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Abstract
String diagrams constitute an intuitive and expressive graphical syntax that has found application
in a very diverse range of fields including concurrency theory, quantum computing, control theory,
machine learning, linguistics, and digital circuits. Rewriting theory for string diagrams relies on
a combinatorial interpretation as double-pushout rewriting of certain hypergraphs. As previously
studied, there is a “tension” in this interpretation: in order to make it sound and complete, we
either need to add structure on string diagrams (in particular, Frobenius algebra structure) or pose
restrictions on double-pushout rewriting (resulting in “convex” rewriting). From the string diagram
viewpoint, imposing a full Frobenius structure may not always be natural or desirable in applications,
which motivates our study of a weaker requirement: commutative monoid structure. In this work
we characterise string diagram rewriting modulo commutative monoid equations, via a sound and
complete interpretation in a suitable notion of double-pushout rewriting of hypergraphs.
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1 Introduction

String diagrams [28] are a diagrammatic syntax for reasoning algebraically about component-
based systems, which in the last few years have found application across diverse fields,
including quantum computation [23], digital [20] and electrical circuits [3, 10] , machine
learning [15], concurrency theory [9], control theory [1, 12], and linguistics [29] amongst
others. Compared to traditional syntax, the use of string diagrams allows to neatly visualise
resource exchange and message passing between different parts of a system, which is pivotal
in studying subtle interactions such as those arising in concurrent processes and quantum
computation. Moreover, we can reason with string diagrams both combinatorially and as
syntactic, inductively defined objects, which enables forms of compositional analysis typical
of programming language semantics.

A cornerstone of string diagrammatic approaches is the possibility of performing diagram-
matic reasoning: transforming a string diagram according to a certain rewrite rule, which
replaces a sub-diagram with a different one. A set of such rules, which typically preserve
the semantics of the model, may represent for instance a compilation procedure [27], the
realisation of a specification [12], or a refinement of system behaviour [8].
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9:2 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

Compared to traditional term rewriting, a mathematical theory of string diagram rewriting
poses new challenges. Formally, string diagrams are graphical representations of morphisms
in a category, typically assumed in applications to be a symmetric monoidal category (SMC).
In order to perform a rewrite step, we need to match the left-hand side of a rewrite rule to a
sub-diagram of a given string diagram. For instance, consider the rewrite rule as on the left
below, and the string diagram on the right.

m
e

⇒
m

e

Morally, there is a match for the rule in the string diagram. The issue is that, strictly
speaking, such a match does not happen on the nose: we need first to apply the laws of
SMCs in order to transform the string diagram into an equivalent one, with the wires into m

uncrossed. At this point we have clearly isolated the sub-diagram and are able to perform
the rewrite step.

m
e

=
m

e

As seen in this example, string diagram rewriting is performed modulo certain structural
laws, which reflect the categorical structure in which the string diagrams live. However, from
a practical viewpoint, this form of rewriting is not really feasible, as each rewrite step would
require us to inspect all string diagrams equivalent to a given one looking for redexes.

This issue can be solved via an interpretation of string diagrams as certain hypergraphs,
and of string diagram rewriting as double-pushout rewriting (DPO) [14] of such hypergraphs.
We refer to [5, 6, 7] for a systematic introduction to this approach. In a nutshell, the benefit of
working with such an interpretation is that an equivalence class of string diagrams corresponds
to just one hypergraph, meaning that our search for redexes is drastically simplified. However,
there is a mismatch: if we want to rewrite string diagrams in a SMC, then soundness is only
ensured by adopting a restricted notion of DPO rewriting, called convex DPO rewriting [4].
Conversely, if we want to work with arbitrary DPO rewriting steps, then the corresponding
notion of string diagram rewriting does not rewrite only modulo the laws of SMCs, but
requires a special commutative Frobenius algebra on each object of the category. Recall
that a Frobenius algebra consists of a commutative monoid and a commutative comonoid,
interacting with each other via the so-called Frobenius law [13].

When modelling a certain class of systems with string diagrams, assuming that such
Frobenius structure exists is not always reasonable, or desirable. A first class of such examples
are matrix-like semantic structures, which are axiomatised by bialgebra equations – see
e.g. [30] for a survey. It is known that if the monoid and the comonoid both obey the
Frobenius and the bialgebra laws, then the equational theory trivialises, cf. [17, Ex. 4.3]. A
second important class are semantic structures for probability theory, which usually feature
a commutative comonoid structure, but no Frobenius equations – introducing Frobenius
structure amounts to allowing unnormalised probabilities, cf. [22, 18]. These categories,
sometimes called CD-categories, also play a special role in the study of algebraic theories,
because they model the cartesian handling of variables [11].

All these models motivate the study of rewriting for structures intermediate between plain
symmetric monoidal and equipped with Frobenius algebras. More specifically, we focus on
string diagrams in categories where each object comes with a commutative monoid structure.
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(s; t); u ≡ s; (t; u), idn; s ≡ s ≡ s; idm, (s⊕ t)⊕ u ≡ s⊕ (t⊕ u), id0 ⊕ s ≡ s ≡ s⊕ id0,

idm ⊕ idn ≡ idm+n, σm,n; σn,m ≡ idm+n, (s⊕ idm); σm,n ≡ σm,o; (idm ⊕ s)
(s; u)⊕ (t; v) ≡ (s⊕ t); (u⊕ v), (σm,n ⊕ ido); (idn ⊕ σm,o) ≡ σm,n+o,

Figure 1 Laws of symmetric monoidal categories in a prop, where n, m, o range over N.

From a rewriting viewpoint, this case is particularly significant because symmetries in a
SMC may always create redexes for the commutativity axiom of the monoid multiplication,
yielding a non-terminating rewrite system:

⇒ = ⇒ ⇒ . . .

Therefore, rather than taking commutativity as a rewrite rule, we need to find an alternative
representation of string diagrams (and of string diagram rewriting) that is invariant modulo
the axioms of commutative monoids (and the laws of SMCs), which is the focus of this paper.
Our contribution is two-fold:

we identify which class of hypergraphs provides an adequate interpretation of string
diagrams in a SMC with commutative monoid structure, and organise them into a SMC.
This characterisation will take the form of an isomorphism between the SMC of string
diagrams and the SMC of hypergraphs.1
We identify which notion of double-pushout hypergraph rewriting interprets string diagram
rewriting modulo the axioms of commutative monoids in a sound and complete way.

Note that all of the theory developed in this work can be easily dualised to obtain a framework
for rewriting modulo commutative comonoid structure, which justifies the title and makes it
relevant also for the aforementioned CD categories.
Synopsis. Section 2 recalls background on string diagrams and hypergraphs. Section 3
shows the hypergraph characterisation of string diagrams with a chosen commutative monoid
structure. Section 4 shows how string diagram rewriting may be characterised in terms
of DPO hypergraph rewriting. We summarise our work and suggest future directions in
Section 5. Additional details and missing proofs can be found in [26].

2 Preliminaries

We recall some basic definitions, using the same terminology as [5].

▶ Definition 1 (Theories and Props). A symmetric monoidal theory is a pair (Σ, ε), where
Σ is a monoidal signature i.e. a set of operations o : m → n with a fixed arity m and
coarity n, and ε is a set of equations, i.e. pairs ⟨l, r⟩ of Σ-terms l, r : v → w with the
same arity and coarity. Σ-terms are constructed by combining the operations in Σ, identities
idn : n → n and symmetries σm,n : m + n → n + m for each m, n ∈ N , by sequential (; )
and parallel (⊕) composition. A prop is a symmetric strict monoidal category (C , +, 0) for
which Ob(C ) = N, the monoidal unit is 0 ∈ N, and the monoidal product on objects is given
by addition. The prop freely generated from a symmetric monoidal theory (Σ, ε) has, as

1 Simultaneously to a preprint of our work (arXiv:2204.04274), a preprint showing a result closely related
to this first contribution also appeared on ArXiv. We comment on their relation in Section 5.
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9:4 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

morphisms, the Σ-terms modulo ε and the laws of symmetric monoidal categories recalled
in Fig. 1. Given two props C and D, a functor F : C → D is called a prop-morphism
from C to D if it is an identity-on-objects strict symmetric monoidal functor. Props and
prop-morphisms form a category we call PROP.

▶ Example 2 (Monoids and Functions). Particularly relevant to our development are the prop
F of functions and the prop CMon of commutative monoids. F has morphisms f : m→ n the
functions from the set {0, . . . , m− 1} to {0, . . . , n− 1}, with monoidal product on functions
being their disjoint union. The prop CMon is freely generated by the signature consisting
of µ : 2→ 1 (multiplication) and η : 0→ 1 (unit), and equations expressing commutativity,
unitality and associativity of µ.

The theory of commutative monoids presents the prop of functions, in the sense that
CMon ∼= F – see e.g. [24].

▶ Example 3 (Cospans). A second prop important for our purposes is the one of cospans.
When interpreting string diagrams as hypergraphs, it is fundamental to record the information
of what wires are available for composition on the left and right hand side of the diagram:
this is achieved by considering cospans of hypergraphs, with the cospan structure indicating
which nodes constitute the left and the right interface of the hypergraph.

Given a category C with finite colimits, let Csp(C) be the category with the same objects
as C and morphisms X → Y the cospans from X to Y , that is, pairs of arrows X −→ A←− Y ,
for any object A (called the carrier of the cospan). Composition of cospans X

f−→ A
h←− Z

and Z
h−→ B

i←− Y is defined by pushout of the span formed by the middle legs, i.e., it is
the2 cospan X

f ;p−−→ Q
i;q←− Y where A

p−→ Q
q←− B is the pushout of A

h←− Z
i−→B. Csp(C) is

symmetric monoidal with the monoidal unit being the initial object 0 ∈ C and the monoidal
product given by the coproduct in C of the two maps of each cospan.

Hypergraphs [2] generalise graphs by replacing edges with ordered and directed hyperedges,
which may have lists of source and target nodes instead of just individual ones. Hypergraphs
and hypergraph homomorphisms form a category Hyp. As observed in [5], this category may
also be defined as a presheaf topos – this is particularly convenient for calculating (co)limits
and to ensure that it is adhesive [25], a fundamental property for DPO rewriting. More
precisely, Hyp is isomorphic to the functor category FI, where I has objects the pairs of
natural numbers (k, l) ∈ N × N and an extra object ⋆, with k + l arrows from (k, l) to ⋆,
for all k, l ∈ N. A hypergraph G is therefore given by a set G⋆ of nodes, and sets Gk,l of
hyperedges for each (k, l) ∈ N×N, with source maps si : Gk,l → G⋆ for 1 ≤ i ≤ k and target
maps tj : Gk,l → G⋆, 1 ≤ j ≤ l. A monoidal signature Σ yields a directed hypergraph GΣ
with only a single node and a hyperedge for every Σ-operation o : k → l with k sources and
l targets (i.e., in Gk,l). We can use this observation to define the category of Σ-labelled
hypergraphs as follows.

▶ Definition 4. The slice category Hyp ↓ GΣ is called the category of Σ-labelled hypergraphs
and denoted by HypΣ.

As proven in [5], morphisms in a prop freely generated by a signature Σ may be faithfully
interpreted as discrete cospans of Σ-labelled hypergraphs, where the cospan structure repres-
ents the interfaces (left and right) of the string diagram. Motivated by this characterisation,

2 Note composition is only defined up-to-isomorphism. Strictly speaking, to obtain a (1-)category, we take
as morphisms isomorphism classes of cospans (isomorphisms are invertible maps between the carriers
that make the obvious diagram commute). We will gloss over this aspect to keep notation light and
because the bicategorical aspects do not feature in our development.
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we recall from [5] the faithful, coproduct-preserving functor D : F→ HypΣ mapping every
object i ∈ Ob(F) = N to the discrete hypergraph with set of nodes i = {0, . . . , i − 1} and
mapping each function to the induced hypergraph homomorphism. We can define the cat-
egory CspD(HypΣ) of discrete cospans of hypergraphs as the full subcategory of Csp(HypΣ)
(cf. Example 3) on discrete hypergraphs.

3 The Combinatorial Interpretation

In this section we prove that a freely generated prop with a chosen commutative monoid
structure is isomorphic to a category of cospans of hypergraphs with certain restrictions
(Theorem 21 below).

As shown in [6], the standard interpretation of string diagrams in a prop as cospans
of hypergraphs is not full. In order to characterise the image of the interpretation, it is
necessary to restrict ourselves to a class of so-called acyclic and monogamous cospans. In
order to prove our result for props with a chosen commutative monoid structure, we may
relax this notion to right-monogamous cospans, which we now introduce.

▶ Definition 5 (Degree of a node [6]). The in-degree of a node v in hypergraph H is the
number of pairs (h, i) where h is a hyperedge with v as its ith target. Similarly, the out-degree
of v is the number of pairs (h, j) where h is a hyperedge with v as its jth source.

▶ Definition 6 (Terminal node). We say that a node v of a hypergraph H is terminal if its
out-degree is 0, i.e., if there are no hyperedges of H with source v.

Given m
f−→ H

g←− n in CspD(HypΣ), we call inputs of H the set in(H), defined as the image
of f and outputs, the set out(H) defined as the image of g.

▶ Definition 7 (Right-monogamy). We say that a cospan m
f−→ H

g←− n is right-monogamous
if g is mono and out(H) is the set of terminal nodes of H.

Compared to monogamy [6], right-monogamy does not impose any requirement on f , and
only constraints the out-degree of nodes (not the in-degree).

Acyclicity is a standard condition which forbids (directed) loops in a hypergraph,
cf. [6, Definition 20] Similarly to monogamous cospans [6], one may verify that acyclic
right-monogamous cospans in CspD(HypΣ) form a sub-prop of CspD(HypΣ), denoted by
RMACspD(HypΣ).

▶ Example 8. Let us use blue frames to indicate the left and the right interface of a cospan,
natural numbers to indicate how the cospan legs are defined, and rounded rectangles to
represent hyperedges. The cospan depicted below is right-monogamous.

0
1
2
3
4

5
3,51,2

4

v2 v3

v1

v0

0
A B

C
(1)

The notion of right-monogamy is justified by its connection to commutative monoids,
and crystallised in the following result. Below, the empty set in RMACspD(Hyp∅) refers to
the empty signature Σ = ∅.

▶ Proposition 9. There is an isomorphism of props CMon ∼= RMACspD(Hyp∅).

CALCO 2023



9:6 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

In particular, the isomorphism interprets the comultiplication and unit as follows:

7→ 7→

The fundamental observation leading to Proposition 9 is that the prop of ∅-labelled hyper-
graphs is isomorphic to F. Right-monogamous cospans in this category coincide with cospans
of the form m

f−→ n
id←− n, and can thus be thought of as morphisms in F. Paired with the

fact that CMon ∼= F (cf. Example 2), we obtain the above result – see [26] for more details.
Following this result, we will sometimes refer abusively to certain functions f as cospans,
assuming implicitly that we mean the cospan m

f−→ n
id←− n.

When referring to “string diagrams with a chosen commutative monoid structure”, we
mean morphisms of the prop SΣ + CMon, the coproduct of the free props over signature Σ
and CMon. Intuitively, such morphisms are obtained by freely combining Σ-terms with terms
of the theory of commutative monoids, then quotienting by the laws of symmetric monoidal
categories and those of CMon. For a formal definition of the coproduct of props, see [30].
Our next goal, and the core result of this section, is extending Proposition 9 to the case where
Σ is non-empty, i.e., an isomorphism between SΣ + CMon and RMACspD(HypΣ). This
will allow us to refer to RMACspD(HypΣ) as the combinatorial characterisation of string
diagrams in SΣ + CMon, and study their rewriting as DPO-rewriting in RMACspD(HypΣ).

In order to relate SΣ + CMon and RMACspD(HypΣ), we will use a strategy analogous
to the one used in [6] for theories with symmetric monoidal structure only. In essence, we
want to show that RMACspD(HypΣ) has the universal property of the coproduct. Consider

SΣ
J·K−→ RMACspD(HypΣ) |·|←− CMon

where J·K : SΣ → RMACspD(HypΣ) is the faithful prop morphism defined in [6], and
| · | : CMon→ RMACspD(HypΣ) is defined by composing the isomorphism of Proposition 9
with the obvious faithful prop morphism RMACspD(Hyp∅)→ RMACspD(HypΣ). To show
that RMACspD(HypΣ) has the universal property of the coproduct, the fundamental step
is investigating how right-monogamous acyclic cospans can be factorised into a composite
cospan M0;D0; . . . ;Ml;Dl that alternates between monogamous acyclic cospans that are
in the image J·K : SΣ → RMACspD(HypΣ) and discrete right-monogamous acyclic cospans
that are in the image of | · | : CMon→ RMACspD(HypΣ).

3.1 Weak decomposition
First, we need to show how to decompose right-monogamous cospans of hypergraphs in the
same way that we can take sub-diagrams of string diagrams.

Formally, a sub-diagram c of some larger string diagram d can be defined as a sub-
term (modulo the laws of symmetric monoidal categories) of d. It is not difficult to show
(by induction) that we can always find some k ∈ N and diagrams c1, c2 such that d =
c1; (idk ⊕ l); c2, that is, such that d decomposes as

c
mn

i jd
n m =

k

c2c1 (2)

In fact, we could also take this decomposition as a definition of sub-diagrams. We turn to
the corresponding notion of sub-structure for cospans of hypergraphs.

In the plain symmetric monoidal case, not all sub-hypergraphs of the cospan representation
of a string diagram d correspond to sub-diagrams of d. Those that do have the additional
properties of being convex [6].
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▶ Definition 10 (Convex sub-hypergraph). A sub-hypergraph H ⊆ G is convex if, for any
nodes v, v′ in H and any path p from v to v′ in G, every hyperedge in p is also in H.

▶ Example 11. v2v0
A is a convex sub-hypergraph of the hypergraph in Example 8.

The following lemma shows that convex sub-hypergraphs is the right counterpart of that
of sub-diagram, in the hypergraph world. Note the correspondence between (3) below and (2)
above.

▶ Lemma 12 (Weak decomposition). Let G = m −→ G←− n be a right-monogamous acyclic
cospan and L be a convex sub-hypergraph of G. We can decompose G as

(m −→ C̃1 ←− i + k) ;

 k
id−→ k

id←− k⊕
i −→ L←− j

 ; (j + k −→ C2 ←− n) (3)

for some k ∈ N and where all the above cospans are right-monogamous acyclic.

▶ Example 13. Consider the diagram below with its corresponding cospan representation:

B

0 10 1

B

For the convex sub-hypergraph L := B , there are two possible choices of weak decompos-
ition, depending on where we attach the second leg of the monoid multiplication that appears

in the corresponding string diagram: 0 10
B

1 or
0

20
B1

1, 2 .

Note that this situation differs from the plain symmetric monoidal case [6], where i −→ L←− j

is unique, given L. With commutative monoids, the non-uniqueness comes from having to
choose whether we include the monoid structure nodes in the cospan i −→ L←− j or in the
surrounding two cospans. Of course there is a minimal such cospan, that corresponds to the
sub-diagram in the diagrammatic decomposition, but we sometimes need the flexibility to
choose another decomposition.

3.2 Factorisation into levels
Now we tackle the factorisation of cospans in RMACspD(HypΣ) into alternating monogamous
cospans and right-monogamous discrete cospans, to prove that RMACspD(HypΣ) ∼= SΣ +
CMon, our main characterisation theorem (Theorem 21).

As we saw, the hypergraphs that correspond to plain string diagrams (in symmetric
monoidal categories) are monogamous: nodes are precisely the target and source of one
hyperedge. The commutative monoid structure relaxes this requirement for targets. For our
last decomposition, we would like to identify nodes that can only appear in the hypergraph
representation of diagrams that contain some occurrence of the commutative monoid structure
(multiplication or unit), that is, nodes that do not simply represent plain wires. The following
definition formalises this idea.

▶ Definition 14. Let m −→ G←− n be a right-monogamous acyclic cospan. We say that the
node v in G is left-amonogamous if:

it is in in(G) and its in-degree is not equal to 0, or
it is not in in(G) and its in-degree is not equal to 1

CALCO 2023



9:8 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

▶ Example 15. In the cospan (1), v2 and v3 are left-amonogamous, while v0 and v1 are not.

▶ Definition 16 (Order of nodes and level of hyperedges). Let m −→ G ←− n be a right-
monogamous acyclic cospan. We define the order of a node v to be the largest number of
left-amonogamous nodes preceding it (including itself) on a path leading to v. The level of a
hyperedge is the largest number of left-amonogamous nodes on a path ending with v.

▶ Example 17. In the cospan (1), hyperedges A and C are level-0 hyperedges, and hyperedge
B is a level-1 hyperedge.

Recall that we want to obtain a factorisation of any cospan into an alternating composition
of discrete right-monogamous cospans – corresponding to diagrams with no generating boxes
from the chosen signature – and monogamous cospans – corresponding to plain string
diagrams over the chosen signature. We will do this by induction on the maximum level
of hyperedges, effectively stripping the necessary cospans (discrete right-monogamous and
monogamous) at each level as we move from left to right.

The following lemma will be used at each induction step: here, we require the decomposi-
tion to not only alternate between monogamous and discrete right-monogamous cospans, but
to also keep track of the order of terminal nodes. Diagrammatically, we want a decomposition
of a right-monogamous cospan into the following form:

d
m

n − k

k

i g′m j

with m corresponding to a monogamous cospan, and d to a discrete right-monogamous one,
and g′ is the rest of the decomposition. Here, the first k wires are the terminal order-0
nodes of the overall composite. Keeping track of where terminal nodes of each order are
located is an important technical complication that will be needed to prove that the map
that we construct out of RMACspD(HypΣ) to show it satisfies the universal property of the
coproduct SΣ + CMon, is a monoidal functor. Recall that, following Proposition 9, we refer
abusively to permutations π : n→ n below as cospans, assuming implicitly that we mean
the cospan n

π−→ n
id←− n.

▶ Lemma 18 (Level-0 decomposition). Let m −→ G ←− n be a right-monogamous acyclic
cospan whose order-0 terminal nodes are the first k nodes of n. Then there exists a unique
decomposition of G as M; (idk ⊕ (D;G′)), where (A) M is monogamous acyclic and contains
precisely all the level-0 hyperedges; (B) D is discrete right-monogamous and contains precisely
all order-1 left-amonogamous nodes; (C) G′ is right-monogamous acyclic and has no left-
amonogamous nodes without any in-connections.

Moreover, any two such factorisations differ only by permutations of the terminal nodes
of the factors, i.e., if G = M; (idk ⊕ (D;G′)) = M′; (idk ⊕ (D′;G′′)), then there exists
permutations π, θ such that M′ =M; π, π; (idk ⊕ (D′;G′)) = idk ⊕ (D;G′), and D′ = D; θ,
θ;G′′ = G′.

Note that the non-uniqueness of the decomposition comes from two distinct sources: 1)
arbitrary ordering of nodes on the boundaries of cospans, and 2) the commutativity of the
monoid multiplication which can absord any permutation of the wires that it merges.

▶ Lemma 19 (Factorisation into levels). Any right-monogamous acyclic cospan G = m −→ G←−
n can be factored intoM0;

(
idk0⊕(D0; . . . ;Ml; (idkl

⊕Dl) . . . )
)
; π for some permutation π and

where, for each i, (A)Mi is monogamous acyclic and contains precisely the level i hyperedges
of G, and (B) Di is discrete right-monogamous, contains all order i + 1 left-amonogamous
nodes and all order-i terminal nodes of G.
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Proof. First, let ki be the set of order-i terminal nodes of G. We then define the permutation
π to be the reordering of n such that the order-0 terminal nodes are the first k0 nodes, the
order-1 are the next k1 terminal nodes and, more generally, the order-i + 1 nodes are the
first ki+1 terminal nodes after the first

∑i
i=j kj nodes.

We can now prove the lemma using induction on the highest order of left-amonogamous
nodes in G; π−1, using Lemma 18.

For the base case we note that any right-monogamous acyclic cospan without any left-
amonogamous nodes is simply monogamous acyclic.

For the induction hypothesis, we assume that the statement holds for all the right-
monogamous acyclic cospans with the maximum order of left-amonogamous nodes strictly
less than r, where r is a positive integer. For the inductive case, suppose that G; π−1 is a
cospan whose highest order of left-amonogamous nodes is r. Then, by Lemma 18 (Level-0
decomposition), it can be factored into G; π−1 =M0; (idk0 ⊕ (D0;G′)) where the first cospan
is monogamous acyclic and contains all level 0 hyperedges of G, and D0 is discrete right
monogamous with all order 1 left-amonogamous nodes of G; π−1 and k0 all order 0 terminal
nodes of G; π−1. Now, every node in G′ corresponding to an order i left-amonogamous
node in G; π−1, is now an order i − 1 left-amonogamous. Thus, the highest order of left-
amonogamous nodes in G′ is r − 1 and, by the induction hypothesis, G′ can be factored
into M1;

(
idk1 ⊕ (D1; . . . ;Ml; (idkl

⊕Dl) . . . )
)

as in the statement of the lemma. Therefore,
the composite M0;

(
idk0 ⊕ (D0; . . . ;Ml; (idkl

⊕ Dl) . . . )
)

=M0; (idk0 ⊕ (D0;G′)) = G; π−1

satisfies conditions (A) and (B) of the lemma andM0;
(
idk0⊕(D0; . . . ;Ml; (idkl

⊕Dl) . . . )
)
; π

is the factorisation we are looking for. ◀

We will also need the following simpler form of the factorisation into levels, which matches
closely the leading intuition of a factorisation into an alternating composition of monogamous
and discrete right-monogamous cospans.

▶ Corollary 20. Any right-monogamous acyclic cospan G = m −→ G←− n can be factorised
into an alternating sequence of monogamous cospans and discrete right-monogamous cospans,
i.e., as M0;D0; . . . ;Ml;Dl.

Moreover any two such factorisations differ only by permutations of the terminal nodes
of each factor, i.e., if M0;D0 . . . ;Ml;Dl =M′

0;D′
0; . . . ;M′

l;D′
l, there exists permutations

πi, θi such that M′
i =Mi; πi, πD′

i = Di and D′
i = Di; θi, θiM′

i+1 =Mi+1.

Proof. Since identities can be seen as monogamous cospans or discrete right-monogamous,
and a permutation can be seen as discrete right-monogamous cospan, if we can get a
factorisation of G into levels as in Lemma 19, we also obtain a factorisation as in the
statement of this lemma.

Finally, we can prove by induction, using from the second part of the statement of
Lemma 18 that any two such factorisations differ only by some permutation of the factors. ◀

We are now able to conclude with our characterisation theorem.

▶ Theorem 21. There exists an isomorphism ⟨⟨·⟩⟩ : SΣ + CMon→ RMACspD(HypΣ).

Proof. Let us define ⟨⟨·⟩⟩ as a copairing (in PROP) of the faithful functors J·K : SΣ →
RMACspD(HypΣ) and | · | : CMon→ RMACspD(HypΣ). It suffices to show that the prop
RMACspD(HypΣ) satisfies the universal property of the coproduct SΣ + CMon in PROP:

SΣ RMACspD(HypΣ) CMon

A

J·K

α
∃!γ

|·|

β
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9:10 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

Given a prop A and prop-morphisms α : SΣ → A , β : CMon → A, we need to prove
there exists a unique prop-morphism γ : RMACspD(HypΣ) → A, such that the diagram
above commutes. Now, since prop-morphisms are identity-on-objects functors, it is sufficient
to consider what happens to the arrows of the above props. Since the diagram needs to
commute, for any arrow s in SΣ and for any arrows c in CMon we want γ(JsK) = α(s) and
γ(|c|) = β(c). But, by Corollary 20, any cospan G in RMACspD(HypΣ) can be factorised as
an alternating sequence of monogamous cospans and discrete right-monogamous cospans, i.e.,
as G =M0;D0 . . . ;Ml;Dl where Mi = JsiK for some si in SΣ and Di = |ci| for some ci in
CMon. Then γ(hi) is uniquely defined by the conditions γ(JsiK) = α(si) and γ(|ci|) = β(ci):
let γ(G) = γ (M0;D0; . . . ;Ml;Dl) = α(s0)β(c0) . . . α(sl)β(cl). We now verify that γ is
well-defined and functorial.

Well-definedness. Since the factorisation of G into levels is not unique, we need to show
that γ is well-defined, i.e., that any two such factorisations will define the same value of
γ(G). Consider another factorisation G =M′

0;D′
0; . . . ;M′

l;D′
l obtained from Corollary 20.

Then there exists permutations πi, θi such that M′
i =Mi; πi, πiD′

i = Di and D′
i = Di; θi,

θiM′
i+1 =Mi+1. In addition, M′

i = Js′
iK for some s′

i in SΣ, D′
i = |c′

i| for some c′
i in CMon.

To show well-definedness of γ, we will use the following facts:
1. since SΣ, CMon and A are props, they all contain a copy of the prop of permutations so

we will abuse notation slightly and use the same names to refer to the same permutation
in all of them;

2. prop morphisms preserve permutations so that α(π) = β(π) = γ(π) = J·K π = | · |π = π

for any permutation π;
3. by definition of γ it is clear that γ(G; π) = γ(G); π and γ(π;G) = π; γ(G).
Now, we have

γ(M0;D0; . . . ;Ml;Dl) = γ(M0); γ(D0); . . . ; γ(Ml); γ(Dl)
= γ(M0); γ(π0;D′

0); . . . ; γ(Ml); γ(πl;D′
l)

= γ(M0); π0; γ(D′
0); . . . ; γ(Ml); πl; γ(D′

l)
= γ(M0; π0); γ(D′

0); . . . ; γ(Ml; πl); γ(D′
l)

= γ(M′
0); γ(D′

0); . . . ; γ(M′
l); γ(D′

l) = γ(M′
0;D′

0; . . . ;M′
l;D′

l)

Monoidal functoriality. First, γ preserves monoidal products, as the decomposition of a
monoidal product is obtained by taking a monoidal product of monogamous acyclic cospans,
and a monoidal product of discrete right monogamous cospans, for each level separately.
Second, consider two cospans G = m −→ G ←− n and H = n −→ G ←− o. We can factorise
H as M0;D0; . . . ;Ml;Dl. Hence, if we can show that γ(G;M;D) = γ(G); γ(M;D), for M
monogamous and D discrete right-monogamous, a simple induction will allow us to conclude
that γ(G;H) = γ(G); γ(H). In fact, to show the induction step, it is enough to show that
γ(G; (M⊕ idn−k+l)) = γ(G); γ(M⊕ idn−k+l) whereM consists of a single hyperedge h, with
k source nodes and l ≤ n target nodes – we can recover the general case of all monogamous
cospans by performing another induction on the number of hyperedges in M.

Now, we need to understand to what level in G; (M⊕ idn−k+l) the single hyperedge h

of M belongs. By the definition of the level of hyperedges (Definition 16), h will belong
to level i of in G; (M⊕ idn−k+l) if the node with the largest order in the first k terminal
nodes of G is i. If we assume without loss of generality (as we can always post-compose
with a permutation to achieve this), that the terminal nodes of G are ordered by order
size, this implies that the factorisation of G; (M⊕ idn−k+l) into levels is G≤i; (M⊕ G>i)
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where G>i and G≤i are obtained from the factorisation M0;
(
idk0 ⊕ (D0; . . . ;Ml; (idkl

⊕
Dl) . . . )

)
of G (from Lemma 19) as follows: G≤i := M0;

(
idk0 ⊕ (D0; . . . ;Mi) . . .

)
and

G>i := Di;Mi+1;
(
idki+1 ⊕ (Di+1; . . . ;Ml; (idkl

⊕Dl) . . . )
)
. Note that, by construction, we

have G = G≤i; (idki ⊕ G>i). Thus

G; (M⊕ idn−k+l) = G≤i; (idki ⊕ G>i); (M⊕ idn−k+l)
= G≤i;

(
(idki

;M)⊕ (G>i; idn−k+l)
)

= G≤i; (M⊕G>i)

by the interchange and unitality axioms of symmetric monoidal categories (see Fig. 1).
The intuition now is that we are able to slide the hyperedge h back to level i into the

decomposition of G and that the operation of sliding back – which only uses the monoidal
product and composition with identities – is preserved by γ. This will be sufficient to prove
functoriality of γ. We have

γ(G; (M⊕ idn−k+l)) = γ(G≤i; (M⊕G>i))
= γ(G≤i); γ(M⊕G>i)
= γ(G≤i);

(
γ(M)⊕ γ(G>i)

)
= γ(G≤i);

(
γ(idki

)⊕ γ(G>i)
)
;
(
γ(M)⊕ γ(idn−k+l)

)
where the second equality holds because G≤i; (M⊕G>i) is the factorisation of G;M through
which we define γ; the third equality holds because γ preserves monoidal products and
the remaining equalities use the interchange and unitality laws of symmetric monoidal
categories as above. Finally, by definition of γ, γ(G≤i); (γ(idki

) ⊕ γ(G>i)) = γ(G) and,
since γ also preserves monoidal products, we can conclude that γ(G; (M⊕ idn−k+l)) =
γ(G); γ(M⊕ idn−k+l)) as we wanted to show. ◀

4 Characterisation of String Diagram Rewriting

Now that we have a characterisation theorem for SΣ + CMon, we are ready to interpret
rewriting modulo commutative monoid structure as DPO rewriting, and to show that such a
correspondence is sound and complete. We first recall formally the former notion of rewriting.

▶ Definition 22 (String Diagram Rewriting Modulo CMon). Let d, e : n→ m and l, r : i→ j

be pairs of morphisms in SΣ + CMon. We say that d rewrites into e modulo commutative
monoid structure according to the rewrite rule R = ⟨l, r⟩, notation d⇒R e, if, in SΣ+CMon,
we have:

l

mn
i jd

n m =
k

c2c1
r

mn
i jen m =

k

c2c1 (4)

As studied in [5, 6], rewriting of string diagrams may be interpreted as DPO rewriting
of the corresponding hypergraphs. The relevant notion is the one of DPO rewriting “with
interfaces” (originally used for a single interface in [16], and adapted for two interfaces in [4]),
which ensures preservation of the interfaces described by the cospan structure.
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9:12 String Diagram Rewriting Modulo Commutative (Co)Monoid Structure

▶ Definition 23 (DPO Rewriting (with interfaces)). Consider a DPO rewrite rule R =
L

[a1,a2]←−−−− i + j
[b1,b2]−−−−→ R given by cospans i

a1−→ L
a2←− and i

b1−→ R
b2←− in HypΣ. We say that

cospan n
q1−→ D

q2←− m rewrites into n
p1−→ E

p2←− m with rule R, written (n→ D ← m) ↪→R

(n −→ E ←− m), if there is a cospan i + j → C ← n + m (called the pushout complement)
making the diagram below commutes with the two squares being pushouts.

L

f ��

i + j

��⌝ ⌜

[a1,a2]oo [b1,b2] // R

��
D Coo // E

n + m

OO

[p1,p2]

99

[q1,q2]

ee

However, unless string diagram rewriting happens modulo the laws of Frobenius algebras,
not all DPO rewrites are sound for string diagram rewriting: some pushout complements
may yield as outcome of the rewriting hypergraphs that are not in the image of any string
diagram [6]. To avoid these situations, [6] introduced the notion of boundary complements
and convex matching. The former guarantees that inputs can only be connected to outputs
and vice-versa, while the latter are matches that do not contain directed paths from outputs
to inputs, i.e., monomorphisms whose image is convex. However, these notions were designed
for monogamous hypergraphs, and string diagram rewriting modulo symmetric monoidal
structure. In order to capture the correct notion of DPO rewriting for right-monogamous
hypergraphs, and rewriting modulo commutative monoid structure, we need to relax the first
slightly to that of weak boundary complements.

L

f
��

(†)

i + j
a=[a1,a2]oo

c=[c1,c2]
��⌝

G L⊥
g

oo

n + m
[b1,b2]

hh

[d1,d2]

OO

▶ Definition 24 (Weak boundary complement). For right-monogamous acyclic cospans i
a1−→

L
a2←− j and n

b1−→ G
b2←− m and a morphism f : L→ G, a pushout complement as on the right

above is called a weak boundary complement if: (A) given two nodes in L that are mapped to
the same node in G by f, they must be in the image of a2; (B) c1 is mono; (C) no two nodes
are both in the image of c1 and c2; (D) there exist d1 : n→ L⊥ and d2 : m→ L⊥ making the
above diagram commute and such that n + j

[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i is right-monogamous.

Intuitively, the complement L⊥ is G with an L-shaped hole:

l

l⊥

mn
i j

g
n m

=

l⊥

mn

i
j

where g : n → m, l : i → j, and l⊥ : n + j → m + i are diagrams for the cospans
n −→ G ←− m,i −→ L ←− j, and n + j −→ L⊥ ←− m + i respectively, i.e. such that ⟨⟨g⟩⟩ =
(n −→ G ←− m),⟨⟨l⟩⟩ = i −→ L ←− j, and ⟨⟨l⊥⟩⟩ = n + j −→ L⊥ ←− m + i. (Recall that
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⟨⟨·⟩⟩ : SΣ + CMon→ RMACspD(HypΣ) is the isomorphism established by Theorem 21; we
will use it quite liberally from now on in order to manipulate cospans as string diagrams
when convenient). Boundary complements restrict the shape that these can take. Let us
explain the conditions of Definition 24 in plainer language.

Condition (A) allows matches to occur in a diagram G that contains the sub-diagram L

potentially with some nodes identified, i.e. wires connected by the monoid multiplication
(see Example 26 below. However, these can only occur as terminal nodes, that is, in the
image of a2, the right boundary of the subdiagram L.
Plain boundary complements [6] require c1, c2 to be jointly monic. This enforces two
distinct properties: it prevents nodes from the left and right boundaries of the match
to be identified, and it prevents nodes from within each of the two boundary sides to
be identified. Here, we need to relax the second condition to allow nodes in the right
boundary of the match to be identified. This is what conditions (B) and (C) give us.
Condition (D) forces the boundary of the complement, both with the subdiagram L and
those of the larger diagram G, to be right-monogamous. In other words, we want the
cospan n + j

[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i depicted above to be right-monogamous.

The last ingredient we require is the same as in [6]: we require the match to be convex.

▶ Definition 25 (Convex matching [6]). f : L→ G in HypΣ is a convex match if its image
is a convex sub-hypergraph of G.

▶ Example 26. Consider the diagram below

A in
A

=
A

As cospans of hypergraphs, this corresponds to the convex matching below

i0
i1, j1

i0

i1

n0

n1
m0

n1

j0

m0
A

A

a c

d
f f(a)

f(b)
f(b), f(c), f(e)

a1 a2 b1 b2
j0

j1b

n0

with the following weak boundary complement:

n0

n1
m0

n0

m0
n1

i0

i1

d1 d2

c1 c2

i1

i0
j0, j1

j0

j1

▶ Definition 27 (Weakly Convex DPO Rewriting). We call a DPO rewriting step as in
Definition 23 weakly convex if f : L → D is a convex matching and i + j → C is a weak
boundary complement in the leftmost pushout square.

Note that, contrary to boundary complements in the symmetric monoidal case [6], weak
boundary complements are not necessarily unique if they exist. We can now conclude
the soundness and completeness of weakly convex DPO rewriting for string diagrams with
commutative monoid structure.
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▶ Theorem 28. Let R = ⟨l, r⟩ be a rewrite rule on SΣ + CMon. Then,

d⇒R e iff ⟨⟨d⟩⟩ ↪→⟨⟨R⟩⟩ ⟨⟨e⟩⟩ (5)

Proof. For the direction from left to right we proceed as follows. From the definition of
rewriting, and given the assumption d⇒R e, we have equalities as in (4). We now interpret
the string diagrams involved, obtaining right-monogamous cospans:(

n
q1−→ D

q2←− m
)

:= ⟨⟨d⟩⟩
(

n
p1−→ E

p2←− m
)

:= ⟨⟨e⟩⟩(
i

a1−→ L
a2←− j

)
:= ⟨⟨l⟩⟩

(
i

b1−→ R
b2←− j

)
:= ⟨⟨r⟩⟩(

n
x1−→ C1

x2←− k + i
)

:= ⟨⟨c1⟩⟩
(

k + j
y1−→ C2

y2←− m
)

:= ⟨⟨c2⟩⟩

(6)

From the last two cospans above, by simply rearranging nodes on the interface from the left
to the right and viceversa, we obtain:

i + k
x̃1−→ C̃1

x̃2←− n k + j
ỹ1−→ C̃2

ỹ2←− m

We now define a cospan i + j −→ C ←− n + m as:

(
i + j

z1−→ i + k + j
z2←− i + k + k + j

)
;

 i + k
x̃1−→ C̃1

x̃2←− n⊕
k + j

ỹ1−→ C̃2
ỹ2←− m

 (7)

where z1 : (i + j) → (i + k + j) is the inclusion map, z2 : (i + k + k + j) → (i + k + j) is
defined as idi + µk + idj , with µk : k + k → k mapping both copies of node i ∈ {0, . . . , k− 1}
to i. Intuitively, i + j −→ C ←− n + m represents the string diagram where we have rearranged
interface nodes n and i on the opposite interface. One may verify that:(

0 −→ D
[q1,q2]←−−−− n + m

)
=

(
0 −→ L

[a1,a2]←−−−− i + j

)
; (i + j −→ C ←− n + m)(

0 −→ E
[p1,p2]←−−−− n + m

)
=

(
0 −→ R

[b1,b2]←−−−− i + j

)
; (i + j −→ C ←− n + m)

(8)

Recall that composition of cospans is obtained via pushouts, hence the two equalities of (8)
yield a DPO rewriting step ⟨⟨d⟩⟩ ↪→⟨⟨R⟩⟩ ⟨⟨e⟩⟩ as in Definition 23. Since l is simply a sub-string
diagram of d, the mapping from L to D is a convex match. Furthermore, note that no two
nodes from i + k can be identified with each other, hence i→ C is mono, and no node from
i can be identified with any node in j or m. As m→ C is trivially mono, we have that C is
indeed a weak boundary complement.

Now we deal with the converse implication. Assume ⟨⟨d⟩⟩ ↪→⟨⟨R⟩⟩ ⟨⟨e⟩⟩, where ⟨⟨d⟩⟩, ⟨⟨e⟩⟩, ⟨⟨l⟩⟩,
and ⟨⟨r⟩⟩ are defined as the cospans in (6). By assumption, and since composition of cospans
is performed via pushouts, there exists a weak boundary complement i + j

[c1,c2]−−−−→ L⊥ [d1,d2]←−−−−
n + m such that

⟨⟨d⟩⟩ = (0 −→ i
µi←− i + i); (idi ⊕ ⟨⟨l⟩⟩); (i + j

[c1,c2]−−−−→ L⊥ [d1,d2]←−−−− n + m)

⟨⟨e⟩⟩ = (0 −→ i
µi←− i + i); (idi ⊕ ⟨⟨r⟩⟩); (i + j

[c1,c2]−−−−→ L⊥ [d1,d2]←−−−− n + m)
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We can now apply Lemma 12 (weak decomposition) to n + j
[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i, with

the convex sub-hypergraph of L⊥ given by the image of i and j, to obtain a decomposition
of n + j

[c2,d1]−−−−→ L⊥ [c1,d2]←−−−− m + i as

(n+j −→ C1 ←− k + i+j) ; (k + i+j
idk⊕σj

i−−−−−→ k +j + i←− k +j + i) ; (k +j + i −→ C2 ←− m+ i)

for some k ∈ N, right monogamous cospans n −→ C1 ←− i + k and j + k −→ C2 ←− m, and
where σj

i : i + j → j + i the map that swaps the two components i and j. By fullness of ⟨⟨·⟩⟩
we have c1, c2 such that ⟨⟨c1⟩⟩ = n −→ C1 ←− i + k and ⟨⟨c2⟩⟩ = j + k −→ C2 ←− m; moreover we
have, by construction:

⟨⟨d⟩⟩ =
(
idn ⊕ (0 −→ i

µi←− i + i)
)
; ⟨⟨

mn

ij

k
c2c1

i
l

i

i ⟩⟩;
(
idm ⊕ i + i

µi−→ i←− 0)
)

⟨⟨e⟩⟩ =
(
idn ⊕ (0 −→ i

µi←− i + i)
)
; ⟨⟨

mn

ij

k
c2c1

i
r

i

i ⟩⟩;
(
idm ⊕ (i + i

µi−→ i←− 0)
)

Computing these cospans, we obtain ⟨⟨d⟩⟩ = ⟨⟨c1⟩⟩; (⟨⟨idk⟩⟩⊕⟨⟨l⟩⟩); ⟨⟨c2⟩⟩ and ⟨⟨e⟩⟩ = ⟨⟨c1⟩⟩; (⟨⟨idk⟩⟩⊕
⟨⟨r⟩⟩); ⟨⟨c2⟩⟩. By monoidal functoriality of ⟨⟨·⟩⟩, we thus have ⟨⟨d⟩⟩ = ⟨⟨(c1; (idk⊕l); c2)⟩⟩ and ⟨⟨e⟩⟩ =
⟨⟨(c1; (idk ⊕ r); c2)⟩⟩. Finally, since ⟨⟨·⟩⟩ is faithful, we can conclude that d = c1; (idk ⊕ l); c2
and e = c1; (idk ⊕ r); c2. This is precisely what it means to apply the rule ⟨l, r⟩ to d, so that
d⇒R e as we wanted to prove. ◀

5 Conclusions and Future Work

The main contribution of this work is twofold. First, with Theorem 21, we identified a
combinatorial representation of string diagrams modulo commutative monoid structure.
This correspondence relies on introducing a notion of right monogamous cospans, which is
intermediate between the “vanilla” cospans characterising string diagrams modulo Frobenius
structure, and the monogamous cospans characterising string diagrams modulo symmetric
monoidal structure. The characterisation result relies on a factorisation result for right
monogamous cospans, which requires some ingenuity: compared with similar theorems
in [5, 6] the increased sophistication is due to the fact that there is additional structure to
consider both on the side of string diagrams (in contrast with [6, Theorem 25], which only
accounts for symmetric monoidal structure) and of hypergraphs (in contrast with [5, Theorem
4.1], which accounts for generic hypergraph without monogamicity conditions). Note the
work [19], which appeared at the same time as a preprint of our work [26], provides a result
dual to Theorem 21: instead of monoids, they consider props with a chosen commutative
comonoid structure – called “CD-categories” or “gs-categories”. On the side of hypergraphs,
instead of restricting monogamicity to right-monogamicity, they consider left-monogamicity,
which is essentially the dual notion.

The second contribution of our paper, Theorem 28, showed a correspondence between
string diagrams rewriting modulo commutative monoid structure and a certain variant of
DPO hypergraph rewriting. In order to ensure soundness and completeness, we introduced
a suitable restriction of DPO rewriting, called weakly convex to echo the convex rewriting
characterising string diagrams in a symmetric monoidal category [6]. A subtlety in this result
was identifying a notion of boundary complement which, even though could not be unique
“on-the-nose” as the one considered in the more restrictive convex rewriting, it was sufficiently
well-behaved for the purpose of showing the correspondence with string diagram rewriting.
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Going forward, we believe our approach could be extended to coloured props in a rather
straightforward way, following the analogous developments in [31, 6]. Other interesting
directions to pursue are the study of confluence [7] and the characterisations of notions
of rewriting modulo structures intermediate between commutative monoid and Frobenius
algebra – comparison with the very recent work on rewriting in traced comonoid structure [21]
seems particularly promising in this regard. In terms of case studies, as mentioned in the
introduction, our work paves the way for studying rewriting of theories which do not host
a Frobenius structure, but at the same time include commutative (co)monoid equations,
which would immediately lead to non-termination if taken as rewrite rules. Categories of
matrix-like structures, based on Hopf algebras which would become degenerate if added
Frobenius equations (see eg. [30] for an overview), seem a particularly fitting candidate for
investigation.
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