machines (cf. Definition 2.1)
the terminal object is the terminal coalgebra for A 7→ [I, O] × [I, A]; similarly, Adámek’s
theorem yields [I+, O].

3 We only provide a mechanization of the proof of existence of finite products: binary products, and a
terminal object.

CALCO 2023
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Adámek’s theorem then yields the terminal object of F -Mre as the terminal coalgebra
for the functor A 7→ O × RA, which is the O∞,0 of Claim 3.4, and the terminal object of
F -Mly as O∞,1 and for A 7→ RO × RA (in F -Mly). All discrete limits can be computed
when pullbacks and a terminal object have been found, but we prefer to offer a more direct
argument to build binary products.

Recall from Construction 3.2 the definition of dynamics map associated to an F -machine
e = (E, d, s).

Now, our claim is two-fold:
to1) the object O∞ :=

∏
n≥1 RnO in K carries a canonical structure of an F -machine

o = (O∞, d∞, s∞) such that o is terminal in F -Mly;
to2) given objects (E, dE , sE), (T, dT , sT ) of F -Mly, the pullback

P∞ //

��

T

s̄T,∞

��
E

s̄E,∞
// O∞

(3.8)

is the carrier of an F -machine structure that exhibits p = (P∞, dP , sP ) as the product of
e = (E, dE , sE), f = (T, dT , sT ) in F -Mly.

In this way, the category F -Mly comes equipped with all finite products; it is easy to prove
a similar statement when an infinite number of objects (ei | i ∈ I) is given by using wide
pullbacks whenever they exist in the base category.

Observe that the object P∞ can be equivalently characterized as the single wide pullback
obtained from the pullback Pn of s̄E,n and s̄T,n (or rather, an intersection, since each
Pn → E × T obtained from the same pullback is a monomorphism):

P∞ //

��

. .
.

Pn

��
Pm

// E × T

(3.9)

Showing the universal property of P∞ will be more convenient at different times in one
or the other definition.

In order to show our first claim in to1, we have to provide the F -machine structure on
O∞, exhibiting a span

O∞ FO∞
d∞oo s∞ // O (3.10)

On one side, s∞ is the adjoint map of the projection π1 : O∞ → RO on the first factor; the
other leg d∞ is the adjoint map of the projection deleting the first factor, thanks to the
identification RO∞ ∼=

∏
n≥2 RnO; explicitly then, we are considering the following diagram:

O∞ FRO∞
ϵO∞oo FO∞

F π≥2oo F π1 // FRO
ϵO // O (3.11)

To prove the first claim, let’s consider a generic object (E, d, s) of F -Mly, i.e. a span

E FE
doo s // O (3.12)

and let’s build a commutative diagram

E

u

��

FE
s //

F u

��

doo O

O∞ FRO∞
ϵO∞oo FO∞

F π≥2oo F π1 // FRO
ϵO // O

(3.13)
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for a unique morphism u : E → O∞ =
∏

n≥1 RnO that we take exactly equal to s̄∞. The
argument that u makes diagram (3.13) commutative, and that it is unique with this property,
is now a completely straightforward diagram chasing.

Now let’s turn to the proof that the tip of the pullback in (3.8) exhibits the product of
(E, dE , sE), (T, dT , sT ) in F -Mly; first, we build the structure morphisms sP , dP as follows:

dP is the dotted map obtained thanks to the universal property of P∞ from the commut-
ative diagram

FP∞
dP

$$

//

��

FE

��

$$
P∞ //

��

E

��

FT //

$$

FO∞

$$
T // O∞

(3.14)

sP : FP∞ → O is obtained as the adjoint map of the diagonal map P∞ → O∞ in (3.8)
composed with the projection π1 : O∞ → RO.

Let’s now assess the universal property of the object

P∞ FP∞
dPoo sP // O (3.15)

We are given an object z = (Z, dZ , sZ) of F -Mly and a diagram

O O O

FE

dE

��

sE

OO

FZ

sZ

OO

dZ

��

F v
//

F u
oo FT

sT

OO

dT

��
E Z

v
//

u
oo T

(3.16)

commutative in all its parts. To show that there exists a unique arrow [u, v] : Z → P∞

Z

[u,v]
��

u

~~

v

  
E P∞pE

oo
pT

// T

(3.17)

we can argue as follows, using the joint injectivity of the projection maps πn : O∞ → RnO:
first, we show that each square

Z
u //

v

��

E

s̄E,n

��
T

s̄T,n

// RnO

(3.18)

is commutative, and in particular that its diagonal is equal to the nth skip map of Z; this
can be done by induction, showing that the composition of both edges of the square with the
canonical projection O∞ → RnO equals s̄n,Z for all n ≥ 1. From this, we deduce that there
exist maps

Z
zn // Pn

// E × T (3.19)
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(cf. (3.9) for the definition of Pn) for every n ≥ 1, But now, the very way in which the zns
are defined yields that each such map coincides with ⟨u, v⟩ : Z → E × T , thus Z must factor
through P∞. Now we have to exhibit the commutativity of diagrams

Z

[u,v]
��

FZ

F [u,v]
��

dZoo sZ // O

P∞ FP∞
dP

oo
sP

// O

(3.20)

and this follows from a straightforward diagram chasing.
This concludes the proof. ◀

▶ Remark 3.7. Spelled out explicitly, the statement that o = (O∞, d∞, s∞) is a terminal
object amounts to the fact that given any other F -Mealy machine e = (E, d, s), there is a
unique uE : E → O∞ with the property that

E

uE

��

FE
s //

F uE

��

doo O

O∞ FO∞
d∞

oo
s∞

// O

(3.21)

are both commutative diagrams; a similar statement holds for F -Moore automata.

3.1 Adjoints to behaviour functors
In [18, 19] the author concentrates on building an adjunction between a category of machines
and a category collecting the behaviours of said machines.

Call an endofunctor F : K → K an input process if the forgetful functor U : Alg(F )→ K
has a left adjoint G; in simple terms, an input process allows to define free F -algebras.4

In [18, 19] the author concentrates on proving the existence of an adjunction

L : Beh(F ) //
⊥ Mach(F ) : Eoo (3.22)

where Mach(F ) is the category obtained from the pullback

Mach(F ) //

��

K→ ×K→

d1×d0

��
Alg(F )

U
// K

∆
// K ×K

(3.23)

∆ is the diagonal functor, Beh(F ) is a certain comma category on the free F -algebra functor
G and d0, d1 are the domain and codomain functors from the arrow category.

Phrased in this way, the statement is conceptual enough to carry over to F -Mealy and
F -Moore machines (and by extension, to all settings where a category of automata can be
presented through a strict 2-pullback in Cat of well-behaved functors –a situation that given
(3.5), (3.6), (3.23) arises quite frequently).

4 Obviously, this is in stark difference with the requirement that F has an adjoint, and the two requests
are independent: if F is a monad, it is always an input process, regardless of F admitting an adjoint on
either side.
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▶ Theorem 3.8. ( ) There exists a functor B : F -Mre → Alg(F )/(O∞,d∞), where the
codomain is the slice category of F -algebras and the F -algebra (O∞, d∞) is determined in
Claim 3.4. The functor B has a left adjoint L.

Proof. An object of Alg(F )/O∞ is a tuple ((A, a), u) where a : FA→ A is an F -algebra with
its structure map, and u : A→ O∞ is an F -algebra homomorphism, i.e. a morphism u such
that d∞ ◦ Fu = u ◦ a.
The functor B is defined as follows:

on objects e = (E, d, s) in F -Mre, as the correspondence sending e to the unique map
uE : E → O∞, which is an F -algebra homomorphism by the construction in (3.13);
on morphisms, f : (E, d, s)→ (F, d′, s′) between F -Moore machines, B acts as the identity,
ultimately as a consequence of the fact that the terminality of O∞ yields at once that
uF ◦ f = uE .

A putative left adjoint for B realises a natural bijection

F -Mre/O

(
L((A, a), u), (E, d, s)

) ∼= Alg(F )/O∞

(
((A, a), u), B(E, d, s)

)
(3.24)

between the following two kinds of commutative diagrams:

A

φ

��

F A
aoo

F φ

��
E F E

doo

A

φ

��

u // O∞
sT // O

E

uE

??

s
// O





F A

a

��

F φ //
F u

zz

F E

d

��
F O∞

dT ##

A
φ
//

u

��

E

||
s

��
O∞

sT

// O


(3.25)

There is a clear way to establish this correspondence. ◀

▶ Remark 3.9. ( ) The adjunction in Theorem 3.8 is actually part of a longer chain of
adjoints obtained as follows: recall that every adjunction G : K⇆ H : U induces a “local”
adjunction G̃ : K/UA ⇆ H/A : Ũ where Ũ(FA, f : FA→ A) = Uf . Then, if F is an input
process, we get adjunctions

K/O∞

G̃ //
⊥ Alg(F )/(O∞,d∞)
Ũ

oo
L //
⊥ F -Mre.
B
oo (3.26)

4 Conclusion and Future Works

Our research is part of a bigger ongoing project [2] aimed to understand automata theory
from the point of view of formal category theory [6, 24, 25]. The endeavour has a long history
(the work of Naudé that we generalize a bit serves as a remarkable example in this direction),
and the technology of category-theoretic approaches is rapidly shifting towards 2-dimensional
categories as foundations for complex systems [15, 17, 20]. By leveraging simple universal
properties of pullbacks and comma objects in Cat, we have established a way for generating
“categories of automata and their behaviour”.

In fact, our findings hint at the existence of exciting possibilities for understanding
behavior coalgebraically within categories of automata. This approach, well-known and
fruitful in the literature, has been extensively studied by Jacobs [9, 8]. We are confident
that we can extend this line of research to derive insightful statements in the “internal
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language” of the category of automata under consideration. For instance, we can examine
bisimilarity as an internal equivalence relation in our categories of generalised automata,
utilizing the calculus of relations available in every regular category, and categorical algebra,
broadly intended. In our opinion, this exploration holds great potential for deepening our
understanding of automata theory and its applications.

In future works, we would like to further explore the properties of the adjunctions sketched
in this paper, emphasizing on applications. We also plan to delve deeper into the “coalgebraic
behavior” perspective, with particular care for its implications in different aspects of automata
theory. In [2] we exploit the fact that Mealy automata form a bicategory, building on prior
work [11]: it is a banality that the composition of 1-cells in such a bicategory amounts to the
so-called cascade product between a Mealy machine and a semiautomaton. Among many
different direction for future research, an exciting prospect is to prove the Krohn-Rhodes
theorem [12, 22, 23] by resorting to bicategorical properties.

Besides providing a guarantee of correctness, formalizing our results in a proof assistant
might also pave the way for “concrete” implementations of our theoretical results, where, for
instance, the proofs also act as concrete programs that allow the user to convert between
different automata in a provably correct way.

Overall, we believe our research started a foundational look to automata theory by
offering a novel perspective on known results. As category theorists, we are confident that
approaching familiar concepts from a higher vantage point yields invaluable insights, fostering
the advancement of the field and unlocking practical applications.
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A Agda formalization

Here we briefly comment here on our use of the Agda proof assistant to formalize some of
the main results of this paper.

In most cases we used it to formalize the most tricky aspects of the proofs, without
focusing on providing a complete formalization of all results shown in this work, for which
the pen-and-paper approach still has a considerable edge in terms of speed and effort. For
example, the proof mechanized for Theorem 3.6 concentrates only on explicitly defining
terminal and binary products, thus providing only a general insight on how non-connected
limits are computed. Our development consists of around 2000 LoC and, thanks to its
reusability, has been employed to formalize results in subsequent papers such as [2].

We use the library agda-categories as a starting point from which to build and prove
further theorems, without having to formalize basic notions of category theory from scratch.
Most of the proofs mechanized for this paper are straightforward and follow directly from the
universal properties of the objects under consideration; the most difficult part of our develop-
ment has been to identify the necessary properties to prove facts about inductively defined
objects (e.g., the interdependencies between the different lemma needed in Theorem 3.6) and
the lack of automation mechanisms to close the proofs, which can end up in particularly long
sequences of hom-reasoning steps.

Other minor issues arise from some architectural choices made in the agda-categories
library, which, following a well-established practice in formalizations of category theory,
defines categories as setoid-enriched, i.e., every category incorporates an internal notion
of equality between morphisms. This often results in better-behaved but weaker notions
of equalities between morphisms that more closely follow the principle of equivalence; for
example, in the large category Cat, equality of functors is defined as natural isomorphism
between functors, rather than strict equality on objects and arrows. This becomes problematic
when defining universal objects in Cat, such as the (strict) 2-pullbacks used in Proposition 3.5
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to characterize the categories F -Mly and F -Mre, since in this picture limits are actually
defined up to equivalence of categories –from the theoretical point of view, they are bilimits;
from the implementation point of view, the weak universal property is due to the lack of
uniqueness of identity proofs for arbitrary hom-equalities.

In practice this has been dealt with by working in the (large) category StrictCat where
equality of functors is defined strictly, which allows us to recover pullbacks between categories
and the characterizations shown in this paper.
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