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Abstract
Concurrently interacting components of a modular software architecture are heterogeneously struc-
tured behavioural models. We consider them as coalgebras based on different endofunctors. We
formalize the composition of these coalgebras as specially tailored segments of distributive laws
of the bialgebraic approach of Turi and Plotkin. The resulting categorical rules for structural
operational semantics involve many-sorted algebraic specifications, which leads to a description of
the components together with the composed system as a single holistic behavioural system. We
evaluate our approach by showing that observational equivalence is a congruence with respect to the
algebraic composition operation.
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1 Introduction

In a modular and component-based software architecture of a compound system the individual
components interact concurrently. Categorically, these individual state-based components
are modelled as coalgebras. However, in a landscape of multiple interacting systems these
behavioural models are heterogeneously typed: There are deterministic or non-deterministic
labelled transition systems as well as probabilistic systems, systems with or without termin-
ation, with or without output and so on, see [24], Chapter 3. Hence the coalgebras of the
individual components are based on different endofunctors.

Reasoning about the correct behaviour of a compound system often requires establishing
correctness of each local component and furthermore using theoretical means, which guarantee
that global behaviour is determined by local behaviours. In [9], this modular method is
called compositionality and a precise formulation of it requires the use of a framework, which
captures the operational semantics of concurrent processes. Such a framework is given by
transition rules of structural operational semantics (SOS). Conditional rules of the form

x
a // x′ y

b // y′

op(x, y) c // op(x′, y′)
(1)
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7:2 SOS for Heterogeneously Typed Coalgebras

generate systems, whose states are closed terms over an algebraic signature [1]. Well-known
rule formats are GSOS1 [3] and tyft/tyxt [8]. For some of these rule formats one can prove
compositionality to hold, whereas counterexamples can be provided for other formats [8].

In this paper, we propose a formal structure, which describes the composition of hetero-
geneously typed coalgebras with the help of structural operational semantics. For this, it is
important to provide a suitable rule format, which guarantees compositionality (and hopefully
other similar requirements) in heterogeneous environments. Since we deal with supposedly
arbitrarily varying behavioural specifications, we need more general rule formats, which
cannot be expected to be homogeneous like GSOS or tyft/tyxt. An adequate generalization
of transition rules in the context of coalgebraic specifications are natural transformations
between functors, whose domain and codomain reflect the transition from n(≥ 2) local
systems to one compound system, i.e., functors of type SET n → SET . We will show that
these so-called interaction laws (see Def. 12) can be embedded into distributive laws

λ : Σ⃗B⃗ ⇒ B⃗Σ⃗

for suitable endofunctors Σ⃗ and B⃗. Distributive laws are part of a bialgebraic approach,
which has been described in [14], but was originally proposed by Turi and Plotkin [27]. Here
B⃗ (and also Σ⃗) is a SET n+1-endofunctor, which simultaneously covers the behaviours of the
n heterogeneously typed coalgebras and a specification of the compound system, which has
to comprise the commonalities of the local system behaviours. The algebraic syntax functor
Σ⃗ contains the operation(s), which realize(s) the transition from the local components (input
of the operation) to the global view of the composed system (output). We evaluate our
approach by proving compositionality to hold for interaction laws.

Whereas in process algebras like CCS or CSP2 this transfer of observational indistin-
guishability during syntactical build-up of process terms has to be guaranteed [8], we rather
want compositionality, when individual software components are composed into a global
compound network. Whereas [14] circumscribes compositionality as observational equival-
ence (w.r.t. final semantics) being a congruence (i.e. the coinductive extension is an algebra
homomorphism), we propose a slightly adapted definition tailored to the specific situation of
heterogeneously typed interacting systems.

Our work was inspired by practical scenarios, where the coupling of behavioural models
with other executable models like test runners or event injectors is of crucial importance [19].
Furthermore, recently, systematic approaches to co-simulation for large-scale system assess-
ment have gained popularity [20]. Here, a typical scenario is the interaction with probabilistic
systems [2, 26], which requires a concrete language for their interaction [5, 19]. While
these DSLs3 are already well-established, they lack theoretical underpinning in the form of
transition rules to reason about correctness properties.

Hence, we answer the main question

How can we apply (parts of) the bialgebraic theory to understand the interaction of
heterogeneously typed behavioural components?

by providing the following contributions and novelties:
A proof for the preservation of observational equivalence, when n local components are
based on different behavioural specifications B1, . . . , Bn, by embedding interaction laws
into distributive laws.

1 General Structured Operational Semantics
2 Calculus of Communicating Systems [21], Communicating Sequential Processes [10]
3 Domain Specific Languages
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An ensemble of n separated individual components together with the specification of its
composition is formalised in one holistic many-sorted approach, i.e., as coalgebras for an
endofunctor B⃗ : SET n+1 → SET n+1.

The paper is organized as follows: Sect. 2 clarifies notation, Sect. 3 presents the general
setting based on practical scenarios as well as a motivating example, Sect. 4 recapitulates
the survey [14] in some detail to make the content complete and comprehensible, and Sect. 5
presents the above mentioned novelties in detail: The linkage of the definitions of Interaction
Law (in Def.12) and Congruence (adapted to the heterogeneous case in Def. 17) yield an
adequate definition of compositionality and we can obtain our main statements: Theorem 21
proves compositionality to hold for interaction laws and Corollary 22 adapts the statement
of the theorem to practical needs.

2 Basic Notation

We use the following notations: SET is the category of sets and total mappings. For two
sets A and X we write XA for the set of all total maps from A to X. A special set is 1,
which denotes any singleton set, e.g. (1 + X)A is the set of all partial maps from A to X.

For functors we will use calligraphic letters like F , G, and, especially, letter B for
behavioural and greek letter Σ for algebraic specifications. Categories are denoted C or D,
an application of a functor F : C → D will be written F(X) for X ∈ |C| (or short X ∈ C),
the collection of objects of C, whereas an application of F to a morphism α : X → Y does
not use parentheses: Fα : F(X) → F(Y ). Composition of functors F and G (if it is possible)
is always written GF (G applied after F). Special functors are IDC, the identity functor on
C, and ℘fin, the powerset functor assigning to a set the set of its finite subsets.

It is often convenient to give a definition (on objects) of a functor without explicitly naming
its formal parameters, e.g. a functor B mapping a set X to the set (1+X)A (see above) is often
denoted B = (1 + _)A. Furthermore, when we give the complete definition of functors F , we

often combine object and morphism mapping by writing X
f
// Y 7→ F(X) Ff

// F(Y ) .
As usual, a natural transformation ν between functors F and G with common domain

and codomain, written ν : F ⇒ G, is a family (νX : F(X) → G(X))X∈|C| compatible with
morphism mapping. For appropriate functors H and H′ we denote with Hν the family (HνX :
HF(X) → HG(X))X∈|C| and with νH′ the family (νH′(X) : FH′(X) → GH′(X))X∈|C|.

For an endofunctor B : C → C a B-coalgebra is a C-morphism X
α // B(X) , called

the structure map and written (X, α) or - if X is clear from the context - just α. A coalgebra
morphism from (X, α) to (Y, β) is a C-morphism f : X → Y such that β ◦ f = Bf ◦ α.
Instead of f we sometimes write (f, Bf) to stress the fact that commutativity involves Bf ,
as well. The resulting category of all coalgebras for B : C → C will be denoted B-Coalg.
If it admits a final object (Z, ζ) and if (X, α) ∈ B-Coalg, we denote with uα : X → Z the
coinductive extension of α, i.e. the unique B-Coalg-morphism into the final object.

Likewise for an endofunctor Σ : C → C a Σ-algebra is a C-morphism Σ(X) a // X

written (a, X). An algebra morphism from (a, X) to (b, Y ) is a C-morphism f : X → Y such
that b ◦ Σf = f ◦ a. Instead of f we sometimes write (Σf, f). The resulting category of all
algebras will be denoted Σ-Alg.

For morphisms in combination with cartesian products, we use the following notations:
If f : A → B and g : A → B′, then ⟨f, g⟩ : A → B × B′ denotes the uniquely determined
resulting morphism. Likewise for g : A′ → B′, f × g : A × A′ → B × B′.

CALCO 2023
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3 General Setting and Example

Multiple interacting components of software architectures collectively realize the requirements
of business domains. Describing the interactions between these systems and checking their
global behavioural consistency is a general, well-known challenge in software engineering [4].
To address this challenge, model-driven software engineering utilizes abstract representations
of the constituting systems and their interactions. Such a setting thus consists of an ensemble
of heterogeneously structured components, which must guarantee the desired global behaviour.

In the sequel, we will speak of local or individual components, which are assembled into a
global or compound system. As in [24], ”system” is also used as a superordinate term for all
kinds of artifacts, whether they are composite or not.

Using a general and formal coordination language for the interaction of behavioural
components in the form of transition rules requires agreement on key concepts of behavi-
oural systems. It turns out that the concepts ”State” and (observational) ”State Change”
are common to almost all behavioural specifications, cf. the introductory remarks of [12].
Coalgebras (X, α) for some endofunctor B : C → C on some category C comprise exactly
these concepts: The structure map α assigns to each x in the state space X the observable
causality exhibited in state x. The different natures of causalities (behaviour) are specified
by different endofunctors B.

Towards a formal underpinning for the described setting, we need to understand how
aligning individual components by specifying their interactions on the one hand, and automatic
generation (computation) of global execution behaviour of the compound system, on the other
hand, are carried out. For this, we assume n behavioural specifications Bi : SET → SET to
be given for some n ≥ 2 and fix individual behavioural systems (Si, αi) ∈ Bi-Coalg.

As an example, we refer to the use case depicted in Fig. 1, where an instance of a
T-Junction-Controller regulates the interaction of three TrafficLights A, B, and C. The
T-junction controller (component (S1, α1)) and the behaviour of one traffic light (e.g.,
component (S2, α2)) are shown in the top and the bottom left part of Fig. 1. The resulting
compound system is hinted at in the bottom right part. The operation, which takes as input
the local components and ”generates” the semantics of the compound system is visualized by
arrows between the systems (blue in a colour display).

Whereas each traffic light is specified as a labelled transition system, the TJunction may
be modelled as a BPMN4-model. The BPMN model specifies different phases to handle (P1
and P 2). They are shown in the BPMN model and also in the two different snapshots of the
compound system. The interaction with approaching vehicles may be modelled with a third
formalism, e.g., a probabilistic transition system, which simulates exponentially distributed
arrivals of buses or cars at one of the traffic lights. Aligning individual components by means
of coordination languages, cf. [5], requires specifying coordination points (communication
channels), e.g., if a request e of some approaching bus triggers the switch to phase 2 in
the TJunction controller (an observation o), this transition must synchronize with input
i = turnRed of traffic light A and C. Moreover, B must simultaneously turn green. These
synchronisations can be formalized with synchronization algebras, cf. [22], in this simple case,
a partial map φ : O × I → Act, where O is the set of outputs of the controller like throw
events or service calls in automatic tasks, I is the set of possible inputs to the respective
traffic light, and Act is the set of observable actions of the compound system.

4 Business Process Model and Notation
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Figure 1 TJunction traffic control system and its individual components.

The global execution behaviour can be described by premises (transitions of the local
components) and conclusions (the resulting actions taken by the compound system). If, for

instance, x
e/o
// x′ in the BPMN-model and y

i // y′ are possible, then z
φ(o,i)

// z′ is
a global interaction of the components. Note that we obtain a respective conditional rule,
but with different formats in its premises and conclusions: There is the Mealy-like notation
in the first premise specifying output o in the BPMN process, when event e occurs, whereas
the second premise specifies that the labelled transition system behaves like y′, if, in state
y, input i occurred. Furthermore, the compound system may be non-deterministic, such
that the conclusion reads, “The system may behave like z′, if in state z, action φ(o, i) was
performed”.

Formally the interaction operation, which takes as input n states of the local components
and outputs a state of the compound system, is based on an n-ary operation symbol
op = interact : s1s2 · · · sn → sn+1 of a suitable algebraic signature Σ, where sorts s1, s2, ...

reflect the structurally separated but interacting local components, and the compound system
is based on a new behavioural specification B and requires a new sort sn+1 ̸∈ {s1, ..., sn}.

We summarise the transfer from practical concepts to the bialgebraic formalism:
1. The individual components are based on behavioural endofunctors B1, ..., Bn and the

compound system’s behaviour is specified by another endofunctor B. The individual
components are coalgebras (Si, αi) ∈ Bi-Coalg, from which the states of the compound
system (S, α) ∈ B-Coalg arise as output of an application of an n-ary algebraic operation
op which has as input the states of the individual components.

2. The semantics of the compound system is formalized by SOS rules of the form

x1
E1 // x′

1 . . . xn
En // x′

n

op(x1, . . . , xn) F // op(x′
1, . . . , x′

n)

where Ei and F are differently structured terms over the coordination points, and xi, x′
i

are states of the individual component (Si, αi) for all i ∈ {1, ..., n}.

CALCO 2023
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4 Background: Distributive Laws and Bialgebras

In this section, we recapitulate parts of [14] which are necessary to make the content of
Sect. 5 complete and comprehensible. As in [18], we extend behavioural specifications B only
to copointed coalgebras (see Def. 2 below), i.e. we consider the assignment X 7→ X × B(X)
instead of B(X) in order to be able to use current states in the formulation of the conclusion
of SOS rules. However, we do not generalise it further, i.e. we neither make use of free
extensions for the algebraic specification functor as in the original work [27] nor cofree
extensions of the behaviour functor, cf. [14].

Let C be an arbitrary category with finite products. The classical theory works with one
fixed behavioural specification B : C → C and an algebraic specification Σ : C → C which
usually specifies the syntactical assembly of process terms (such as prefixing, alternative, and
parallel, as well as interaction). In contrast to that, in Sect. 5, we will use Σ for the assembly
of the compound system from the local components. Furthermore, let’s define the functor

H :
{

C → C

X
f
// Y 7→ X × B(X) f×Bf

// Y × B(Y ) .
(2)

Pairs (H : C → C, ε : H ⇒ IDC) are usually called copointed functors in the literature,
e.g. [14], i.e. H comes equipped with a comonadic ”counit” ε. In our particular definition
H is accompanied with counit π1 : H ⇒ IDC, where π1 = ((π1)X : X × B(X) → X) is the
componentwise first projection. We will use only these special copointed functors.

▶ Definition 1 (Distributive Law over H). A Distributive Law of Σ over H is a natural
transformation

λ : ΣH ⇒ HΣ

which is compatible with the counit, i.e. such that (π1)Σ ◦ λ = Σπ1 : ΣH ⇒ Σ. ⌟

The extension from the original behavioural specification functor B to H also requires to
consider special coalgebras for H [18]:

▶ Definition 2 (Copointed H-Coalgebra). Let H be given as above. The category of copointed
H-coalgebras, written H-Coalgco, is the full subcategory of H-Coalg with those objects (X, α)
satisfying (π1)X ◦ α = idX . ⌟

▶ Proposition 3 (Copointed H-Coalgebras are B-Coalgebras). The assignment (X, α) 7→
(X, (π2)X ◦ α) extends to an isomorphism between categories H-Coalgco and B-Coalg. ⌟

There is a canonical assignment from distributive laws over H to natural transformations

ρ : ΣH ⇒ BΣ (3)

given by λ 7→ (π2)Σ ◦ λ. Using counit compatibility from Def. 1, the assignment

ρ 7→ ⟨Σπ1, ρ⟩ (4)

turns out to be inverse to the former, see Theorem 10 in [18]. Thus

▶ Proposition 4 (Equivalent Representation of Distributive Laws). The assignments (3)
and (4) yield a bijection between distributive laws over H and natural transformations
ρ : ΣH ⇒ BΣ. ⌟
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Note that natural transformations as in (3) are special cases of GSOS laws, where the syntax
functor Σ is replaced by its free extension Σ∗ in the codomain of ρ, thus enabling arbitrary
terms in the target of the SOS rule conclusion.

Because λ is a natural transformation,

Σλ :
{

H-Coalgco → H-Coalgco

(X, h) 7→ (Σ(X), λX ◦ Σh)

and its dual construction

Hλ :
{

Σ-Alg → Σ-Alg

(g, X) 7→ (Hg ◦ λX , H(X))

extend to endofunctors, where the first indeed maps to H-Coalgco by the compatibility of
counits in Def. 1. Σλ applied to a coalgebra yields behaviour of algebraically composed states
and will play a major role in Sect. 5. Hλ will be used only in the present section.

For a distributive law λ, there is a new category, which yields a combination of operational
and denotational models w.r.t. functors B (and thus H) and Σ:

▶ Definition 5 (Category of λ-Bialgebras). Let λ : ΣH ⇒ HΣ be a distributive law according
to Def.1. The category λ-Bialg has objects arrow-pairs Σ(X) g

// X
h // H(X) with

copointed (X, h) and for which

Hg ◦ λX ◦ Σh = h ◦ g (5)

Morphisms are those f : X → Y , which are simultaneously Σ-Alg- and H-Coalgco-morphisms.

Using (5), one obtains

▶ Proposition 6 ([14], Prop. 12). There are the isomorphisms

Σλ-Alg ∼= λ-Bialg ∼= Hλ-Coalg

where e.g. the second one is based on the assignment

( Σ(X) g
// X

h // H(X) ) 7→ ((g, X) (Σh,h)→ Hλ(g, X))

on objects of the respective categories. ⌟

A consequence of this fact is the following proposition, for which we include a proof, because
we need parts of it in Sect. 5:

▶ Proposition 7 (Initial and Final Bialgebras, [14], Sect. 4.3). If Σ admits an initial algebra
(a, A) and if H-Coalgco has the final (copointed) coalgebra (Z, ζ), then the former uniquely

extends to an initial object Σ(A) a // A
hλ // H(A) of λ-Bialg and the latter uniquely

extends to a final object Σ(Z) gλ

// Z
ζ
// H(Z) of λ-Bialg.

Proof. By Prop. 6 we can look for an initial object in Hλ-Coalg. But for any endofunctor
H : D → D the carrier of the initial object in H-Coalg is just the initial object in D, if it exists.
Hence for H = Hλ and D = Σ-Alg, we obtain the initial Hλ-Coalg-object a

(Σhλ,hλ)−→ Hλa,
where hλ : A → H(A) is the unique Σ-Alg-morphism out of the initial object. By the
definition of Hλ this yields the commutative diagram

Σ(A)

Σhλ

��

a // A

hλ

��

ΣH(A)
Ha◦λA

// H(A)

(6)

CALCO 2023
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turning Σ(A) a // A
hλ // H(A) into a λ-Bialg-object (because hλ is copointed by the

following Prop. 8) but also the initial λ-Bialg-object due to the assignment given in Prop. 6.
The unique extension of the final object is dually obtained yielding the final λ-bialgebra

Σ(Z) gλ

// Z
ζ
// H(Z) for the unique H-Coalgco-morphism gλ to the final object. ◀

Using counit compatibility of π1 in Def. 1 and initiality of (a, A), one also obtains

▶ Proposition 8 (Copointedness of hλ). hλ is a copointed H-coalgebra. ⌟

The initial and final bialgebras from the proof of Prop. 7 yield a unique arrow f : A → Z in
the commutative diagram

Σ(A)

Σf

��

a // A

f

��

hλ // H(A)

Hf

��

Σ(Z) gλ // Z
ζ
// H(Z)

(7)

f is simultaneously the coinductive extension of hλ, i.e. its behavioural semantics, and the
inductive extension of gλ, i.e. the evaluation of Σ-terms in (gλ, Z). The former statement is
the important one. It gives the key statement of this section:

▶ Observation 9. The coinductive extension of copointed hλ is an algebra homomorphism
from the initial Σ-algebra. ⌟

5 From Local Components to Compound Systems Coalgebraically

5.1 The Theoretical Setting
Let (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈ Bn-Coalg be n individual, local components and
B a behavioural specification for the compound system, see item 1 in the summary on
page 5. Related local components’ interactions are based on an n-ary operation symbol
op := interact and coordination points of B1, . . . , Bn together with a synchronisation
algebra5 φ establish transition rules, cf. item 2 of the summary.

▶ Example 10 (See Sect. 3). A BPMN model can be encoded with the functor

B1 = (1 + O × _)E ,

where E are state-changing events like a timer event in the TJunction Controller, cf. Fig. 1.
The set O defines outputs, e.g., SwitchToP2 ∈ O, which must be synchronized with a call to
a traffic light to turn red. Let (S1, α1) ∈ B1-Coalg be such a component. Traffic lights are
deterministic labelled transition systems based on

B2 = (1 + _)I ,

where, for instance, I = {A.turnRed, A.turnGreen, . . .} is the input set I of traffic light A.
Let (S2, α2) ∈ B2-Coalg be such a component.

5 For arbitrary n, these synchronisation descriptions will no longer be binary.
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We define Act := O +I +{τ} and expect the compound system to change state depending
on the used coordination points6. For this, we extend the involved sets by an idle action ∗,
i.e. X∗ := X + {∗} for X ∈ {O, I, Act}, cf. [22]. As usual, a transition with ∗ from state x to
x′ is possible, if and only if x = x′. We assume a synchronisation algebra φ : O∗ × I∗ → Act∗
for the synchronisation of a BPMN model with one traffic light. In the above example, we
might have φ(SwitchToP2, A.turnRed) = τ (modelling a silent synchronisation), whereas
some other value combinations like φ(SwitchToP2, A.turnGreen) are undefined. Whenever
an output o is uncoupled, i.e., whenever the first component can evolve independently from
the second for a transition with o, we let φ be undefined for pairs (o, i) for all i ∈ I, and
define φ(o, ∗) := o. This is true, for example, if o is an outgoing signal like ”B is green”,
which does not change the state of any traffic light, cf. Fig. 1. Similarly φ is undefined for
(o, i) for all o ∈ O and φ(∗, i) = i for uncoupled i. Finally, φ(o, i) = ∗ ⇐⇒ o = i = ∗, cf.[22].

The underlying algebraic signature will have three sorts: s1 and s2 for the states of the
two local components and s3 for the compound system. Because resulting transitions can
be silent for different coordinations and hence result in non-determinism of the compound
system, we define

B := ℘fin(Act × _) ⌟

The original work of [27] shows a one-to-one correspondence between sets of GSOS laws
and natural transformations. We will show how we can follow this approach along the
above-stated example. When we mention SOS rules, we exemplarily use notations in the
context of our examples. Furthermore, whenever we write down φ(o, i), we automatically
assume this value to be defined.

The family of SOS-rules x
e/o
// x′ y

i // y′

op(x, y)
φ(o,i)

// op(x′, y′)


o∈O∗,i∈I∗

(8)

describes the operational semantics of the compound system as a heterogenous interaction
law. E.g., the controller’s command to make traffic light A change to red is the law for
b := SwitchToP2 and i = A.turnRed.

In the example, the state space S of the compound system must take into consideration
the original state spaces by pairing S1 and S2, i.e., in this example

S = S1 × S2. (9)

Of course, in the general case, S can depend arbitrarily on the state spaces S1, ..., Sn of the
local components.

5.2 Interaction Laws and Induced Coalgebra
In this section, we formalize the construction of the compound system from the local
components, if its operational semantics is given as an SOS rule like in (8). This rule does
not depend on concrete state spaces, hence it can be seen as an interaction law between

6 As usual, τ models silent (unobservable) transitions.

CALCO 2023



7:10 SOS for Heterogeneously Typed Coalgebras

systems of arbitrary state spaces X and Y . We claim that it can be encoded as a map, which
decomposes into two factors, the first reflecting the premises given by the transitions of α1
and α2, and a second factor ρX,Y , which reflects the conclusions:

X × Y
⟨id,α1⟩×⟨id,α2⟩

// X × B1(X) × Y × B2(Y )
ρX,Y

// B(X × Y ) (10)

We first define ρX,Y in the context of our example:

▶ Example 11 (Example 10 ctd). Recall that we call o ∈ O coupled, if there is i ∈ I such
that φ(o, i) is defined and vice versa for i ∈ I. Otherwise, it is called uncoupled. Then, for
B1 = (1 + O × _)E , B2 = (1 + _)I , and B = ℘fin(Act × _), we can define

ρX,Y (x, f1, y, f2) = {(φ(o, i), (x′, y′)) | o ̸= ∗ ≠ i, (o, x′) ∈ f1(E), y′ = f2(i)}
∪ {(o, (x′, y)) | (o, x′) ∈ f1(E), o uncoupled}
∪ {(i, (x, y′)) | y′ = f2(i), i uncoupled}

where f1 : E → 1 + O × X an f2 : I → 1 + Y . It is easy to see that (ρX,Y )(X,Y )∈|SET |2 is
natural in its parameters X and Y . ⌟

As in the classical theory, natural transformations as in Example 10 can now be used
to define SOS-rules. For this let’s define the copointed versions Hi := SET → SET of
the functors Bi as in (2) for i ∈ {1, ..., n}. The special assignment (S1, S2) 7→ S1 × S2
from (9) extends to a functor Σ : SET 2 → SET which yields natural transformation
ρ : Σ(H1 × H2) ⇒ BΣ : SET 2 → SET in Example 11. However, we don’t want to exclude
additional dependencies, when constructing states of the compound system. E.g. additional
supervising components or intermediate components like message queues may let the overall
state space differ from the pure cartesian product of the local state spaces. Hence, we are
interested in an arbitrary functor Σ : SET n → SET for some n ≥ 2 and correspondingly
adapted natural transformations. Thus the appropriate definition in our context is

▶ Definition 12 (Interaction Law). Let Σ : SET n → SET be an arbitrary functor, B1, . . . , Bn,
and B be SET -endofunctors, and functors Hi : SET → SET be defined as in (2), i.e.
Hi(X) = X × Bi(X) for all X ∈ SET and all i ∈ {1, . . . , n}. An interaction law is a natural
transformation

ρ : Σ(H1 × · · · × Hn) ⇒ BΣ : SET n → SET . ⌟

Similarly to the definition of Σλ in Sect. 4, this yields an assignment

Σρ :
{

B1-Coalg × · · · × Bn-Coalg −→ B-Coalg

((S1, α1), . . . , (Sn, αn)) 7→ (Σ(S1, ..., Sn), ρS1,...,Sn ◦ Σ(⟨idS1 , α1⟩, . . . , ⟨idSn , αn⟩)) (11)

which becomes a functor, because ρ is a natural transformation. Any n-tuple (f1, ..., fn) with
fi a Bi-Coalg-morphism is mapped by Σρ to the B-Coalg-morphism Σ(f1, ..., fn).

▶ Definition 13 (ρ-Induced Coalgebra). Given (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈ Bn-Coalg

and an interaction law ρ, the B-coalgbra Σρ((S1, α1), . . . , (Sn, αn)) is called the ρ-induced
coalgebra of (S1, α1), . . . , (Sn, αn). If the carrier sets are clear from the context, we just
write Σρ(α1, ..., αn) for the ρ-induced coalgebra. ⌟

Hence, the ρ-induced coalgebra is the compound system arising from the local components,
when an SOS rule like (8), which is reflected in interaction law ρ, is applied.

▶ Example 14 (Example 10 ctd). In the example, we obtain the desired compound system, a
B-coalgebra with state space S1 × S2 behaving as specified by the local components and the
SOS-laws from (8). ⌟
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5.3 Compositionality

Verification of correctness of composed systems should be guaranteed, if its components are
already correct. Moreover, semantics preserving refactorings of local components should also
preserve the semantics of the compound system. These behavioural correctness issues are
often based on observational equivalence, hence we want observational equivalence to be
preserved after the construction of the compound system from the local components. In this
section, we formally define these aspects in the context of our setting.

▶ Definition 15 (Observational Equivalence). Let F : SET → SET , such that F-Coalg admits
a final object (Z, ζ). Let (X, α) ∈ F-Coalg and uα : X → Z be its coinductive extension.
Two states x, x′ ∈ X are said to be observationally equivalent, written x ∼α x′, if (x, x′) is
contained in the kernel relation ker(uα), i.e. if uα(x) = uα(x′). ⌟

For future use, we state the following proposition, which easily follows, because for any
F-Coalg-morphism f : (X, α) → (Y, β), the coinductive extension satisfies uα = uβ ◦ f :

▶ Proposition 16 (Observational Equivalence). With the same ingredients as in Def. 15,
two states x1, x2 ∈ X are observationally equivalent, if there is an F-Coalg-morphism
f : (X, α) → (Y, β) such that f(x1) = f(x2).7 ⌟

Let (uαi
)i∈{1,...,n} be the coinductive extensions of our local components,

∼i = ker(uαi
), (12)

and some operation op : S1 ×· · ·×Sn → A be given for some state set A of some B-coalgebra.
Furthermore, let ∼ be the kernel relation of its coinductive extension, then preservation of
observational equivalence under op means

∀i ∈ {1, ..., n} : xi ∼i x′
i ⇒ op(x1, ..., xn) ∼ op(x′

1, ..., x′
n), (13)

i.e. observational equivalence is a compatible w.r.t. operation op. It is well-known that a
general definition of congruence on an algebra a : F(A) → A for an endofunctor F : C → C

is as follows: A monomorphism R //
⟨π1,π2⟩

// A × A is a congruence on a, if there is an algebra
r : F(R) → R, for which the diagram

F(A)

a

��

F(R)

r

��

F(π1)
oo

F(π2)
// F(A)

a

��

A R
π1

oo
π2

// A

(14)

commutes, cf. Theorem 3.3.5. in [12].
However, in the case of separated heterogeneously typed state sets of the local systems, a

general definition of congruence must be based on the above-defined functor Σ : SET n → SET .

7 Note that this proposition can even better be taken as the definition for observational equivalence,
because it does not depend on the existence of a final object. We found it, however, more demonstrative
to use Def. 15 for it.
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▶ Definition 17 (a-compatibility). Let A1, ..., An, A be sets and

a : Σ(A1, ..., An) → A

be a map. Furthermore let (Ri ⊆ Ai × Ai)i∈{1,...,n} and R ⊆ A × A be a collection of n + 1
binary relations with projections πi

1, πi
2 : Ri → Ai for all i and π1, π2 : R → A. The relation

tuple (R1, ..., Rn, R) is said to be a-compatible, if there is a map r, such that the following
diagram commutes:

Σ(A1, ..., An)

a

��

Σ(R1, ..., Rn)

r

��

Σ(π1
1 ,...,πn

1 )
oo

Σ(π1
2 ,...,πn

2 )
// Σ(A1, ..., An)

a

��

A R
π1

oo
π2

// A

⌟

▶ Example 18 (op-compatibility). Let Ri = ∼i and R = ∼, cf. (12), then it is easy to see
that in the case Σ(X1, ..., Xn) = X1 × · · · × Xn op-compatibility yields (13). ⌟

▶ Observation 19. a-compatibility of (R1, ..., Rn, R) can thus be read as an implication:
If pairs (ai, a′

i) are related via Ri, then a-images of corresponding elements of the set
Σ(A1, ..., An) are related as well. ⌟

Of course, the meaning of the term ”corresponding” depends on the action of Σ.
It is not self-evident that observational equivalence is compatible with the syntactic

structure of process terms in transition rules, see the counterexamples in [8] or violations of
compositionality in the context of the π-calculus [21], Chapt. 12.4. However, in our setting,
we can prove that interaction laws preserve observational equivalence. Note that this is
almost evident in the above example, where n = 2 and Σ(X, Y ) = X × Y , because the
image of the pair of coinductive extensions uα1 : S1 → ... and uα2 : S2 → ... of functor Σρ is
the B-coalgebra-morphism u = uα1 × uα2 , for which ((x1, x2), (x′

1, x′
2)) ∈ ker(uα1 × uα2), if

(x1, x′
1) ∈ ker(uα1) and (x2, x′

2) ∈ ker(uα2), which yields the desired result by Prop. 16.
The proof idea for the general case is to keep the local state spaces and the state space for

the compound system separated as systems in their own right by assigning different sorts of
the underlying algebraic specification to them and then apply (7) (i.e observation 9). For this,
we must formalise the whole setting of system components and their interaction in one holistic
many-sorted approach as follows. Recall that we assume (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈
Bn-Coalg to be n individual, local components, then we define the endofunctor

Σ⃗ :
{

SET n+1 → SET n+1

(X1, ..., Xn, Xn+1) 7→ (S1, ..., Sn, Σ(X1, ..., Xn))

with Σ⃗(h1, ..., hn, hn+1) := (id, ..., id︸ ︷︷ ︸
n times

, Σ(h1, . . . , hn)) on function tuples. Intuitively, we define

an algebraic signature with sorts s1, ..., sn, sn+1 and ”constants” of sort si the elements of Si

(for 1 ≤ i ≤ n), as well as operation symbols with codomain sn+1. Thus the term algebra
has carrier sets S1, ..., Sn, whereas the carrier of sort sn+1 comprises all terms arising from a
single application of an operation symbol. We obtain

▶ Proposition 20 (Initial Object of Σ⃗). Σ⃗-Alg possesses an initial object with carrier 0 :=
(S1, ..., Sn, Σ(S1, ..., Sn)) = Σ⃗(0) and structure map id0 : Σ⃗(0) → 0.
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Proof. Given a Σ⃗-algebra (f1, . . . , fn, fn+1) : Σ⃗(X1, . . . , Xn, Xn+1) → (X1, . . . , Xn, Xn+1),
it is easy to see that

0
(f1,...,fn,fn+1◦Σ(f1,...,fn))

// (X1, . . . , Xn, Xn+1)

establishes the unique algebra homomorphism from id0 to the given algebra. ◀

▶ Theorem 21 (Interaction Laws preserve Observational Equivalence). Let B1, . . . , Bn, and
B be n + 1 SET -endofunctors, such that all corresponding categories of coalgebras admit a
final coalgebra. Let (S1, α1) ∈ B1-Coalg, . . . , (Sn, αn) ∈ Bn-Coalg and uα1 , ..., uαn be their
coinductive extensions. For functor Σ : SET n → SET let an interaction law ρ be given as
in Def. 12, and Σρ(α1, ..., αn) be the ρ-induced B-coalgebra, cf. (11) and Def. 13, together
with its coinductive extension u. Then the family (ker(uα1), ..., ker(uαn

), ker(u)) of kernel
relations is idΣ(S1,...,Sn)-compatible.

Thus by observation 19: If pairs (xi, x′
i) are observationally equivalent w.r.t. αi, then

corresponding elements in the set Σ(S1, ..., Sn) are observationally equivalent w.r.t. the
ρ-induced coalgebra Σρ(α1, ..., αn). Thus observational equivalence carries over from the
local components to the compound system.

Proof. To make reading easier, we give the proof of Theorem 21 for the special case n = 2.
It easily carries over to the general case. Let H1, H2, and H be the copointed versions of
B1, B2, and B as in (2) and with this

H⃗ := H1 × H2 × H : SET 3 → SET 3

Let B⃗ := B1 × B2 × B : SET 3 → SET 3, then we have obtained the setting of Sect. 4 with
C = SET 3, H := H⃗, and B := B⃗. Furthermore, we define

ρ⃗ := (α1, α2, ρ) : Σ⃗H⃗ ⇒ B⃗Σ⃗ : SET 3 → SET 3. (15)

which is a natural transformation, because (α1,X1 = α1)X1∈|SET | and (α2,X2 = α2)X2∈|SET |
are independent of their parameters X1, X2, resp. By Prop. 4 it corresponds to a distributive
law λ⃗ : Σ⃗H⃗ ⇒ H⃗Σ⃗ of Σ⃗ over H⃗, where by (4)

λ⃗ = ⟨Σ⃗π1, ρ⃗⟩. (16)

Following the notation of Prop. 20, (6) becomes

Σ⃗(0)

Σ⃗h
λ⃗
��

0

h
λ⃗

��

Σ⃗H⃗(0)
λ⃗0

// H⃗(0)

(17)

The first component h1
λ⃗

of hλ⃗ is the composition of the first components of the left and bottom
arrow: h1

λ⃗
= λ⃗1

0 ◦ (Σ⃗hλ⃗)1 = ⟨idS1 , α1⟩ ◦ idS1 , because Σ⃗ is constant in the first component
and similarly for the second component, hence

(h1
λ⃗
, h2

λ⃗
) = (⟨idS1 , α1⟩, ⟨idS1 , α2⟩). (18)

Thus, the third component of Σ⃗hλ⃗ equals Σ(⟨idS1 , α1⟩, ⟨idS2 , α2⟩). By (16) the third com-
ponent of λ⃗0 is the pair of the third component of (Σ⃗π1)0 and ρ(S1,S2), hence

h3
λ⃗

= ⟨idΣ(S1,S2), ρS1,S2 ◦ Σ(⟨idS1 , α1⟩, ⟨idS2 , α2⟩)⟩ = ⟨idΣ(S1,S2), Σρ(α1, α2)⟩ (19)
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by Def. 13. Let (1, ζ) be the final B⃗-coalgebra (which exists, because it is taken compon-
entwise), then by Prop. 3 (1, ⟨id, ζ⟩) is final in H⃗-Coalgco and (7) is reflected in the left two
squares in

Σ⃗(0)

Σ⃗u⃗
��

0

u⃗

��

h
λ⃗

//

(α1,α2,Σρ(α1,α2))
))

H⃗(0)

H⃗u⃗
��

(π2)0

// B⃗(0)

B⃗u⃗
��

Σ⃗(1)
g

λ⃗

// 1
⟨id,ζ⟩
//

ζ

55H⃗(1)
(π2)1

// B⃗(1)

(20)

with u⃗ = (uα1 , uα2 , u), see observation 9. By (15), (18), and (19) the triangle in the top right
commutes.

Thus the coinductive extension u⃗ of the B⃗-coalgebra (α1, α2, Σρ(α1, α2)) is a Σ⃗-algebra
homomorphism and it is well-known that this makes u⃗’s kernel relation a congruence in
the sense of (14) for F := Σ⃗, see [12], Sect. 3.2., where A = (S1, S2, Σ(S1, S2)) = F(A),
R = (ker(uα1), ker(uα2), ker(u)), hence F(R) = (S1, S2, Σ(ker(uα1), ker(uα2)). Considering
the third components only, shows that the family of kernel relations (R1 := ker(uα1), R2 :=
ker(uα2), R := ker(u)) is idΣ(S1,S2)-compatible as desired. ◀

From Theorem 21 we also obtain

▶ Corollary 22 (Sufficient Criterion for Compositionality). Let B1, . . . , Bn, B and Σ : SET n →
SET be given as above. Let for all i ∈ {1, ..., n} the SET -endofunctors Hi and H be given
as in (2), then compositionality holds for the heterogeneous scenario, if the computation of
the compound system can be described by a natural transformation

ρ : Σ(H1 × · · · × Hn) ⇒ BΣ : SET n → SET . ⌟

6 Related Work

Practical approaches. The general idea of transforming different behavioural formalisms
to a single semantic domain in order to reason about crosscutting concerns is nothing
new [6]. We mention only a few approaches: [17] developed consistency checking for sequence
diagrams and statecharts based on CSP, while Petri nets were used for the same scenario
in [29]. Nevertheless, all approaches utilize fixed types of transition systems and no common
framework, which can capture all possible types of transition structures. In recent years,
co-simulation of coupled heterogeneous systems has become popular and there is already
a plethora of work on that topic [7]. In particular [5] tackles the problem of coordinating
different models using a dedicated coordination language. However, the majority of these
approaches lack theoretical underpinnings, and, to the best of our knowledge, co-simulated
comprehensive behaviour has not been formulated coalgebraically.

SOS Framework, Distributive Laws and Compositionality. All important variants of SOS
rules are described in [1] and we took most of its coalgebraic abstraction from the original
work [27], further elaborated in [14], especially for copointed functors in [18], and probably
formulated in the most general way in [12]. All important variations of distributive laws
and connected aspects of compositionality are surveyed in Chapter 8 of [14]. Moreover,
compositionality in the bialgebraic approach is a facet of the microcosm principle: The
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behavior of a composed system involves an outer operator on B-Coalg, the composition of
behaviors is an inner operator on the final object of B-Coalg, see [9], where the compositionality
property is derived from a formalization of the microcosm principle for Lawvere theories.

Heterogeneity appears whenever different behavioral paradigms shall be combined. One of
the first examples are hybrid systems, which combine discrete and continuous dynamics [11].
However, reasoning about operational semantics of arbitrary heterogeneously typed transition
structures is usually treated by common abstractions of the different systems: E.g. the
coordination of a Mealy machine and a probabilistic system can be investigated by reducing
both systems to labelled transition systems and formulating interactions with LTS-based SOS
rules. A different approach, which is closer to ours, is described in [13], where the combination
of two distributive laws based on different behavioral specifications is investigated: So-called
heterogeneous transition systems simultaneously carry two different coalgebraic stuctures
B and B′ and behavioural descriptions are based on natural transformations of the form
Σ(B × B′) ⇒ (B × B′)Σ. However, the authors do not pick up the holistic view of our
approach and do not investigate compositionality.

Categorically, heterogeneity leads to the general theory of (co-)institutions. [23] proves
three different types of logics for coalgebras to be institutions. Another approach are
parametrized endofunctors as comprehensive behavioural specifications, where the overall
structure can be studied in terms of cofibrations [16]. [28] investigates co-institutions purely
dual to classical institutions [25].

7 Future Work

We investigated the synchronisation of n local components to obtain a compound system.
The idea was to introduce n + 1 sorts, which reflects the fact that the resulting compound
system is obtained in one step from the locals. That excludes step-by-step synchronisation,
i.e. the assembly of some components to an intermediate composed system, which in a later
step is combined with other components, before the resulting global operational semantics
is reached. The challenge in future work is to cope with an unsteady number of sorts for
the arising intermediate systems. Similarly, our approach cannot directly be applied to
asynchronous communications via intermediate components like message queues, object
spaces, etc. It is a goal to derive formal underpinnings also in these cases.

Moreover, it is worth thinking about other types of extensions or refinements of local
components and how they cause an impact on the composed system. If, for instance, a local
system is conservatively extended [1], then we can ask the question whether the compound
system is also conservatively extended. Furthermore, it is an open question, whether extensive
refinements of the local systems and their interaction specifications can still be handled with
interaction laws.

Finally, if additional system properties are imposed on the local behavioural models by
modal logic formulae, the question arises, whether the use of co-forgetful functors in the
translation of these formulae to the compound system [15] matches the framework proposed
in the present paper. Altogether, the goal is to extend the first iteration of our work and, in
future steps, develop more insight into the topic.

CALCO 2023
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