
Algorithms Transcending the SAT-Symmetry
Interface
Markus Anders
TU Darmstadt, Germany

Pascal Schweitzer
TU Darmstadt, Germany

Mate Soos
National University of Singapore, Singapore

Abstract
Dedicated treatment of symmetries in satisfiability problems (SAT) is indispensable for solving
various classes of instances arising in practice. However, the exploitation of symmetries usually
takes a black box approach. Typically, off-the-shelf external, general-purpose symmetry detection
tools are invoked to compute symmetry groups of a formula. The groups thus generated are a set of
permutations passed to a separate tool to perform further analyzes to understand the structure of
the groups. The result of this second computation is in turn used for tasks such as static symmetry
breaking or dynamic pruning of the search space. Within this pipeline of tools, the detection and
analysis of symmetries typically incurs the majority of the time overhead for symmetry exploitation.

In this paper we advocate for a more holistic view of what we call the SAT-symmetry interface.
We formulate a computational setting, centered around a new concept of joint graph/group pairs, to
analyze and improve the detection and analysis of symmetries. Using our methods, no information
is lost performing computational tasks lying on the SAT-symmetry interface. Having access to the
entire input allows for simpler, yet efficient algorithms.

Specifically, we devise algorithms and heuristics for computing finest direct disjoint decomposi-
tions, finding equivalent orbits, and finding natural symmetric group actions. Our algorithms run
in what we call instance-quasi-linear time, i.e., almost linear time in terms of the input size of the
original formula and the description length of the symmetry group returned by symmetry detection
tools. Our algorithms improve over both heuristics used in state-of-the-art symmetry exploitation
tools, as well as theoretical general-purpose algorithms.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases boolean satisfiability, symmetry exploitation, computational group theory

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.1

Related Version Full Version: https://arxiv.org/abs/2306.00613 [5]

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(EngageS: grant agreement No. 820148).

1 Introduction

Many SAT instances, especially of the hard combinatorial type, exhibit symmetries. When
symmetries exhibited by these instances are not handled adequately, SAT solvers may
repeatedly explore symmetric parts of the search space. This can dramatically increase
runtime, sometimes making it impossible for the solver to finish within reasonable time [7].

One common method to handle the symmetries is to add symmetry breaking formulas to
the problem specification [10, 2]. This approach is called static symmetry breaking. Another,
competing, approach is to handle symmetries dynamically during the running of the SAT
solver. There are a variety of such dynamic strategies, exploiting symmetry information

© Markus Anders, Pascal Schweitzer, and Mate Soos;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 1; pp. 1:1–1:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SAT.2023.1
https://arxiv.org/abs/2306.00613
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Algorithms Transcending the SAT-Symmetry Interface

(Before)

symmetry detection

decomposition row inter-
changeability

SAT symmetry exploitation

SAT solver

SA
T

sy
m

m
et

ry

Step 1
detection

Step 2
analysis

Step 3
exploitation

(This paper)

SA
T

-sym
m

etry
SA

T
sym

m
etry

symmetry detection

symmetric
action orbit ≡orbit graph

decomposition row inter-
changeability

SAT symmetry exploitation

SAT solver

Figure 1 Blurring the lines of the SAT-symmetry interface. We analyze existing practical routines
(left), draw connections to existing concepts in computational group theory, and describe improved
algorithms in our new SAT-symmetry context (right).

during variable branching [21] and learning [28, 12]. For SAT, the tools Shatter [1] and
BreakID [13, 8] take the static symmetry breaking approach, while SymChaff [28] and
SMS [21] take the dynamic symmetry exploitation approach.

While there is a growing number of competing approaches of how best to handle symmet-
ries, there are also a number of common obstacles: symmetries of the underlying formula
have to be detected first, and the structure of symmetries has to be understood, at least to
some degree. Approaches that handle symmetries can be typically divided into three distinct
steps: (Step 1) symmetry detection, (Step 2) symmetry analysis, and (Step 3) symmetry
breaking, or other ways of exploiting symmetry. In the following, we discuss each of these
steps, also illustrated on the left side of Figure 1.

Step 1. In practice, symmetries are detected by modeling a given SAT formula as a
graph, and then applying an off-the-shelf symmetry detection tool, such as saucy [11],
to the resulting graph. Since symmetries form a permutation group under composition,
a symmetry detection tool does not return all the symmetries. Instead, it only returns a
small set of generators, which, by composition, lead to all the symmetries of the formula.
Indeed, returning only a small set of generators is crucial for efficiency, since the number of
symmetries is often exponential in the size of the formula.

Step 2. Symmetry exploitation algorithms apply heuristics to analyze the structure of
the group described by the generators. This is necessary to enable the best possible use
of the symmetries to improve SAT solver performance. We mention three examples for
structural analyzes. Firstly, the disjoint direct decomposition splits a group into independent
parts that can be handled separately. Secondly, so-called row interchangeability subgroups of
the group [13, 14, 25] are of particular interest since they form a class of groups for which
linear-sized, complete symmetry breaking constraints are known. Thirdly, stabilizers are
commonly used for various purposes among both static and dynamic approaches [27].

Step 3. Lastly, the symmetries and structural insights are used to reduce the search space
in SAT using one of the various static and dynamic symmetry exploitation approaches.

Designing symmetry exploitation algorithms typically involves delicately balancing com-
putational overhead versus how thoroughly symmetries are used. In this trade-off, symmetry
detection (Step 1) and analysis (Step 2) typically induce the majority of the overhead [13].
The main focus of this paper is improving the analysis of symmetries, i.e. (Step 2).

M. Anders, P. Schweitzer, and M. Soos 1:3

Practical implementations in use today that perform such structural analyzes do so
through heuristics. While using heuristics is not an issue per se, some heuristics currently in
use strongly depend on properties that the generators returned by symmetry detection tools
may or may not exhibit. For example, BreakID and the MIP heuristic in [25] both rely on
so-called separability of the generating set and a specific arrangement of transpositions being
present. Neither of these properties are guaranteed by contemporary symmetry detection
tools [9].

In fact, modern symmetry detection tools such as Traces [23] and dejavu [3] return
randomly selected symmetries, since the use of randomization provides an asymptotic
advantage in the symmetry detection process itself [4]. However, generating sets consisting
of randomly selected symmetries are in a sense the exact opposite of what is desired for the
heuristics, since with high probability random symmetries satisfy neither of the required
conditions. This is particularly unfortunate, as dejavu is currently the fastest symmetry
detection tool available for graphs stemming from SAT instances [6].

Another downside of the use of practical heuristics for the structural analysis of the group
is that they are often also computationally expensive and make up a large portion of the
runtime of the overall symmetry exploitation process. For example, the row interchangeability
algorithm of BreakID performs multiple callbacks to the underlying symmetry detection
tool, where each call can be expensive.

Altogether, heuristics in use today sometimes cause significant overhead, while also posing
an obstacle to speeding up symmetry detection itself. This immediately poses the question:
why is it that these heuristics are currently in place that cause such a loss of efficiency when
it comes to computations within the SAT-symmetry interface?

We believe that the issue is that tools on either side of the interface treat each other
as a black box. Indeed, when considered as an isolated task, algorithms for the analysis of
permutation groups are well-researched in the area of computational group theory [30]. Not
only is the theory well-understood, but there are also highly efficient implementations [15].
However, we can make two crucial observations regarding the available algorithms. First
and foremost, for group theoretic algorithms from the literature that are deemed to have
linear or nearly-linear runtime [30], the concrete runtime notions actually differ from the
ones applicable in the overall context. In fact, the runtime is essentially measured in terms
of a dense rather than a sparse input description. Therefore, in the context of SAT-solving
or graph algorithms, the runtime of these algorithms should rather be considered quadratic.
Secondly, in computational group theory, algorithms assume that only generators for an
input group are available. However, in the context of the SAT-symmetry interface, not only
a group but also a graph (computed from the original formula) is available. It turns out as a
key insight of our paper that lacking access to the graphs crucially limits the design space
for efficient algorithms.

Contributions. Advocating a holistic view of the SAT-symmetry interface, we develop
algorithms that transcend both into the SAT domain and the symmetry domain at the same
time. This is illustrated in Figure 1 on the right side.

Firstly, we provide a definition for the computational setting such as input, output, and
runtime, under which these algorithms should operate (Section 3). We then extract precise
formal problem definitions from heuristics implemented in state-of-the-art tools (Section 4).
Lastly, we demonstrate the efficacy of our new approach by providing faster theoretical
algorithms for commonly used heuristics, as is described below.

SAT 2023

1:4 Algorithms Transcending the SAT-Symmetry Interface

Figure 2 An illustration of a color refinement process.

Computational Setting. In our new computational setting, algorithms take as input a joint
graph/group pair, meaning a group S and corresponding graph G, whose symmetry group is
precisely ⟨S⟩. We define a precise notion of instance-linear time, meaning it is linear in the
encoding size of the SAT formula, graph, and group.

New Algorithms. Given a joint graph/group pair, we develop and analyze the following
algorithms:
A1 An instance-linear algorithm for computing the finest direct disjoint decomposition of

the symmetry group of a graph (Section 5). We also give a heuristic specific to SAT
formulas, decomposing the symmetry group on the literals.

A2 An algorithm to simultaneously detect natural symmetric group actions on all the orbits
of a group (Section 6). Here we exploit randomized techniques from computational group
theory for the detection of “giant” permutation groups. We give instance-linear heuristics
which are able to exploit properties of the SAT-symmetry interface.

A3 An instance-quasi-linear algorithm to compute equivalent symmetric orbits, under some
mild assumptions about the generating set (Section 7). In conjunction with (A2), this
enables us to detect all elementary row interchangeability subgroups.

Both (A1) and (A3) improve the (at least) quadratic runtime of previous, general-purpose
permutation group algorithms of [9] and [30], respectively.

2 Preliminaries and Related Work

Graphs and Symmetries. A colored graph G = (V, E, π) consists of a set of vertices V ,
edges E ⊆ V × V , and a vertex coloring π : V → C which maps V to some set of colors C.
We use V (G), E(G), and π(G) to refer to the vertices, edges, and coloring of G, respectively.

A symmetry, or automorphism, of a colored graph G = (V, E, π) is a bijection φ : V → V

such that φ(E) = E as well as π(v) = π(φ(v)) for all v ∈ V . In other words, symmetries
preserve the neighborhood relation of the graph, as well as the coloring of vertices. The
colors of vertices in the graph are solely used to ensure that distinctly colored vertices are
not mapped onto each other using symmetries. Together, all symmetries of a graph form a
permutation group under composition, which we call the automorphism group Aut(G).

In this paper, we call software tools computing the automorphism group of a graph
symmetry detection tools [23, 11, 18, 23, 3]. In the literature, these tools are also often called
practical graph isomorphism solvers. In this paper, we avoid the use of this term in order not
to confuse them with SAT solvers.

Color refinement. A common algorithm applied when computing the symmetries of a
graph is color refinement. Given a colored graph G = (V, E, π), color refinement refines the
coloring π of G into G′ = (V, E, π′). Crucially, the automorphism group remains invariant
under color refinement, i.e., Aut(G) = Aut(G′).

We now describe the algorithm. If two vertices in some color X = π−1(c) have a different
number of neighbors in another color Y = π−1(c′), then X can be split by partitioning it
according to neighbor counts in Y . After the split, two vertices have the same color precisely
if they had the same color before the split, and they have the same number of neighbors in Y .

M. Anders, P. Schweitzer, and M. Soos 1:5

We repeatedly split classes with respect to other classes until no further splits are possible.
Figure 2 shows an illustration of the color refinement procedure. A coloring which does not
admit further splits is called equitable. For a graph G, color refinement can be computed in
time O(|E(G)| log |V (G)|) [22, 26].

Let us also recall a different definition for equitable colorings: A coloring π of a graph is
equitable if for all pairs of (not necessarily distinct) color classes C1, C2, all vertices in C1
have the same number of neighbors in C2 (i.e., |N(v) ∩ C2| = |N(v′) ∩ C2| for all v, v′ ∈ C1).
Given a coloring π, color refinement computes an equitable refinement π′, i.e., an equitable
coloring π′ for which π′(v) = π′(v′) implies π(v) = π(v′). In fact, it computes the coarsest
equitable refinement.

Permutation Groups. The symmetric group Sym(Ω) is the permutation group consisting
of all permutations of the set Ω. A permutation group on domain Ω is a group Γ that is
a subgroup of Sym(Ω), denoted Γ ≤ Sym(Ω). For a subset of the domain Ω′ ⊆ Ω, the
restriction of Γ to Ω′ is Γ|Ω′ := {φ|Ω′ | φ ∈ Γ} (where φ|Ω denotes restricting the domain of
φ to Ω). The restriction is not necessarily a group since the images need not be in Ω′. The
pointwise stabilizer is the group Γ(Ω′) := {φ ∈ Γ | ∀p ∈ Ω′ : φ(p) = p}, obtained by fixing all
points of Ω′ individually.

Whenever we are dealing with groups, we use a specific, succinct encoding. Instead of
explicitly representing each element of the group, we only store a subset that is sufficient to
obtain any other element through composition. Formally, let S be a subset of the group Γ,
i.e., S ⊆ Γ. We call S a generating set of Γ whenever we obtain precisely Γ when exhaustively
composing elements of S. We write ⟨S⟩ = Γ. Moreover, each individual element φ ∈ S can
be referred to as a generator of Γ.

We write supp(φ) := {ω | ω ∈ Ω ∧ φ(ω) ̸= ω} for the support of a map, meaning points of
Ω not fixed by φ. The support of a group Γ ∈ Sym(Ω) is the union of all supports of elements
of Γ, i.e., supp(Γ) := {ω | ω ∈ Ω ∧ ∃φ ∈ Γ : φ(ω) ̸= ω}.

We use the cycle notation for permutations φ : Ω → Ω. The permutation of {1, . . . , 5}
given by 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 5, 5 7→ 4 we write as (1, 2, 3)(4, 5). Note that, for
example (1, 2, 3)(5, 4) and (3, 1, 2)(4, 5) denote the same permutation. Algorithmically the
cycle notation enables us to read and store a permutation φ in time supp(φ).

When considering two permutation groups Γ and Γ′ it is possible that the groups are
isomorphic as abstract groups but not as permutation groups. For example, if we let
the symmetric group Sym(Ω) act component-wise on pairs of elements of Ω, we obtain a
permutation group with domain Ω2 that also has |Ω|! many elements. In fact this group
is isomorphic to Sym(Ω) as an abstract group. We say a group Γ is a symmetric group in
natural action if the group is Sym(Ω), where Ω is the domain of Γ.

SAT and Symmetries. A Boolean satisfiability (SAT) instance F is commonly given in
conjunctive normal form (CNF), which we denote with F = {(l1,1 ∨ · · · ∨ l1,k1), . . . , (lm,1 ∨
· · · ∨ lm,km)}, where each element of F is called a clause. A clause itself consists of a set of
literals. A literal is either a variable or its negation. We use Var(F) := {v1, . . . , vn} for the
set of variables of F and we use Lit(F) for its literals.

A symmetry, or automorphism, of F is a permutation of the literals φ : Lit(F) → Lit(F)
satisfying the following two properties. First, it maps F back to itself, i.e., φ(F) ≡ F , where
φ(F) is applied element-wise to the literals in each clause. Here clauses are equivalent, if
they are the same when treated as unordered sets of literals, for example (x ∨ y) ≡ (y ∨ x).
Then F ′ ≡ F if F ′ is obtained from F by reordering the literals of F ′ within the clauses.
Second, for all l ∈ Lit(F) it must hold that φ(l) = φ(l), i.e., φ induces a permutation of the

SAT 2023

1:6 Algorithms Transcending the SAT-Symmetry Interface

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Figure 3 Example model graph M(FE) = M({(x1∨y1), (x2∨y2), (x3∨y3), (x1∨x2∨x3∨z1∨z2)}).
The automorphisms of the graph correspond to the automorphisms of the formula. The coloring on
the right side shows the orbit partition.

variables. For example the permutation mapping xi to ¬xi+1 and xi to xi+1, with indices
taken modulo 4, is a symmetry of (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x4 ∨ ¬x1 ∨ x2 ∨ ¬x3). The
permutation group of all symmetries of F is Aut(F) ≤ Sym(Lit(F)).

It is well understood that the symmetries of a SAT formula F can be captured by a
graph. We call this the model graph and denote it with M(F). While there exists various
constructions for the model graphs, we use the following common construction. Each literal
l ∈ Lit(F) is associated with a vertex l. Each clause C ∈ F is associated with a vertex C.
All pairs of literals l and l are connected by an edge. For all literals l ∈ C of a clause
C, we connect vertices l and C. Lastly, to distinguish clause vertices from literal vertices,
we color all clauses with color 0 and all literals with color 1. As desired, for this graph,
Aut(F) = Aut(M(F))|Lit(F) holds [29].

Consider the formula FE := {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}.
Throughout the paper, we use FE as our running example. Figure 3 shows its model
graph. Regarding the symmetries of FE , note that there are symmetries interchanging
all of x1, x2, x3, all of y1, y2, y3 and of the z1, z2. A generating set SE for Aut(FE) is
SE = {(x1, x2, x3)(x1, x2, x3)(y1, y2, y3)(y1, y2, y3), (x1, x2)(x1, x2)(y1, y2)(y1, y2), (z1, z2)}.

Orbits. Given a permutation group Γ ≤ Sym(Ω), we denote with ωΓ ⊆ Ω the orbit of a
point ω ∈ Ω. That is, an element ω′ ∈ Ω is in ωΓ whenever there is a φ ∈ Γ with φ(ω′) = ω.

The orbits of our example Aut(FE) are shown in Figure 3, e.g., the orbit {z1, z2} is green.

3 SAT-Symmetry Computational Setting

Let us describe the computational setting in which our new algorithms operate. Since we
want the theoretical runtimes to reflect more closely the runtimes in practice, there are two
important differences compared to the traditional computational group theory setting. These
differences are in the measure of runtime as well as in the format of the input.

Joint Graph/Group Pairs. Typically, algorithms in computational group theory dealing
with permutation groups assume as their input a generating set of permutations S of a
group Γ = ⟨S⟩. While this is certainly a natural setting when discussing algorithms for
groups in general, in our setting this input format disregards further information that is
readily available. Therefore, we require that algorithms in the SAT-symmetry interface have
access to more information about the input group. Specifically, we may require that the
input consists of both a generating set S and a graph G with ⟨S⟩ = Aut(G). We call this a
joint graph/group pair (G, S). For our SAT context, we may moreover assume that the SAT
formula F with M(F) = G is available, whenever necessary.

M. Anders, P. Schweitzer, and M. Soos 1:7

Instance-Linear Runtime. In computational group theory, given a generating set S for
a permutation group ⟨S⟩ ≤ Sym(Ω), a runtime of O(|S||Ω|) is typically considered linear
time [30]. This is however only a very crude upper bound when seen in terms of the actual
encoding size of a given generating set. In particular, when generators are sparse, as is
common in SAT [29, 11], linear time in this sense is not necessarily linear time in the encoding
size, which is what we would use in a graph-theoretic or SAT context.

Specifically, we are interested in measuring the runtime of algorithms relative to the
encoding size of a generating set given in a sparse format. Therefore, we define the encoding
size of a generating set S as enc(S) := Σp∈S | supp(p)|.

In particular, given a SAT formula F , graph G = (V, E), and generating set S, the goal
is to have algorithms that (ideally) run in time linear in |F | + |V | + |E| + enc(S). In order
to not confuse the “types of linear time”, we refer to such algorithms as instance-linear.
Analogously, an algorithm has instance-quasi-linear time if it runs in time O((|F | + |V | +
|E| + enc(S)) · (log(|F | + |V | + |E| + enc(S)))c) for some constant c.

Illustrative Examples. The task of computing the orbits is an excellent example demonstrat-
ing the usefulness instance-quasi-linear time. As transitive closure, we can find the orbit ∆
of an element in time O(|∆||S|) [30]. However, with instance-quasi-linear time in mind,
we quickly arrive at an algorithm to compute the entire orbit partition in time O(enc(S) ·
α(enc(S))) using a union-find data structure, where α is the inverse Ackermann function.
The inverse Ackermann function exhibits substantially slower growth than log(n).

Furthermore, having access to the graph of a graph/group pair (G, S) gives a significant
advantage in what is algorithmically possible. A good example of the difference is that
testing membership φ ∈ ⟨S⟩ is much easier for the graph/group pair: testing φ(G) = G

(which is true if and only if φ ∈ ⟨S⟩) can be done in instance-linear time. However, testing
φ ∈ ⟨S⟩ without access to the graph is much more involved. The best known method for the
latter involves computing a strong generating set, corresponding base and Schreier table [30],
followed by an application of the fundamental sifting algorithm [30]. Even performing only
the last step of this process (sifting) is not guaranteed to be in instance-linear time.

4 Favorable Group Structures in SAT

We now propose problems which should be solved within the SAT-symmetry computational
setting. We analyze heuristics used in advanced symmetry exploitation algorithms [13, 25, 17],
extracting precise formal definitions.

Disjoint Direct Decomposition. Following [9], we say a direct product of a permutation
group Γ = Γ1 × Γ2 × · · · × Γr is a disjoint direct decomposition of Γ, whenever all Γi have
pairwise disjoint supports. We call Γi a factor of the disjoint direct decomposition of Γ.
A disjoint direct decomposition is finest, if we cannot decompose any factor further into a
non-trivial disjoint direct decomposition. A recent algorithm solves the problem of computing
the finest disjoint direct decomposition for permutation groups in polynomial-time [9].

In our running example, the finest disjoint direct decomposition of Aut(FE) splits the
group into a subgroup H1 permuting only the xi and yi variables, and a subgroup H2
permuting z1 and z2. Indeed, setting H1 = ⟨{(x1, x2, x3)(x1, x2, x3)(y1, y2, y3)(y1, y2, y3),
(x1, x2)(x1, x2)(y1, y2)(y1, y2)}⟩, and H2 = ⟨{(z1, z2)}⟩, we have Aut(FE) = H1 × H2.

Computing a disjoint direct decomposition is a typical routine in symmetry exploitation
tools [13, 25, 17]. It allows for separate treatment of each factor of the decomposition. The
heuristics in use today do not guarantee that the decomposition is the finest disjoint direct

SAT 2023

1:8 Algorithms Transcending the SAT-Symmetry Interface

decomposition: indeed, the heuristics of the tools mentioned above assume that the given
generating sets are already separable [9]. This means it is assumed, that every generator φ ∈ S

only operates on one factor of the disjoint direct decomposition Γ1 × Γ2 × · · · × Γr. Formally,
this means for each φ ∈ S there is one i ∈ {1, . . . , r} for which supp(φ) ∩ supp(Γi) ̸= ∅ holds,
and for all j ∈ {1, . . . , r}, j ̸= i it holds that supp(φ) ∩ supp(Γi) = ∅. For example, the
generating set SE we gave for Aut(FE) is separable.

It is not known how often generating sets given for graphs of SAT formulas are separable
for a given symmetry detection tool, or in particular after reducing the domain to the literals
of the SAT formula. It is however obvious that for the most advanced general-purpose
symmetry detection tools, Traces and dejavu, generators are not separable with very high
probability due to the use of randomly selected generators [9].

Row Interchangeability. We now discuss the concept of row interchangeability [13, 14, 25].
Let F be a SAT formula. Let M be a variable matrix M : {1, . . . , r} × {1, . . . , c} → Var(F).
We denote the entries of M with xi,j where i ∈ {1, . . . , r} and j ∈ {1, . . . , c}. We define the
shorthand supp(M) := {xi,j | xi,j ∈ M}∪{xi,j | xi,j ∈ M}. The set supp(M) denotes all the
literals involved with the matrix M . We say F exhibits row interchangeability if there exists
a matrix M such that for every permutation φ ∈ Sym({1, . . . , r}), for the induced literal
permutation φ′ : Lit(F)|supp(M) → Lit(F)|supp(M) given by xi,j 7→ xφ(i),j , ¬xi,j 7→ ¬xφ(i),j

it holds that φ′ ∈ Aut(F)|supp(M). Indeed, if this is the case, we can observe that the matrix
M describes a subgroup of Aut(F) consisting of {π ∈ Aut(F) | ∃φ ∈ Sym({1, . . . , r}) : φ′ =
π|supp(M)}. We denote this group by HM ≤ Aut(F).

A crucial fact is that for HM |supp(M), linear-sized complete symmetry breaking is available
[13, 14]. As is also in part discussed in [13, 14], we observe that the complete symmetry
breaking for HM is most effective whenever HM is the only action on supp(M) in Aut(F), or
more precisely, Aut(F)|supp(M) = HM |supp(M). In this case, we call HM an elementary row
interchangeability subgroup. Otherwise, there are non-trivial symmetries φ ∈ Aut(F)|supp(M)
with φ ̸∈ HM |supp(M) or supp(M) is not a union of orbits. Indeed, in this case, the
complete symmetry breaking of HM might make it more difficult to break such overlapping
symmetries φ: for example, if two row interchangeability subgroups HM and HM ′ overlap,
i.e., supp(M) ∩ supp(M ′) ̸= ∅, complete symmetry breaking can only be guaranteed for one
of them using the technique of [13].

Whenever HM is an elementary row interchangeability subgroup, the situation is much
clearer: we can produce a linear-sized complete symmetry breaking formula and this covers at
least all symmetries on the literals supp(M). In this paper, we therefore focus on computing
elementary row interchangeability groups.

Let us consider FE again: for the matrix M :=
[
x1 x2 x3
y1 y2 y3

]
there is indeed a row

interchangeability subgroup. (Recall that the group HM permutes positive and negative
literals of variables appearing in M .) For this example, HM is both an elementary row
interchangeability group and a factor in the finest direct disjoint decomposition of Aut(FE).

Row Interchangeability and Equivalent Orbits. We now describe the matrix of elementary
row interchangeability groups in more group-theoretic terms. We first define the notion of
equivalent orbits:

▶ Definition 1 (Equivalent orbits; see [30, Subsection 6.1.2]). Two orbits ∆1, ∆2 are equivalent,
if and only if there is a bijection b : ∆1 → ∆2 such that for all φ ∈ Γ and δ ∈ ∆1,
φ(b(δ)) = b(φ(δ)).

We write ∆1 ≡ ∆2 to indicate orbits ∆1 and ∆2 are equivalent. It is easy to see this indeed
defines an equivalence relation on the orbits [30].

M. Anders, P. Schweitzer, and M. Soos 1:9

We observe that if a row interchangeability subgroup HM is elementary, each row of the
matrix M is an orbit of Aut(F). Since all rows are moved simultaneously in the same way,
we remark that rows of M are precisely equivalent orbits with a natural symmetric action:

▶ Lemma 2. Let HM be a row interchangeability subgroup of Γ = Aut(M(F)), and let
∆i = (x1, . . . , xc) denote a row of M . HM is an elementary row interchangeability subgroup
if and only if all of the following hold: (1) ∆i is an orbit with a natural symmetric action in
Γ. (2) For every other row ∆j of M , it holds that ∆i ≡ ∆j. (3) For ∆i = (x1, . . . , xc), ∆i

is also an orbit with ∆i ≡ ∆i.

There is an exact algorithm which computes equivalent orbits in essentially quadratic
runtime [30]. Again, runtimes are difficult to compare due to different pre-conditions in [30].
In any case, the algorithm for equivalent orbits depends on computing a base and strong
generating set, which is too slow from our perspective.

We may split detecting elementary row interchangeability groups into detecting natural
symmetric action on the orbits, followed by computing equivalent orbits. We now turn
to solving the problems defined above in the computational setting of the SAT-symmetry
interface. Specifically, we propose algorithms for the finest disjoint direct decomposition
(Section 5), natural symmetric action (Section 6), and equivalent orbits (Section 7).

5 Finest Disjoint Direct Decomposition

Having established the problems we want to address, we now turn to presenting suitable
algorithms in the SAT-symmetry computational setting. In particular, recall that we want to
make use of joint graph/group pairs in order to state algorithms that run in instance-quasi-
linear time. We begin by computing the finest disjoint direct decomposition.

Specifically, given a joint graph/group pair (G, S), our aim is to compute the finest
disjoint direct decomposition of the group ⟨S⟩. Our proposed algorithm, given the orbits,
can do so in instance-linear time. The disjoint direct decomposition of a group allows us
to separately treat each factor of the decomposition in symmetry exploitation or other
consecutive algorithms.

To simplify the discussion, we assume the graph G to be undirected. However, the
procedure generalizes to both directed and even edge-colored graphs.

Orbit Graph. We describe the orbit graph, which can be constructed from (G, S). We are
particularly interested in the connected components of the orbit graph, which turn out to
correspond exactly to the factors of the finest disjoint direct decomposition.

First, note that the orbit partition π of ⟨S⟩ can be viewed as a vertex coloring of the
graph G, assigning to every vertex its orbit. We consider the graph G′ = (V (G), E(G), π),
i.e., G colored with its orbit partition (see Figure 4, left).

We call two distinct orbits ∆, ∆′ homogeneously connected, whenever either all vertices
v ∈ ∆ are adjacent to all vertices of ∆′, or there is no edge with endpoints both in ∆ and ∆′.
Indeed, we could “flip edges” between homogeneously connected orbits such that they all
become disconnected, without changing the automorphism group (see Figure 4, middle).

We now give the formal definition of the orbit graph. The orbit graph is essentially an
adapted version of the so-called flipped quotient graph (see [20] for a discussion). The vertex
set of the orbit graph is the set of orbits of ⟨S⟩, i.e., {π−1(v) | v ∈ V (G′)}. Two orbits ∆, ∆′

are adjacent in the orbit graph if and only if the orbits are not homogeneously connected in
the original graph G (see Figure 4, right).

SAT 2023

1:10 Algorithms Transcending the SAT-Symmetry Interface

Algorithm 1 Compute the orbit graph.

1 function OrbitGraph(G′)
Input : graph G′ = (V, E, π), where π is the orbit partition of Aut(G′)
Output : orbit graph GO

2 initialize integer array A of size |V | with all 0;
3 initialize empty list W ;
4 initialize empty graph GO;
5 V (GO) := π(V);
6 for (∆ ∈ π(V))
7 pick an arbitrary v ∈ ∆;
8 for ((v, v′) ∈ E)
9 increment A[π(v′)];

10 add π(v′) to W ;
11 for (∆′ ∈ W)
12 if A[∆′] > 0 and A[∆′] < |π−1(∆′)| then add edge (∆, ∆′) in GO ;
13 A[∆′] := 0;
14 return GO;

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

{x1, x2, x3}

{x1, x2, x3}

{y1, y2, y3}

{y1, y2, y3} {z1, z2}

{z1, z2}

{c1, c2, c3} {c4}

Figure 4 Model graph of FE colored with its orbit partition on the left. The corresponding graph
with flipped edges is in the middle, which disconnects parts of the graph. On the right the orbit
graph is shown, whose 3 connected components correspond to the factors of the finest disjoint direct
decomposition.

Description of Algorithm 1. Algorithm 1 describes how to compute the orbit graph from
G′. The algorithm first initializes the graph GO with a vertex set that contains exactly
one vertex for each orbit of G′. It then counts for each orbit ∆, how many neighbors a
vertex v ∈ ∆ has in the other orbits. Since ∆ is an orbit, this number is the same for all
vertices, so it suffices to compute this for one v ∈ ∆. Finally, the algorithm checks to which
other colors the vertex v and thus the orbit ∆ is not homogeneously connected (Line 12).
If ∆ and ∆′ are not homogeneously connected, the edge (∆, ∆′) is added to the orbit graph.

Remark on the runtime of Algorithm 1. Using appropriate data structures for graphs
(adjacency lists) and colorings (see [23], which in particular includes efficient ways to compute
|π−1(C ′)|), the algorithm can be implemented in instance-linear time.

Orbit Graph to Decomposition. Indeed, the connected components of the orbit graph
represent precisely the factors of the finest disjoint direct decomposition of the automorphism
group of the graph:

▶ Lemma 3. Let Γ = Aut(G). The vertices represented by a connected component of the
orbit graph of G are all in the same factor of the finest direct disjoint decomposition of Γ
and vice versa.

M. Anders, P. Schweitzer, and M. Soos 1:11

Figure 5 Illustration of two orbits that are non-homogeneously connected on the left in blue and
purple. On the right, fixing a vertex of one orbit indicated in red immediately partitions the other
orbit into two orbits: the neighbors of the red vertex in green, and the non-neighbors in orange.

Proof. Consider two orbits ∆1, ∆2 of Γ in different factors of any direct disjoint decomposition.
Towards a contradiction, assume ∆1, ∆2 are not homogeneously connected. Note that
naturally, the orbit coloring is equitable. Since the orbit coloring is equitable, the connection
must be regular, i.e., each vertex of ∆1 has d1 neighbors in ∆2, and every vertex of ∆2 has
d2 neighbors in ∆1 for some integers d1, d2. However, 0 < d1 < |∆2| and 0 < d2 < |∆1| hold.

Let us now fix a point δ ∈ ∆1, i.e., consider the point stabilizer Γ(δ). If two orbits
are in different factors of a direct disjoint decomposition, fixing a point of ∆1 must not
change the group action on ∆2. In particular, ∆2 must be an orbit of Γ(δ). However, δ is
adjacent to some vertex δ′ ∈ ∆2 and non-adjacent to some vertex δ′′ ∈ ∆2 (see Figure 5
for an illustration). Having fixed δ, we can therefore not map d′ to d′′. This contradicts
the assumption that ∆1 and ∆2 are in different factors of a direct disjoint decomposition.
Hence, orbits in different factors of a direct disjoint decomposition must be homogeneously
connected in G, i.e., non-adjacent in the orbit graph.

Now assume ∆1 and ∆k are in the same component in the orbit graph. Then, there must
be a path of orbits ∆1, ∆2, . . . , ∆k where each ∆i, ∆i+1 is not homogeneously connected. In
this case, we know for each i ∈ {1, . . . , k − 1} that ∆i and ∆i+1 must be in the same factor
of any disjoint direct decomposition. Therefore, ∆1 and ∆k must be in the same factor of
every disjoint direct decomposition.

On the other hand, if ∆1 and ∆k are in different components in the orbit graph, they are
in different factors of the finest disjoint direct decomposition. ◀

Since connected components can be computed in linear time in the size of a graph, and the
size of the orbit graph is at most linear in the size of the original graph, we can therefore
compute the finest direct disjoint decomposition in instance-linear time. In a consecutive
step, the generators could be split according to factors, producing a separable generating set,
again in instance-linear time. This is done by separating each generator into the different
factors. Finally, given the finest direct disjoint decomposition, we can again produce a joint
graph/group pair for each factor, by outputting for a factor Hi the induced subgraph G′[Hi].
We summarize the above in a theorem:

▶ Theorem 4. Given a joint graph/group pair (G, S) and orbit partition of ⟨S⟩, there is an
instance-linear algorithm which computes the following:
1. The finest disjoint direct decomposition ⟨S⟩ = H1 × H2 × · · · × Hm.
2. A separable generating set S′ with ⟨S′⟩ = G.
3. For all factors i ∈ {1, . . . , m} a joint graph/group pair (Gi, Si) with Aut(Gi) = ⟨Si⟩ = Hi

in instance-linear time.
We recall that if the orbit partition of ⟨S⟩ is not yet available, we can compute it in
instance-quasi-linear time.

Domain Reduction to SAT Literals. For a SAT formula F , we can apply the above
procedure to its model graph M(F). However, as mentioned above, in SAT we are typically
only interested in symmetries for a subset of vertices, namely the vertices that represent

SAT 2023

1:12 Algorithms Transcending the SAT-Symmetry Interface

literals. Therefore, we are specifically interested in the finest direct disjoint decomposition
of the automorphism group reduced to literal vertices Aut(M(F))|Lit(F). The crucial point
here is that when removing orbits that represent clauses, orbits of literal vertices can become
independent and the disjoint direct decomposition can therefore become finer. We cannot
simply apply our algorithm for the induced group Aut(M(F))|Lit(F) since this is not a joint
graph/group pair. Of course we could apply the algorithm from [9] that computes finest
disjoint direct decomposition for permutation groups in general. However, we can detect
some forms of independence by simple means using the original joint graph/group pair.
Indeed, we will describe an algorithm that checks in instance-linear time whether the parts
in a given partition of the literals are independent. We can thus at least check whether a
given partition induces a disjoint direct decomposition (the proof can be found in the full
version [5]):

▶ Theorem 5. Let F be a CNF-Formula and (M(F), S) be a joint graph/group pair for the
model graph of F . Given a partition Lit(F) = L1 ∪ L2 ∪ · · · ∪ Lt of the literals of F , the
pair (M(F), S), and its orbits, we can check in instance-linear time whether the partition in-
duces a disjoint direct product (that is, whether Aut(F) = Aut(F)(L\L1) ×· · ·×Aut(F)(L\Lt)).

6 Natural Symmetric Action

Before we can begin our discussion of the natural symmetric action, we need to discuss
generating (nearly-)uniform random elements (see [30]) of a given permutation group ⟨S⟩.
There is no known algorithm which produces uniform random elements of ⟨S⟩ in quasi linear
time, even in computational group theory terminology [30]. However, there are multiple ways
to produce random elements, most of which are proven to work well in practice, and can be
implemented fairly easily [30, 15]. In this paper, we attempt to only make use of random
elements sparingly. Whenever we do, as is common in computational group theory, we do
not consider the particular method used to generate them and simply denote the runtime
of the generation with µ. Moreover, we discuss potential synergies in the SAT-symmetry
context which might help to avoid random elements in practice, whenever applicable.

We now explain how to efficiently test whether a permutation group is a symmetric group
in natural action. Then, we describe more generally how to determine simultaneously for all
orbits of a permutation group whether the induced action is symmetric in natural action.

Detecting symmetric permutation groups in their natural action is a well-researched
problem in computational group theory. State-of-the-art practical implementations are
available in modern computer algebra systems (such as in [24]). Typically, a natural
symmetric action is detected using a so-called probabilistic giant test, followed by a test to
ensure that the group is indeed symmetric. The tests work by computing (nearly) uniform
random elements of the group and inspecting them for specific properties.

A permutation group is called a giant if it is the symmetric group or the alternating
group in natural action. In many computational contexts, giants are by far the largest groups
that appear, hence their name. Because of this, giants form bottleneck cases for various
algorithms and therefore often need to be treated separately. To test whether a permutation
group is a symmetric group in natural action, we first test whether the group is a giant.

We leverage the following facts:

▶ Fact 6 (see [30, Corollary 10.2.2.]). If a permutation group of degree n contains an element
with a cycle of length p for some prime p with n/2 < p < n − 2 then G is a giant.

M. Anders, P. Schweitzer, and M. Soos 1:13

▶ Fact 7 (see [30, Corollary 10.2.3.]). The proportion of elements in Sn containing a cycle of
length p for a prime p with n/2 < p < n − 2 is asymptotically 1/ log(n).

Collectively, these statements show that we only need to generate few random elements of
a group and inspect their cycle lengths to detect a giant. To then distinguish between the
alternating group and the symmetric group, we can check whether all generators belong
to the alternating group. This can be attained using basic routines, such as examining
the so-called parity of a generator (see [30] for more details). Algorithm 2 generalizes the
probabilistic test for a transitive group [30] to a test which is performed simultaneously to
check for a natural symmetric action on all the orbits of a group.

Algorithm 2 Compute whether orbits induce a natural symmetric action.

1 function SymmetricAction(S, O)
Input : generators S with ⟨S⟩ = Γ ≤ Sym(Ω), orbits O := {∆1, . . . , ∆m} of Γ
Output : set of orbits SO ⊆ O, where ∆ ∈ SO induces a natural symmetric action

2 // first, we filter orbits which can at most be alternating
3 for (∆i ∈ O)
4 t := ⊤;
5 for (s ∈ S)
6 if s|∆i

̸∈ Alt(∆i) then t := ⊥ ; // ∆i cannot be alternating
7 if t = ⊤ then O := O ∖ {∆i} ; // ∆i cannot induce symmetric action
8 // second, we test whether orbits are giants
9 SO := ∅;

10 for (_ ∈ {1, . . . , c log(|Ω|)2}) // repeat c log(|Ω|)2 times
11 φ := uniform random element of ⟨S|∪∆i∈SO

∆i
⟩;

12 for (∆i ∈ O)
13 p := cycle length of longest cycle in φ on ∆i;
14 if p > n/2 ∧ p < n − 2 ∧ p prime then
15 SO := SO ∪ {∆i}; // ∆i induces symmetric action
16 O := O ∖ {∆i};
17 return SO

Description of Algorithm 2. Overall, the algorithm samples uniform random elements of
the group and checks whether the random elements exhibit long prime cycles (see Fact 6).
More precisely, the algorithm first distinguishes between potential alternating and symmetric
groups on each orbit. Then, it computes d = c log(|Ω|)2 random elements. For each random
element and each orbit, we then apply the giant test (Fact 6) to check whether the element
certifies that the orbit induces a natural symmetric action.

Runtime of Algorithm 2. Let us assume access to random elements of the joint graph/group
pair (G, S) with ⟨S⟩ ≤ Sym(Ω) in time µ. Assuming a random element can be produced in
time µ, the algorithm runs in worst-case time O(log(|Ω|)2(µ + |Ω|)).

Correctness of Algorithm 2. Regarding the correctness of the algorithm, the interesting
aspect is to discuss the error probability. We argue that the error probability is at most 1/4 if c

is chosen to larger than 2 ln(2). Practical implementations use c = 20 in similar contexts [24].
If an orbit ∆ does not induce a symmetric action, no error can be made. If an or-

bit ∆ induces a symmetric action, by Fact 7, the probability that one iteration does
not produce a long prime cycle for ∆ is at most (1 − 1/ log(n)). Thus, the probabil-
ity that none of the c log(|Ω|)2 iterations produces a long prime cycle for ∆ is bounded

SAT 2023

1:14 Algorithms Transcending the SAT-Symmetry Interface

by (1 − 1/ log(n))c log(|Ω|)2
≤ (1/e)c log(|Ω|) ≤ 1/(4|Ω|) since c > 2 ln(2). Since there can be

at most |Ω| orbits, using the union bound, we get that the probability that the test fails for
at least one of the orbits is at most |Ω| · 1/(4|Ω|) = 1/4.

When trying to compute a natural symmetric action on a graph/group pair, the following
heuristics can be implemented in instance-linear time.

The first and most straightforward heuristic is that most of the time, it is fairly clear
that the generators describe a natural symmetric action. In particular, symmetry detection
based on depth-first search seem to often produce generators that are transpositions. From
these symmetric actions can be detected immediately. This fact is implicitly used by column
interchangeability heuristics in use today. There are however many more ways to detect
a natural symmetric action, many of which are implemented in modern computer algebra
systems such as [15, 24].

Next, the symmetry detection preprocessor sassy [6] as well as the preprocessing used
by Traces sometimes detect a natural symmetric action on an orbit, by detecting certain
structures of a graph. In these cases, the result should be immediately communicated to
consecutive algorithms. We can also use the graph structure to immediately discard orbits
from the test of Algorithm 2. In particular, all orbits ∆ where G[∆] is neither the empty
graph nor the complete graph cannot have a natural symmetric action.

Furthermore, the generators produced by dejavu and Traces are fairly random (for
some parts even uniformly random [3]). This means they should presumably work well with
the probabilistic tests above. Lastly, internally, symmetry detection tools often produce
so-called Schreier-Sims tables [30], which can be used to produce random elements effectively.

Indeed, for our running example FE , the natural symmetric action can be detected quite
easily: let us consider the generators SE reduced to the orbit of {x1, x2, x3}. We observe that
there is a generator (x1, x2, x3) and (x1, x2). While this is not a set of generators detected
by current symmetry exploitation algorithms [13, 25], this is indeed also an arguably obvious
encoding of a natural symmetric action: for an orbit of size n, an n-cycle in conjunction with
a transposition encodes a symmetric action.

7 Equivalent Orbits

Towards our overall goal to compute row interchangeability subgroups, we can now already
determine which orbits induce a natural symmetric action. By Lemma 2, to detect elementary
row interchangeability subgroups, we only miss a procedure for orbit equivalence.

We describe now how to compute equivalent orbits as the automorphism group of a
special, purpose-built graph. Then, we give a faster algorithm computing equivalent orbits
with natural symmetric action in instance-quasi-linear time, under mild assumptions. In
particular, we can find all classes of equivalent orbits described by Lemma 2.

7.1 Cycle Type Graph
If two orbits are equivalent, they appear in every permutation in “the same manner”: for
example, if orbits ∆1 and ∆2 are equivalent then for every generator g, the cycle types g

induces on ∆1 are the same as the cycle types g induces on ∆2. More generally, equivalent
orbits must be equivalent with respect to every generating set of the group. We introduce
the cycle type graph whose symmetries capture orbit equivalence. This means we can use a
symmetry detection tool to detect equivalent orbits.

For a group Γ ≤ Sym(Ω) and generating set ⟨S⟩ = Γ, we define the cycle type graph C(S)
as follows.

M. Anders, P. Schweitzer, and M. Soos 1:15

Firstly, the vertex set of C(S) is the disjoint union V (C(S)) := Ω∪̇
⋃̇

g∈S supp(g). In
other words, there is a vertex for each element of Ω and there are separate elements for all
the points moved by the generators. In particular if a point is moved by several generators
there are several copies of the point.

Secondly, the edges of C(S) are added as follows: each corresponding vertex for x ∈
supp(g) is adjacent to the corresponding vertex for element x ∈ Ω via an undirected edge.
Furthermore, there are directed edges {(x, g(x)) | x ∈ supp(g)}. In other words, for each
generator si ∈ S, we add directed cycles for each cycle of the generator, as shown in Figure 6a.
In the following, we refer to directed cycles added in this manner as cycle gadgets.

Thirdly, we define a vertex coloring for C(S). For this we enumerate the generators,
i.e., S = {s1, . . . , sm}. We then color the vertices in Ω with color 0 and an x ∈ supp(gi)
is colored with (i, t), where t is the length of the cycle in gi containing x. With this, the
cycle type graph is constructed in such a way that its automorphism structure captures
equivalence of orbits, as is described in more detail below.

We record several observations on automorphisms of the cycle type graph (missing proofs
can be found in the full version [5]).

▶ Lemma 8. If ∆1, ∆2 are orbits of Γ then there is some b ∈ Aut(C(S)) for which b(∆1) = ∆2,
if and only if ∆1 ≡ ∆2.

We may formulate the observations in group theoretic terms, giving the following lemma.

▶ Lemma 9. Given a group Γ ≤ S(Ω), its centralizer in the symmetric group CSym(Ω)(Γ)
and the cycle type graph C(Γ) are a joint graph/group pair, i.e., Aut(C(Γ)) = CS(Ω)(Γ).

Since the centralizer of Sym(Ω) in Sym(Ω) is trivial for |Ω| > 2, we get the following corollary.

▶ Corollary 10. If Γ = Sym(Ω) with |Ω| > 2, the cycle type graph of Γ is asymmetric.

It follows from the corollary that for two equivalent orbits with a natural symmetric action
the bijection b commuting with the generators and interchanging the orbits is in fact unique.

While the cycle type graph and the centralizer in the symmetric group (C(Γ), CSym(Ω)(Γ))
is a joint graph/group pair, we still have to compute the group: so far, we only have access
to C(Γ). One option is a symmetry detection tool. However, this goes against our goal
of invoking symmetry detection tools unnecessarily often – and against our goal to find
instance-linear algorithms. Hence, instead of computing the entire automorphism group, our
approach is to make due with less: in the following, we enhance the cycle type graph in a way
such that it becomes “easy” for color refinement. Color refinement is usually applied as a
heuristic approximating the orbit partition of a graph. However, on the enhanced graphs, we
prove that color refinement is guaranteed to compute the orbit partition. Then, we show that
the orbit partition suffices to determine equivalent orbits. Overall, these methods are only
guaranteed to work for orbits with a natural symmetric action, as is the case in elementary
row interchangeability groups.

7.2 Symmetries of Cycle Type Graph with Unique Cycles
Our goal is now to enhance the cycle type graph such that color refinement is able to compute
its orbit partition. This in turn enables us to detect equivalent orbits, and in turn elementary
row interchangeability groups. Towards this goal, we first discuss an algorithm to compute

SAT 2023

1:16 Algorithms Transcending the SAT-Symmetry Interface

(a) Cycle type graph.

1 11 11 1
5 5

(b) Enhanced cycle type graph.

Figure 6 The cycle type graph and enhanced cycle type graph. The figure shows a cycle type
gadget and canonical cyclic order for the permutation (1234)(5678). Automorphisms of this graph
are elements of the centralizer, which indicate equivalent orbits.

unique cycles on orbits. Unique cycles are a key ingredient for our enhanced cycle type graph.
These cycles should be invariant with respect to an ordered generating set, a concept we
explain first.

Given an ordered generating set (s1, . . . , sm) for a permutation group Γ = ⟨{si | i ∈
{1, . . . , m}}⟩ ≤ Sym(Ω), a permutation φ ∈ Sym(Ω) fixes the ordered generating set (point-
wise under conjugation) if for all si we have φ ◦ si ◦ φ−1 = si.

A permutation π ∈ Sym(Ω) is invariant with respect to the ordered generating set if
all permutations φ that fix (s1, . . . , sm) under conjugation also fix (s1, . . . , sm, π) under
conjugation1. Note that all group elements in π ∈ Γ are invariant. However, there can be
further invariant permutations.

We say a permutation π has a unique cycle if for some length ℓ > 1, the permutation π

contains exactly one cycle of ℓ. We now describe a two-step process. Step one is to compute
an invariant permutation with a unique cycle. Step two is to use this to compute an invariant
permutation with a cyclic order.

Unique Cycle from Generators. As a first step we now need an invariant unique cycle to
proceed. We argue how to compute such a cycle for orbits on which our group induces a
natural symmetric action.

We may use random elements to find a unique cycle. In fact, if we perform the giant test
of Section 6, we get access to a unique cycle. However, in that section we needed a prime
length cycle. If we are only interested in unique cycles, not necessarily of prime length, this
process terminates much more quickly: Golomb’s constant [16] measures, as n → ∞, the
probability that a random element φ ∈ Sn has a cycle of length greater than n

2 . The limit is
greater than 4

5 .
In practice the existence of a unique cycle is a mild assumption: on the one hand some

practical heuristics only apply if specific combinations of transpositions are present in the
generators [13, 25]. Each transposition is a unique cycle. On the other hand, randomly
distributed automorphisms, as returned by Traces and dejavu, satisfy having a unique
cycle with high probability, as argued above.

Unique Cycle To Cyclic Order. We now assume we are given an invariant unique cycle C.
The idea is now to extend C using the generators S to a cycle which encompasses the entire
orbit. Crucially, the extension ensures that the result is still invariant (i.e. if we do this for
all orbits simultaneously, the final permutation will be invariant).

1 In group theoretic terms, π is in CSym(Ω)(CSym(Ω)(⟨s1, . . . , sm⟩)).

M. Anders, P. Schweitzer, and M. Soos 1:17

0 1 2 3

0 a 1 b c 2 d
0 a 1 b c 2 d 3

Figure 7 An illustration of the cycle overlap algorithm. Overlapping cycles C = (0, 1, 2, 3) and
D = {(0, a, 1, b, c), (2, d)}.

Algorithm 3 The cycle overlap algorithm.

1 function CycleOverlap(C, D)
Input : directed cycle C, overlapping pair-wise disjoint directed cycles

D = {D1, . . . , Dm} (with ∀Di ∈ D : Di ∩ C ̸= ∅,
∀Di, Dj ∈ D : i ̸= j =⇒ Di ∩ Dj = ∅)

Output : directed cycle containing all vertices C ∪ D

2 C ′ :=
⋃

Di∈D C ∩ Di;
3 for (c ∈ C ′)
4 D′ := read D from c to next vertex of C ′;
5 insert D′ after c in C;
6 return C;

We now describe the cycle overlap algorithm, which gets as input a directed cycle C,
as well as a collection of cycles D1, . . . , Dm which must be pair-wise disjoint. Furthermore,
each Di must have one vertex in common with C. The result is a cycle C ′ that contains all
vertices of all the cycles. A formal description can be found in Algorithm 3.

Description of Algorithm 3. The algorithm first checks which vertices of D = D1∪· · ·∪Dm

appear in C, and records them into the set C ′. Then, for each c ∈ C ′ in the overlap of C and
D, the algorithm walks along the respective cycle Di containing c, and records all vertices it
observes into D′. It walks along the cycle until another c′ ∈ C ′ is reached (it may record the
entire cycle Di, i.e., c′ = c may hold). Finally, D′ is inserted as a path into C.

The output of the process is invariant under the cyclic orders involved. This means no
matter in which order the cycles from D are processed, the algorithm always returns the
same cyclic order. Figure 7 illustrates the algorithm.

Runtime of Algorithm 3. We may use a doubly-linked list structure for directed cycles
C and D, and an array A to link vertices V to their position in C in time O(1). Assuming
these data structures, inserting a D′ into C can be performed in time |D′|. Indeed, with
these data structures, we can implement the entire algorithm in time O(Σi∈{1,...,m}|Di|). We
may also update the array A to include the new vertices of C added from D.

To get a unique cyclic order, we repeatedly combine C with cycles appearing in generators
that intersect C. Every cycle in a generator only has to be processed once. Eventually C

contains the entire orbit. With careful management of usage-lists of vertices in cycles of
generators, the overall algorithm can be implemented in instance-linear time.

7.3 Cyclic Order to Equivalent Orbits
We finally describe how to find equivalent orbits, assuming invariant cyclic orders are given on
the orbits. An invariant cyclic order for the vertices of each orbit moves us one step closer to
the orbits of the cycle type graph. There are however still many potential bijections between
orbits: indeed, we do not know how each cyclic order should be rotated. We therefore
describe a procedure to refine the cyclic order further.

SAT 2023

1:18 Algorithms Transcending the SAT-Symmetry Interface

Algorithm 4 High-level procedure to obtain equivalent orbits.

1 function EquivalentOrbits(S, ∆1, . . . , ∆m, C∆1 , . . . , C∆m
)

Input : group ⟨S⟩ = Γ ≤ S(Ω), orbit partition ∆1, . . . , ∆m of Γ, unique cycles
C∆1 , . . . , C∆m

Output : partition of v ∈ Ω into equivalent orbits
2 overlap each unique cycle C∆i

with S to obtain canonical cycle C ′
∆i

;
3 construct enhanced cycle type graph C′(S);
4 π := apply color refinement to C′(S);
5 return π

We introduce the enhanced cycle type graph C′(S). We are provided an invariant cyclic
order for each orbit ∆ of Γ, which we denote by C∆. First, we add to the cycle type
graph (Subsection 7.1) a cycle gadget for each C∆. As before, we color the cycle gadget
C∆ according to its cycle length. Next, we enhance all other cycle gadgets using distance
information of C∆: in every cycle gadget we mark each directed edge v1 → v2 with the length
of the (directed) path from v1 to v2 in C∆ (see Figure 6b). We write v1

c−→ v2 whenever the
path from v1 to v2 in C∆ has length c. Note that while we use edge-labels for clarity, these
can be encoded back into vertex colors (see [19, Proof of Lemma 15]).

Just like with the cycle type graph, the automorphism group of the enhanced cycle type
graph C′(S) is the centralizer of Γ and (CSym(Ω)(Γ), C′(Γ)) is a joint graph/group pair (see
Lemma 9). However, it is easier to compute the orbit partition of C′(S).

In fact, our method of obtaining the orbits of C′(S) is rather straightforward: we apply
the color refinement procedure to the enhanced cycle type graph C′(S). The technical proof
that color refinement indeed computes the orbit partition can be found in the full version [5]:

▶ Lemma 11. Color refinement computes the orbit partition of the enhanced cycle type
graph.

Given our high-level procedure in Algorithm 4, and given that color refinement can be
computed in quasi-linear time as previously discussed, leads to the following theorem:

▶ Theorem 12. Given access to a unique cycle per orbit, there is an instance-quasi-linear
algorithm which computes for a joint graph/group pair (G, S) a partition π of equivalent
orbits. Given two equivalent orbits ∆1 ≡ ∆2, there is an algorithm which computes from π a
corresponding matching b : ∆1 → ∆2 such that for all φ ∈ Γ and δ ∈ ∆1, φ(b(δ)) = b(φ(δ))
in time O(|∆1|).

8 Conclusion and Future Work

Exploiting our concept of joint graph/group pairs, we proposed new, asymptotically faster
algorithms for the SAT-symmetry interface. However, most of the new concepts and ap-
proaches of this paper do not only apply to the domain of SAT, but also for example to MIP
[25] and CSP [14]. More computational tasks should be considered in this context, the most
prominent one arguably being pointwise stabilizers [30].

Our new algorithms exploit subroutines with highly efficient implementations available,
but otherwise do not use any complicated data structures. We intend to implement the
algorithms and integrate them into the symmetry detection preprocessor sassy [6].

Finally, in some classes of SAT instances, more complex symmetry structures may arise.
Analyzing and taking advantage of these structures is potential future work. For example,

M. Anders, P. Schweitzer, and M. Soos 1:19

in the pigeonhole principle, BreakID finds overlapping row interchangeability groups and
breaks these groups partially. By virtue of being overlapping, the symmetry breaking
constraints produced are not guaranteed to be complete. Specifically, the pigeonhole principle
is an example of instances whose symmetries form a wreath product of two symmetric groups,
i.e., Sn wr Sm (n pigeons, m holes). Procedures to detect and exploit such groups (e.g., by
first using blocks of imprimitivity [30] followed by the algorithms of this paper) could be of
practical interest.

References
1 Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: efficient symmetry-breaking

for boolean satisfiability. In Proceedings of the 40th Design Automation Conference, DAC,
pages 836–839. ACM, 2003. doi:10.1145/775832.776042.

2 Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Solving difficult
SAT instances in the presence of symmetry. In Proceedings of the 39th Design Automation
Conference, DAC, pages 731–736. ACM, 2002. doi:10.1145/513918.514102.

3 Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries. In
Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium
on Algorithms, ESA, volume 204 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.6.

4 Markus Anders and Pascal Schweitzer. Search problems in trees with symmetries: Near
optimal traversal strategies for individualization-refinement algorithms. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP, volume 198 of LIPIcs, pages 16:1–16:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.16.

5 Markus Anders, Pascal Schweitzer, and Mate Soos. Algorithms transcending the sat-symmetry
interface. CoRR, abs/2306.00613, 2023. doi:10.48550/arXiv.2306.00613.

6 Markus Anders, Pascal Schweitzer, and Julian Stieß. Engineering a preprocessor for symmetry
detection. CoRR, abs/2302.06351, 2023. doi:10.48550/arXiv.2302.06351.

7 Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. The efficiency of
resolution and davis–putnam procedures. SIAM J. Comput., 31(4):1048–1075, 2002. doi:
10.1137/S0097539700369156.

8 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry
and dominance breaking for combinatorial optimisation. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI, pages 3698–3707. AAAI Press, 2022. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/20283.

9 Mun See Chang and Christopher Jefferson. Disjoint direct product decompositions of per-
mutation groups. J. Symb. Comput., 108:1–16, 2022. doi:10.1016/j.jsc.2021.04.003.

10 James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C.
Shapiro, editors, Proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR’96), pages 148–159. Morgan Kaufmann, 1996.

11 Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting structure
in symmetry detection for CNF. In Sharad Malik, Limor Fix, and Andrew B. Kahng, editors,
Proceedings of the 41th Design Automation Conference, DAC 2004, San Diego, CA, USA,
June 7-11, 2004, pages 530–534. ACM, 2004. doi:10.1145/996566.996712.

12 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Serge Gaspers and Toby Walsh, editors,
Theory and Applications of Satisfiability Testing – SAT, volume 10491 of LNCS, pages 83–100.
Springer, 2017. doi:10.1007/978-3-319-66263-3_6.

13 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static
symmetry breaking for SAT. In Nadia Creignou and Daniel Le Berre, editors, Theory and

SAT 2023

https://doi.org/10.1145/775832.776042
https://doi.org/10.1145/513918.514102
https://doi.org/10.4230/LIPIcs.ESA.2021.6
https://doi.org/10.4230/LIPIcs.ICALP.2021.16
https://doi.org/10.48550/arXiv.2306.00613
https://doi.org/10.48550/arXiv.2302.06351
https://doi.org/10.1137/S0097539700369156
https://doi.org/10.1137/S0097539700369156
https://ojs.aaai.org/index.php/AAAI/article/view/20283
https://ojs.aaai.org/index.php/AAAI/article/view/20283
https://doi.org/10.1016/j.jsc.2021.04.003
https://doi.org/10.1145/996566.996712
https://doi.org/10.1007/978-3-319-66263-3_6

1:20 Algorithms Transcending the SAT-Symmetry Interface

Applications of Satisfiability Testing – SAT, volume 9710 of LNCS, pages 104–122. Springer,
2016. doi:10.1007/978-3-319-40970-2_8.

14 Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson,
and Toby Walsh. Breaking row and column symmetries in matrix models. In Pascal Van
Hentenryck, editor, Principles and Practice of Constraint Programming – CP, volume 2470 of
LNCS, pages 462–476. Springer, 2002. doi:10.1007/3-540-46135-3_31.

15 The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.12.2, 2022. URL:
https://www.gap-system.org.

16 Solomon W. Golomb and Peter Gaal. On the number of permutations on n objects with
greatest cycle length k. Advances in Applied Mathematics, 20(1):98–107, 1998. doi:10.1006/
aama.1997.0567.

17 Andrew Grayland, Christopher Jefferson, Ian Miguel, and Colva M. Roney-Dougal. Minimal
ordering constraints for some families of variable symmetries. Annals of Mathematics and
Artificial Intelligence, 57:75–102, 2009.

18 Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for
canonical labeling. In Alberto Marchetti-Spaccamela and Michael Segal, editors, Theory and
Practice of Algorithms in (Computer) Systems – First International ICST Conference, TAPAS,
volume 6595 of LNCS, pages 151–162. Springer, 2011. doi:10.1007/978-3-642-19754-3_16.

19 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The weisfeiler-leman dimension of
planar graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019. doi:10.1145/3333003.

20 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.
In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical
Foundations of Computer Science 2015 – 40th International Symposium, MFCS, Part I, volume
9234 of LNCS, pages 319–330. Springer, 2015. doi:10.1007/978-3-662-48057-1_25.

21 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation. In
Laurent D. Michel, editor, 27th International Conference on Principles and Practice of
Constraint Programming, CP, volume 210 of LIPIcs, pages 34:1–34:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.34.

22 Brendan D. McKay. Practical graph isomorphism. In 10th. Manitoba Conference on Numerical
Mathematics and Computing (Winnipeg, 1980), pages 45–87, 1981.

23 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

24 M. Neunhöffer, Á. Seress, and M. Horn. recog, a package for constructive recognition of
permutation and matrix groups, Version 1.4.2. https://gap-packages.github.io/recog,
September 2022. GAP package.

25 Marc E. Pfetsch and Thomas Rehn. A computational comparison of symmetry handling
methods for mixed integer programs. Math. Program. Comput., 11(1):37–93, 2019. doi:
10.1007/s12532-018-0140-y.

26 Adolfo Piperno. Isomorphism test for digraphs with weighted edges. In Gianlorenzo D’Angelo,
editor, 17th International Symposium on Experimental Algorithms, SEA, volume 103 of
LIPIcs, pages 30:1–30:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.SEA.2018.30.

27 Jean-Francois Puget. Symmetry breaking using stabilizers. In Francesca Rossi, editor,
Principles and Practice of Constraint Programming – CP, volume 2833 of LNCS, pages
585–599. Springer, 2003. doi:10.1007/978-3-540-45193-8_40.

28 Ashish Sabharwal. Symchaff: exploiting symmetry in a structure-aware satisfiability solver.
Constraints An Int. J., 14(4):478–505, 2009. doi:10.1007/s10601-008-9060-1.

29 Karem A. Sakallah. Symmetry and satisfiability. In Armin Biere, Marijn Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability – Second Edition, volume
336 of Frontiers in Artificial Intelligence and Applications, pages 509–570. IOS Press, 2021.
doi:10.3233/FAIA200996.

https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/3-540-46135-3_31
https://www.gap-system.org
https://doi.org/10.1006/aama.1997.0567
https://doi.org/10.1006/aama.1997.0567
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1145/3333003
https://doi.org/10.1007/978-3-662-48057-1_25
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.1016/j.jsc.2013.09.003
https://gap-packages.github.io/recog
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.4230/LIPIcs.SEA.2018.30
https://doi.org/10.4230/LIPIcs.SEA.2018.30
https://doi.org/10.1007/978-3-540-45193-8_40
https://doi.org/10.1007/s10601-008-9060-1
https://doi.org/10.3233/FAIA200996

M. Anders, P. Schweitzer, and M. Soos 1:21

30 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

SAT 2023

https://doi.org/10.1017/CBO9780511546549

	1 Introduction
	2 Preliminaries and Related Work
	3 SAT-Symmetry Computational Setting
	4 Favorable Group Structures in SAT
	5 Finest Disjoint Direct Decomposition
	6 Natural Symmetric Action
	7 Equivalent Orbits
	7.1 Cycle Type Graph
	7.2 Symmetries of Cycle Type Graph with Unique Cycles
	7.3 Cyclic Order to Equivalent Orbits

	8 Conclusion and Future Work

