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Abstract
To test a graph’s planarity in SAT-based graph generation we develop SAT encodings with dynamic
symmetry breaking as facilitated in the SAT modulo Symmetry (SMS) framework. We implement
and compare encodings based on three planarity criteria. In particular, we consider two eager
encodings utilizing order-based and universal-set-based planarity criteria, and a lazy encoding based
on Kuratowski’s theorem. The performance and scalability of these encodings are compared on
two prominent problems from combinatorics: the computation of planar Turán numbers and the
Earth-Moon problem. We further showcase the power of SMS equipped with a planarity encoding by
verifying and extending several integer sequences from the Online Encyclopedia of Integer Sequences
(OEIS) related to planar graph enumeration. Furthermore, we extend the SMS framework to directed
graphs which might be of independent interest.
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1 Introduction

Graph generation is the problem of deciding whether a graph with a particular property
exists. Many difficult problems in Combinatorics can be stated as graph generation problems.
Over the last years, SAT-based approaches to graph generation have been proposed, yielding
competitive alternatives to isomorphism-free exhaustive enumeration by canonical construc-
tion path, as implemented in tools like Nauty [34]. By combining the desired graph property
with symmetry breaking, SAT-based approaches can avoid generating a prohibitively large
number of candidate graphs for which the desired property needs to be checked. SAT Modulo
Symmetry (SMS) [30] is a SAT-based approach that supports complete symmetry breaking
performed by a special propagator that collaborates with a CDCL SAT solver [21].

In this article, we look into SAT-based graph generation where the given property entails
the graph being planar.
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14:2 SAT-Based Generation of Planar Graphs

There are mainly two options for incorporating planarity into SAT-based graph search:
(i) employing an “eager” encoding of planarity directly into a SAT formula or (ii) using a
“lazy” encoding that incrementally adds clauses to ensure that the partially defined graph, as
represented by the current partial assignment of the solver, is planar. Today, many criteria
for planarity are known. Criteria that are positive in the sense that they state the existence
of a planar embedding, are natural candidates for an eager SAT encoding because valid
variable assignments are in correspondence with embeddings. Criteria that are negative in
the sense that they state the existence of an obstruction against a planar embedding, are
candidates for lazy encoding; once an obstruction has been found, the solver can exclude it
by learning a corresponding clause.

In Section 3, we propose a lazy encoding based on forbidden graph minors and Kuratowski’s
theorem, and two eager encodings of planarity; one is based on Schnyder orders [40], and the
other is based on universal point sets [13].

In Section 5, we compare the performance and scalability of these encodings on three
problem settings.

The first problem setting is from extremal combinatorics [5] and seeks the maximum
number of edges in graphs on n vertices that excludes a certain subgraph. The Turán number
ex(n, H) for an integer n and a graph H is the maximum number of edges in an n-vertex graph
G with no copy of H as a subgraph. Turán famously showed that ex(n, Ck) ≤ (1 − 1

k−1 ) n2

2 ,
where Ck denotes the cycle graph on k vertices ([44], see also [2, Chapter 27]). Dowden [14]
studied the problem restricted to planar graphs G which gives rise to the planar Turán
number exP (n, H). Very recently, planar Turán numbers for various graphs H have become
the subject of intensive research in combinatorics [12, 15, 16, 24, 32]. With our SAT-based
framework, we compute planar Turán numbers for n ≤ 18 where the excluded subgraph is a
cycle of length 4 or 5, as studied in [14].

The second problem setting is an extension of the planar map coloring problem, known
as the Earth-Moon problem introduced by Ringel [37]. It seeks the chromatic number of
a biplanar graph (a graph that can be formed as the union of two planar graphs). The
name of the problem originates from the figurative statement of the problem, which asks for
the minimum number of colors needed to properly color a map consisting of two separate
spherical (planar) maps, an Earth map containing a collection of countries, and a Moon map
containing a colony for each country on Earth. A proper coloring assigns the same color to a
country and its lunar colony and different colors to countries and colonies with a common
boundary. It is known that the number of required colors lies between 9 and 12 (cf. [27,
p. 36] and [26, p. 199]). To encode biplanar graphs for the Earth-Moon problem, we extended
the SMS framework from graphs to directed graphs: antiparallel edges indicate edges in one
planar graph and the remaining edges indicate edges in the other. This extension might be
of independent interest. With this approach, we are able to show the absence of biplanar
graphs with certain order and at least a certain chromatic number.

As the third problem setting, we consider various integer sequences related to planar graph
and digraph enumeration as listed in the On-Line Encyclopedia of Integer Sequences [35].
While existing graph enumeration tools such as plantri [8] mainly aim on plane graphs (i.e.,
planar graphs with a fixed embedding), our approach is the first for planar graphs (no
embeddings involved). For several of the sequences we could verify and extend the known
initial segments with a relatively minor effort. In particular, having common parameters
implemented (such as bounds on degrees, clique/independence number, connectivity, etc.), a
large variety of sequences can be simply tested from the command line just by combining
the desired parameters. We see this as an indication that, in several cases, our approach is
superior and easier to use than standard graph enumeration based approaches and for the
versatility of our framework.
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Related Work

Chimani, Hedtke and Wiedera [10] investigated the problem of finding a planar subgraph
of a given graph with the maximum number of edges. They used encodings to integer
linear programs and pseudo-boolean satisfiability based on various planarity criteria for that
purpose. This problem setting is very different from ours since they work with a given input
graph while we aim to generate graphs for which symmetry breaking plays a central role.

Plantri is the standard tool for the generation of certain types planar graphs and was
developed by Brinkmann and McKay [8]. It enumerates non-isomorphic planar graphs with a
fixed embedding (plane graphs). Since 3-connected planar graphs have a unique embedding,
plantri can directly enumerate various subclasses of 3-connected planar graphs. However,
in general planar graphs can have multiple (up to exponentially many) embeddings and
therefore one must filter duplicates caused by distinct embeddings. With SMS, we can
enumerate planar graphs of any connectivity directly.

2 Preliminaries

For positive integers n, we write [n] := {1, . . . , n}.
We use standard notation for CNF formulas (propositional formulas in conjunctive normal

form), propositional variables, literals, and clauses [36].
We use standard notation for graphs and digraphs [6, 45], in particular, all considered

graphs and digraphs are finite and simple. A graph G consists of a finite set V (G) of vertices
and a set E(G) ⊆ {{u, v} : u ̸= v ∈ V (G)} of edges. Similarly, a directed graph G (or digraph)
G consists of a finite set V (G) of vertices and a set E(G) ⊆ {(u, v) : u ̸= v ∈ V (G)} of directed
edges or arcs. The underlying graph G of a digraph G has the vertex set G(V ) := G(V ) and
edge set E(G) := {{u, v} : (u, v) ∈ E(G)}.

An edge-subdivision operation deletes an edge {u, v} from a graph G, and adds two new
edges {u, w}, {w, v} and a new vertex w ̸∈ V (G). A graph G is a subdivision of another
graph H if G can be obtained from H by successively performing edge-subdivisions.

A graph G is connected if there exists a path between any two vertices u, v ∈ V (G),
that is, there exists a sequence of vertices u = w0, w1, . . . , wk = v with {wi, wi+1} ∈ E(G).
Moreover, G is k-connected if |V (G)| ≥ k + 1 and the deletion of any k − 1 vertices results
in a connected graph. The connectivity κ(G) denotes the largest integer k for which G is
k-connected. Pause to note that the terms “k-connected” and “connectivity k” must not be
confused as the class of k-connected graphs consists all graphs G with connectivity κ(G) ≥ k.
A digraph is weakly k-connected if its underlying graph is k-connected.

To define planarity, some auxiliary terminology is required. A simple curve in the
plane (resp. on the sphere) is the image of a injective continuous mapping ϕ : [0, 1] → R2

(resp. ϕ : [0, 1] → S2). The points ϕ(0), ϕ(1) are the curve’s ends and the remaining points of
the curve form the curve’s interior. A graph is planar if there exists a mapping of the vertex
to the plane (resp. to the sphere) and a mapping of each edge to a simple curve connecting the
two corresponding vertices such the interiors of any two curves is disjoint. Such a mapping
is called embedding. In general, one does not distinguish between embedding in the plane
and embedding on the sphere since any embedding on the sphere can be transferred into the
plane via a stereographic projection, and vice versa.

A plane graph is a planar graph with a fixed embedding. If a graph is 3-connected then
it has a combinatorially unique embedding on the sphere [46], that is, the cyclic order of the
incident edges around any vertex coincide in every embedding. However, graphs that are
not 3-connected can have multiple embeddings, hence one planar graph can correspond to
several plane graphs; see e.g. Figure 1.

SAT 2023
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Figure 1 Two embeddings of the same planar graph. The graph is constructed by adding an
edge to every vertex of the grid graph. Since every edge can be drawn in multiple cells, the graph
corresponds to exponentially many non-isomorphic plane graphs.

A k-coloring of a graph G is mapping c : V (G) → [k] such that for every edge {u, v} ∈ E(G)
it holds c(u) ̸= c(v). A graph G is k-colorable if there exists a k-coloring of G and the
chromatic number χ(G) of G denotes the smallest integer k such that G is k-colorable. The
famous four-color theorem states that if G is planar then χ(G) ≤ 4 [3, 38].

For a graph G and permutation of the vertices π : V (G) → V (G), we denote the relabeled
graph by π(G), that is, V (π(G)) = V (G) and E(π(G)) = {{π(u), π(v)} : {u, v} ∈ E(G)}.

During SAT-based graph generation, we encounter partially defined graphs and digraphs.
In a partially defined (di)graph G, the edge set E(G) is partitioned into the set D(G) of
defined edges and the set U(G) of undefined edges. The (di)graph G is fully defined if
U(G) = ∅. A partially defined (di)graph G can be extended to a fully defined (di)graph G′

if V (G′) = V (G) and D(G) ⊆ E(G′) ⊆ D(G) ∪ U(G). If not stated otherwise, graphs are
undirected and fully defined.

3 SAT Encodings for Planarity

There are many different criteria in the literature for a graph being planar. In this section,
we select three of them and implement and benchmark these encodings.

In the context of SAT-based graph generation and enumeration, the graph is not know
during search, so we design the planarity encoding based on the variables describing the
combinatorial object. In other words, we don’t construct formulas for a given input graph,
but rather for all graphs implicitly described by certain propositional variables. For a fixed
number of vertices n, we use the propositional variables eu,v, whose truth values indicate
whether the edge {u, v} is present.

3.1 Encoding Based on Kuratowski’s Theorem
The famous theorem by Kuratowski asserts that a graph is planar if and only if it does not
contain K3,3 or K5 as a topological minor, which means it does not contain a subdivision of
the complete bipartite graph K3,3 or the complete graph K5 as a subgraph. This planarity
criterion is negative in the sense that it is based on the non-existence of a certain object, and
hence is not well suited for an eager SAT encoding.

Towards a lazy SAT encoding, note that the existence of a topological K3,3 or K5 minor
can be checked in linear time [7, 47]. Thus we can efficiently test whether a partially defined
graph can be extended to a planar graph. We can carry out such a test during the CDCL
procedure, whenever an edge variable has been decided, similarly to the SMS minimality
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check [30]. Whenever we determine that the current partially defined graph cannot be
extended to a planar graph, we add a clause preventing that the search on this partially
defined graph with possible further edges continues.

For that we proceed as follows. First, we construct a partially defined graph G given by
the partial assignment of the propositional edge variables. For the sake of planarity testing,
we consider the fully defined graph G′ with V (G′) := V (G), E(G′) := D(G), and U(G′) := ∅.
Since G′ is a subgraph of all extensions of G, its non-planarity implies the non-planarity for
all extensions of G. We apply the Boyer-Myrvold planarity testing algorithm [7] to G′, a
linear time planarity algorithm based on edge additions to compute a planar embedding.
If it concludes that the graph G′ is not planar the algorithm returns a subgraph H of G′,
which is a subdivision of K3,3 or K5. Adding the clause∨

{u,v}∈E(H)

¬eu,v

blocks this specific subgraph.

3.2 Encoding Based on Schnyder Orders

Schnyder [40] proved that a graph G is planar if and only if its incidence order dimension
is at most 3. Formally, there exist three partial orders ≺1, ≺2, ≺3 (which we call Schnyder
orders) such that for every edge {u, v} ∈ E(G) and every vertex w ∈ V (G) \ {u, v} there is
some i ∈ {1, 2, 3} such that u ≺i w and v ≺i w. Since every partial order can be extended to
a total order, one can assume without loss of generality that ≺1, ≺2, ≺3 are total orders. We
refer the interested reader to Chapter 2 of Felsner’s book [18].

This results in a compact encoding for planarity. To enumerate all planar graphs on
a vertex set V = [n], we use variables ou,v,i to indicate whether u ≺i v and introduce the
following constraints:

To ensure that ≺i is transitive, antisymmetric, and a total order, we require for i ∈ {1, 2, 3}
the following constraints.∧

u,v,w∈V
u̸=v ̸=w ̸=u

¬ou,v,i ∨ ¬ov,w,i ∨ ou,w,i,
∧

u,v∈V
u̸=v

¬ou,v,i ∨ ¬ov,u,i,
∧

u,v∈V
u ̸=v

ou,v,i ∨ ov,u,i.

To ensure that ≺1, ≺2, ≺3 form three Schnyder orders of the desired graph, we require∧
u,v∈V

u ̸=v

(
eu,v →

∧
w∈V \{u,v}

∨
i∈{1,2,3}

(ou,w,i ∧ ov,w,i)
)

.

The formula is transformed in a CNF formula using the Tseitin transformation [43]. This
leads to O(n3) variables and O(n3) clauses.

Solutions of the SAT encoding are in correspondence with planar graphs together with a
witnessing triple of orders. Pause to note that, in contrast to the Kuratowski based encoding
where non-planarity is witnessed, planarity is witnessed in this encoding.

One disadvantage of this encoding is that it is not propagating, i.e., if all variables eu,v are
assigned and the graph is not planar then Boolean constraint propagation does not necessarily
lead to a conflict. Further, for a given planar graph there are at least exponentially many
different witnessing triples of orders ≺1, ≺2, ≺3 [18].

SAT 2023
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3.3 Encoding Based on Universal Sets
A set S of points from the plane is n-universal if every planar n-vertex graph can be embedded
such that vertices are mapped S as vertices and all edges are straight-line segments. For
instance, a triangular subset of the (n − 1) × (n − 1) grid is n-universal [41], and there exist
n-universal sets of size 1

4 n2 − O(n) [4]. In general, the existence of an n-universal set of
subquadratic size remains one of the central open problems of graph drawing. However,
n-universal sets of minimum size have been computed for n ≤ 11 [9, 39] and for certain
subclasses of planar graphs universal sets of subquadratic size exist [19].

We want to enumerate all planar graphs G with vertex set V = [n] by testing whether
the graph represented by edge variables embeds into a prescribed n-universal point set S

of size k = |S|. Note that, since all edges are drawn as straight-line segments, the injective
mapping P : V → S fully determines the embedding. We use variables mv,p to indicate
whether P (v) = p and use clauses to ensure that no two edges cross. To keep the number of
constraints small, we introduce auxiliary variables sp,q for any distinct p, q ∈ S to indicate
whether the segment determined by p and q is present. Finally, we must forbid the presence
of crossing segments, i.e., segments are only allowed to share a common endpoint. We can
express these conditions by the following constraints: To ensure that P is a mapping and
that the relation is injective, we require∧

v∈V

∨
u∈S

mv,u and
∧

v1,v2∈V, u∈S

¬mv1,u ∨ ¬mv2,u.

To determine the presence of certain segments, we require∧
u,v∈V, a,b∈S

(eu,v ∧ mu,a ∧ mv,b) → sa,b.

Finally, for any a, b, a′, b′ ∈ S such that the segments ab and a′b′ intersect in a non-shared
endpoint, we require

¬sa,b ∨ ¬sa′,b′ .

The intersecting segments can be precomputed based on the point set S and don’t have to
be determined by the SAT encoding.

For the injective mapping, we use O(n2 · k) clauses, for the presence of certain segments
O(n2 · k2) clauses, and for avoiding intersecting segments we use up to O(k4) clauses, where
k = |S| is at least n. Hence, the encoding has O(k4) clauses and O(k2) variables. A variant of
this encoding was already used in [39, Section 4.3] to find universal point sets for a prescribed
list of graphs.

Using the currently best n-universal point set, which are of magnitude O(n2), this
encoding renders itself useless even for relatively small n due to O(k4) = O(n8) clauses.
However, we will test this approach for n ≤ 11 since for this cases there exist reasonably
sized n-universal sets.

4 SAT Modulo Symmetries and Digraphs

In this section, we describe the basic ideas of SMS [30] and how we adapt it to digraphs.
SMS is a dynamic symmetry breaking method for excluding isomorphic copies of graphs

during search. It is designed to keep canonical graphs in the search space and discard all
non-canonical graphs by adding symmetry breaking clauses. The canonical version is given
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by the lexicographically minimal adjacency matrix among all relabelings of the graphs. More
precisely, a graph G is canonical if the row wise concatenation of the adjacency matrix of G

is either equal or lexicographically smaller than the adjacency matrix of any relabeling π(G).
To add symmetry breaking clauses during search, we need to be able to decide whether the

partially defined graph given by the current solver state can be extended to a canonical fully
defined graph. For that a minimality check was designed which checks for some necessary
conditions. More precisely, it checks whether there is a permutation such that π(G′) ≺ G′

for all extensions of the current partial defined graph, i.e., the graph can definitely not
be extended to a lexicographically minimal graph. Such a permutation is called witness.
If the minimality check finds a witness then a symmetry breaking clause based on the
current assignment and the witness permutation is constructed. The clause holds for all
lexicographically minimal graphs and therefore does not exclude any potential solutions.
The construction of potential witness permutations by the minimality check is based on a
branching algorithm by gradually building a permutation starting with the vertex of smallest
index. It is crucial for good performance to have arguments for cutting of a branch early if it
does not lead to a witness permutation.

To adapt SMS for digraphs, note that all definitions for graphs used in the original SMS
article [30] can be adapted to digraphs in a straight forward way. We highlight some of the
adaptions in the following.

Let us start with defining a total order on the set of all digraphs Dn with vertex set [n]
for a fixed n. For that we first define an order on vertex pairs, naturally leading to an order
of the digraphs. A vertex pair (v1, v2) is smaller than (u1, u2) (short (v1, v2) ≺ (u1, u2) ) if
(i) min(v1, v2) < min(u1, u2) or (ii) min(v1, v2) = min(u1, u2) and max(v1, v2) < max(u1, u2)
or (iii) {v1, v2} = {u1, u2} and v1 < u1. For example, for n = 5 we look at the following
order of the non-diagonal elements of the n × n adjacency matrix:

– 1 2 3 4
5 – 9 10 11
6 12 – 15 16
7 13 17 – 19
8 14 18 20 –

The lexicographic order on Dn is given by comparing the string resulting from concatenating
the entries in the adjacency matrix in the order given by ⪯. We use G ≺ H for denoting
that G is lexicographically smaller than H. A digraph G is ⪯-minimal if G ⪯ π(G) holds for
all relabelings.

As in the setting of undirected graphs, the minimality check for digraphs searches for
witnessing permutations. The main difference is that, while in the undirected case the
adjacency matrix is symmetric and only the lower triangular matrix has to be considered, in
the directed case the entire adjacency matrix needs to be checked. However, the main idea
of the algorithm is the same.

A formalism presented in previous work [29] based on object variables and object sym-
metries guaranties that adding symmetry breaking clauses with certain structure based on
some permutations of the variables does preserve lexicographically minimal objects.

5 Experiments

We test our planarity encodings in three problem settings: planar Turán numbers, the
Earth-Moon problem, and planar graph enumeration. To allow comparisons between the
different encodings for each problem setting separately we ensure that the programs run on

SAT 2023
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the same hardware. For all encodings we use Python scripts for the generation of the clauses
and feed it to our SMS framework. The underlying SAT solver is an adaption of CaDiCal with
the new interface IPASIR-UP that allows the solver to interact with a custom propagator [17];
this replaces the clingo solver used previously for SMS. For the Boyer-Myrvold planarity
testing algorithm [7], we use the implementation provided in the C++ Boost libraries [1].

We have developed a Python layer over SMS to ease its usage and provide better readable
code (SMS is written in C++ for performance reasons). In this Python layer, we have
implemented various fundamental properties and invariants for graphs and digraphs such
as the bounds on the connectivity, clique number, independence number, or degrees. In
particular, we have implemented the planarity encodings based on Schnyder orders and
universal sets in the Python layer (see Sections 3.2 and 3.3). The Kuratowski encoding,
however, is implemented in C++.

With this Python layer, it should be reasonably easy also for non-programmers to run
experiments from the command line and to add additional properties for graphs and digraphs.
The source code and documentation is available at GitHub1 and Read the Docs2, respectively.

As preliminary results show, the encoding based on universal point performs much worse
than the others (see Table 5). Also recall that n-universal sets of optimal size are hard to find
in general and only have been computed for n ≤ 11. Because of these two major drawbacks,
we omitted this encoding on further benchmarks.

5.1 Planar Turán Numbers

Recall that the planar Turán number exP (n, H) for a graph H is the maximum number of
edges in a planar n-vertex graph G with no copy of H as a subgraph. We are interested in
planar Turán numbers exP (n, Ck), where Ck denotes the cycle graph of length k. The case
k = 3 is rather straight-forward: since triangle-free graphs have at most 2n − 4 edges and
K2,n−2 obtains this bound, it holds exP (n, C3) = 2n − 4 [14]. However, the situation for
k ≥ 4 get more complicated. The currently best estimates for k ∈ {4, 5} are by Dowden [14],
who proved the upper bounds exP (n, C4) ≤ 15

7 (n − 2) for n ≥ 4 and exP (n, C5) ≤ 12n−33
5

for n ≥ 11. These bounds are tight for infinitely many values of n. For example, for k = 4
the bound is tight for all n ≡ 30 (mod 70), and for k = 5 it is tight for all n ≡ 9 (mod 15).

Using our planarity encodings, we determine the exact values of exP (n, C4) and exP (n, C5)
for small values of n. We construct a formula Fn,m,k which is satisfiable if there is a Ck-free
graph with at least m edges. To encode Ck-free graphs we explicitly, we add the clause

¬ev1,v2 ∨ ¬ev2,v3 ∨ · · · ∨ ¬evk−1,vk
∨ ¬evk,v1

for any k distinct vertices v1, . . . , vk ∈ V . Using sequential counters [42], we ensure that the
number of edges is at least m.

Given the ideas in Section 3 for ensuring planarity of the generated graphs, we compute
the exact values of exP (n, Ck). For a fixed n and k, this is done by testing Fn,m,k enhanced
with a planarity encoding for satisfiability, starting with m = n. We increment m until the
formula is unsatisfiable. Our computational result are summarized by the following theorem.

1 https://github.com/markirch/sat-modulo-symmetries/
2 https://sat-modulo-symmetries.readthedocs.io/

https://github.com/markirch/sat-modulo-symmetries/
https://sat-modulo-symmetries.readthedocs.io/
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Table 1 Result for computing exP (n, C4). All computation times are given in seconds. The third
column gives the upper bound by Dowden [14]. SMS also found a graph with 19 vertices and 35
edges within 14 seconds, but we are not aware if this example is extremal for n = 19.

SAT UNSAT

n exP (n, C4) ⌊ 15
7 (n − 2)⌋ Kura Ord Kura Ord

4 4 4 0.00 0.00 0.00 0.00
5 6 6 0.00 0.00 0.00 0.00
6 7 8 0.00 0.00 0.00 0.01
7 9 10 0.01 0.01 0.01 0.02
8 11 12 0.01 0.02 0.02 0.03
9 13 15 0.03 0.04 0.05 0.05
10 16 17 0.04 0.07 0.07 0.06
11 18 19 0.16 0.44 0.16 0.23
12 20 21 0.27 0.98 0.56 2.29
13 22 23 0.23 0.14 1.96 15.27
14 24 25 0.20 0.44 6.46 340.11
15 27 27 1.00 0.85 21.39 294.07
16 29 30 5.87 24.90 172.90 31142.08
17 31 32 5.19 83.59 3479.65 t.o.
18 33 34 14.69 14.85 59862.72 t.o.

▶ Theorem 1. It holds that

exP (n, C4) =
⌊

15
7 (n − 2)

⌋
−


0 for n ∈ {4, 5, 15},
1 for n ∈ [6, 8] ∪ [10, 14] ∪ [16, 18],
2 for n = 9,

and

exP (n, C5) =
⌊

12n − 33
5

⌋
+


0 for n ∈ {9} ∪ [11, 18],
1 for n ∈ {8, 10},
2 for n ∈ [5, 7].

Moreover, based on our computational data, we conjecture that Dowden’s upper bound for
k = 5 is tight for all n ≥ 11.

▶ Conjecture 2. exP (n, C5) =
⌊ 12n−33

5
⌋

for n ≥ 11.

Tables 1 and 2 summarize the computation times for both encodings. The times for solving
Fn,exP (n,Ck),k are given by “SAT” and Fn,exP (n,Ck)+1,k given by “UNSAT”. Computations
not finished within three days are marked with “t.o.” (timeout). The columns labeled “Kura”
provide the times for the encoding based on Kuratowski’s theorem with a propagator and
the columns “Ord” provides the times for the encoding based on Schnyder orders.

In general, we see that the version excluding Kuratowski graphs performs much better,
especially for unsatisfiable cases. For example for n = 17, k = 4 the Kuratowski based
generation is over a hundred times faster than the encoding based on Schnyder orders.

SAT 2023
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Table 2 Result for computing exP (n, C5). All computation times are given in seconds. The third
column gives the upper bound by Dowden [14] for n ≥ 11.

SAT UNSAT

n exP (n, C5) ⌊ 12n−33
5 ⌋ Kura Ord Kura Ord

5 7 5 0.00 0.01 0.00 0.00
6 9 7 0.00 0.01 0.01 0.01
7 12 10 0.01 0.02 0.02 0.01
8 13 12 0.02 0.07 0.05 0.11
9 15 15 0.03 0.06 0.07 0.38
10 18 17 0.10 0.29 0.23 1.67
11 19 19 0.12 0.30 0.57 4.89
12 22 22 1.83 1.72 1.99 33.08
13 24 24 0.48 1.61 11.45 271.18
14 27 27 3.18 7.63 35.24 1174.85
15 29 29 2.24 10.82 277.78 15459.24
16 31 31 4.71 59.09 3172.27 235353.58
17 34 34 207.49 890.98 29023.55 t.o.
18 36 36 1851.84 1249.38 t.o. t.o.

5.2 The Earth-Moon Problem
A graph G is biplanar if it can be partitioned into two planar graphs, that is, there exist
two planar graphs G1, G2 with E(G) = E(G1) ∪ E(G2). In that case, we write G = G1 ⊎ G2.
Biplanar graphs are also known as graphs with thickness two. The Earth-Moon problem asks
for the largest chromatic number a biplanar graph can have, denoted by χ2. In 1973, Thom
Sulanke constructed a biplanar graph on 11 vertices with chromatic number 9 by removing
the edges of a C5 from a K11, improving an earlier lower bound by Ringel to χ2 ≥ 9 [22]. On
the other hand, using Euler’s formula, one can derive that any biplanar graph must have a
vertex of degree at most 11, which applied inductively shows that χ2 ≤ 12. Despite of much
research efforts, the estimates 9 ≤ χ2 ≤ 12 could not be improved since then. Some have
suggested that this problem is “as hard as two or three four-color theorems” [26, p. 199].

Searching for biplanar graphs and at least a certain chromatic number seems to be an
extremely challenging problem. Indeed, the problem of deciding whether a graph is biplanar
is NP-complete [33] and checking whether a graph has at least chromatic number χ for a
fixed constant χ ≥ 3 is coNP-complete in general [28]. To admit partial progress, one can
parameterized the Earth-Moon problem by the number n of vertices in the biplanar graph,
denoting the highest chromatic number for a n-vertex biplanar graph by χ2(n). Sulanke’s
lower bound χ2(11) ≥ 9 carries over to n > 11 since adding isolated vertices to a biplanar
graph does not change its chromatic number and keeps the graph biplanar.

Our goal is to show the absence or presence of biplanar graphs for given order n and
chromatic number χ using SMS and planarity encodings.

One possibility of using SMS for biplanar graphs is applying the symmetry breaking
directly at the graph G. This way, we would take edge variables eu,v describing the graph G.
To encode the decomposition G = G1 ⊎ G2, we introduce auxiliary variables e1

u,v and e2
u,v to

indicate whether an edge {u, v} belongs to E(G1) or E(G2), respectively. However, this way
we don’t break all symmetries. If π is an automorphism of G, i.e., π(G) = G, then it does



M. Kirchweger, M. Scheucher, and S. Szeider 14:11

not necessarily hold that π(G1) = G1 and π(G2) = G2. In other words, we will get different
partitions representing isomorphic decompositions. This is a real problem in practice as some
experiments on testing biplanarity of K9 showed.

Hence, we propose a different and more efficient approach. Instead of encoding the
biplanar graph G directly, we represent the decomposition G1 ⊎ G2 as a directed graph H

with H = G. H represents the decomposition G1 ⊎ G2 as follows.
{u, v} ∈ E(G1) if and only if (u, v) ∈ E(H) and (v, u) ∈ E(H).
{u, v} ∈ E(G2) if and only if either (u, v) ∈ E(H) or (v, u) ∈ E(H), but not both.

Now we can apply SMS for digraphs as discussed in Section 4. Consider two directed graphs
H and H ′ that represent the decompositions G1 ⊎ G2 = H and G′

1 ⊎ G′
2 = H ′, respectively.

We observe that if H and H ′ are isomorphic, then H and H ′ are isomorphic and Gi and
G′

i are isomorphic, i ∈ {1, 2}. Consequently, it is sound to only consider lexicographically
minimal digraphs H.

We further restrict the digraphs. W.l.o.g., we may assume that if (u, v) ∈ E(H) for
u < v then also (v, u) ∈ E(H). This is the case because (u, v) ≺ (v, u), hence replacing the
arc (u, v) by (v, u) if (v, u) is not present leads to a strictly lexicographically smaller graph
representing the same decomposition.

We note that the symmetry breaking on biplanar graphs using digraphs still has some
potential room for improvement. There are non-isomorphic digraphs H, H ′ whose underlying
graphs H, H ′ are isomorphic, i.e., we have different representation for the same underlying
graph. For example, if the underlying graph is H = K5 (the complete graph on 5 vertices),
we can partition the graph H = G1 ⊎ G2 in almost all ways granted that both G1 and G2
contain at least one edge and none contains all edges. Further, the representation as digraphs
doesn’t exclude all isomorphic partitions, i.e., there are lexicographically minimal digraphs
with the described restrictions representing isomorphic partitions. We plan to design a
version of SMS avoiding these isomorphic copies in the future.

W.l.o.g., we may assume for a decomposition G = G1 ⊎ G2 that G1 is maximal planar,
i.e., inserting any additional edge makes the graph non-planar, since we can move as many
edges as possible from G2 to G1. We encode this by requiring that |E(G1)| = 3n − 6, hence
we can also require |E(G2)| ≤ 3n − 6.

Further, we restrict our search on vertex-critical graphs with respect to the chromatic
number χ, i.e., deleting any vertex decreases the chromatic number of G. Hence we can
assume that the minimum degree of G is ≥ χ − 1.

The following encoding describes the digraph H with vertex set V = [n] that represents
the decomposition of a χ-chromatic graph H = G into two planar subgraphs. We use directed
edge variables du,v to encode the existence of the directed edge (u, v) ∈ E(H).

To restrict the digraph, we require∧
v,u∈V

v<u

dv,u → du,v and
∧

v,u∈V
v<u

e1
v,u ↔ (dv,u ∧ du,v);

this results in e1
v,u ↔ dv,u for v < u. We further require∧

v,u∈V
v<u

e2
v,u ↔ (¬dv,u ∧ du,v) and ev,u = e1

v,u ∧ e2
v,u,

which can be simplified to ev,u ↔ du,v for v < u. Finally, we require∑
v,u∈V

v<u

e1
v,u = 3n − 6 and

∑
v,u∈V

v<u

e2
v,u ≤ 3n − 6,

encoded with sequential counters [42].
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Table 3 Computations for the Earth-Moon problem, given the number n of vertices and the
chromatic number χ. If the timeout of 2 days is reached we write “t.o.”.

χ ≥ 9 χ ≥ 10

n #digraph Kura Ord #digraph Kura Ord

9 0 0.55 18.14
10 0 15.75 2028.21 0 1.95 112.43
11 5554 1709.49 t.o. 0 19.03 4543.13
12 - t.o. t.o. 0 837.14 t.o.
13 - t.o. t.o. 0 146484.00 t.o.

For ensuring at least a certain chromatic number χ, we add coloring clauses ensuring that
the underlying graph cannot be colored with χ − 1 colors. Let Pn be the set of all partitions
of V . Then∧

P ∈Pn

|P |=χ−1

∨
S∈P

∨
u,v∈V

u<v

eu,v

ensures that every (χ−1)-coloring is no proper coloring of the underlying graph for χ−1 ≥ n,
because at least one edge is monochromatic. Since the number of partitions Pn is exponential,
this size of the encoding grows exponentially. However, as our experiments showed, this
approach is still feasible for small values of n. We have also tried a lazy encoding which adds
the clauses incrementally whenever there is a violation instead of adding all clauses right at
the beginning. As it turned out, the results for this version were worse and hence we omit
the results for the lazy version.

Table 3 shows the results and computation times of our experiments. For χ ≥ 9 and
n = 11 the formula is satisfiable and the previously known results were confirmed. For χ ≥ 10
and n ≤ 13 the formula is unsatisfiable. Therefore we have the following result.

▶ Theorem 3. All biplanar graphs on n ≤ 13 vertices are 9-colorable.

Our experiments again show that the Kuratowski-based encoding is superior by orders of
magnitudes. Table 4 summarizes the new results in context of what has been known so far.

In the literature, there are some potential candidates for the Earth-Moon Problem, which
are known to have chromatic number 10, but haven’t been shown to be biplanar yet [23].
One of these graphs is G = C5[4, 4, 4, 4, 3], i.e., a 5-cycle where the first four vertices of the
cycle are inflated to a 4-clique, and the last to a 3-clique. The graph has 19 vertices and
99 edges. We can test whether this graph is biplanar using our planarity encodings. This
can be done by adding constraints that ensure that the underlying graph of the resulting
directed graph is the graph G:∧

u,v∈E(G),u<v

ev,u ∧
∧

u,v∈V (G),u,v /∈E(G)

¬ev,u.

By fixing some of the directed edges, SMS is not applicable anymore for all permutations. We
only allow permuting vertices within the 4-clique and 3-clique, respectively, which preserves
the underlying graph G. Within 12 hours, we are able to show that the graph is not biplanar,
hence we can exclude the graph as a potential candidate.
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Table 4 Current state of knowledge on the Earth-Moon problem for n-vertex biplanar graphs
for 8 ≤ n ≤ 18. Orange cells indicate that there doesn’t exist an n-vertex biplanar graph with
chromatic number χ, blue cells indicate the existence. The cells labeled “new” correspond to new
results obtained in this paper, using the observations that removing an independent set decreases the
chromatic number by at most 1 and since Kn with n ≥ 9 is not biplanar, every biplanar graph with
n ≥ 9 vertices has an independent set of size two. With a minimality argument it is also possible
to exclude the case with n = 18 and χ = 12. If n < χ, the problem is trivially unsatisfiable. If
χ = n, then the only potential n-vertex graph is the complete graph Kn; for n ≤ 8, Kn is known
to be biplanar, for n ≥ 9 it is not biplanar. All biplanar graphs are known to have a chromatic
number ≤ 12, hence all cells in the rightmost column are orange. The cases n ≥ 11 and χ = 9 are
all satisfiable, as witnessed by Sulanke’s graph.

chromatic number χ

n 8 9 10 11 12 13

8 K8

9 K9

10 new K10

11 Sulanke new K11

12 new new K12

13 new new new K13

14 open new new

15 open new new

16 open open new

17 open open new

18 open open new

19 open open open

5.3 Integer Sequences Related to Planar Graphs and Digraphs

Many integer sequences featured in the On-Line Encyclopedia of Integer Sequences (OEIS) [35]
give the number of non-isomorphic n-vertex graphs with a certain property, for n ∈ N. The
encyclopedia is very useful for research in combinatorics because a sequence can for instance
be used to come up with a hypothetical closed formula for a sequence, or to check whether
two graph classes coincide. Often, no closed formula for a sequence is known; therefore, only
a finite prefix is reported on OEIS. In this section, we demonstrate the versatility of our SMS
framework in conjunction with the new planarity encoding to almost effortlessly verify and
extend sequences listed on OEIS. Moreover, it allows us to compute and add new natural
sequences for which no suitable tools have existed.

In the following, we review some specific integer sequences that we could verify or extend
with SMS. The list is not exhaustive and can certainly be improved by further optimization.

Let us start with the sequence for non-isomorphic planar n-vertex graphs OEIS/A5470;
the precise numbers are known for up to n = 12. Table 5 shows the running times required
to verify these numbers with SMS and the three planarity encodings. Since the encoding
based on Kuratowski’s theorem performs significantly better than the other two, we only
used this encoding in the following.

SAT 2023
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Table 5 Enumeration of planar graphs with SMS.

n # (OEIS/A5470) Kura Ord Univ

2 2
3 4
4 11
5 33
6 142 0.02s 0.04s 0.02s
7 822 0.12s 0.27s 0.24s
8 6966 1.02s 3.48s 6.94s
9 79853 13.5s 1m16s 8m50s
10 1140916 5m56s 2h16m 116h
11 18681008 13h53m
12 333312451

OEIS/A49339 counts the number of n-vertex planar graphs with even degrees. With
previous tools, the first 12 terms were computed (Brendan McKay gave 11). We verified
these 12 terms with SMS and extended the sequence by the 13th and 14th terms (about 2
and 40 hours of computation time, respectively).

OEIS/A49339 is also the Euler transform of OEIS/A49365, which counts the number
of connected n-vertex planar graphs with even degrees. Therefore, having n terms of one
sequence, one can compute the n terms of the other. Surprisingly, SMS performed almost
twice as fast for computing the 13th and 14th term on OEIS/A49339.

The sequences OEIS/A49369 to OEIS/A49373 count the number of planar graphs with
minimum degree at least k ∈ {1, 2, 3, 4, 5}. Verifying all terms for k = 3, 4, 5 using SMS took
about 3 hours, 1 hour, and 2 days, respectively. Moreover, we have extended OEIS/A49372
(the sequence for k = 4) by the 16th term, which was computed within 2 days, and
OEIS/A49373 (the sequence for k = 5) by the 26th term, which was computed within 8 days,

OEIS/A255600 counts the number of connected planar regular graphs on 2n vertices with
a girth of at least 4. Note that girth at least 4 is equivalent to C3-free (a.k.a. triangle-free)
and, as noted in the comments of that sequence, all such graphs are 3-regular. SMS can
verify the previous 13 terms within 90 minutes. We have extended the sequence by the 14th
and 15th term, for which the computations took 16 hours and 9 days, respectively.

OEIS/A58378 counts the number of 3-regular 2-connected planar 2n-vertex graphs. SMS
verified all known terms up to n = 13 (i.e., up to 26 vertices) within 5 days.

While plantri was used to enumerate k-connected planar graphs for up to k = 4, it is
surprising that there was no OEIS entry yet for 5-connected planar graphs. So we created
OEIS/A361578.

There was no OEIS entry yet for planar digraphs, so we created it OEIS/A361366 for
up to n = 6. Note that, when compared with the number of planar graphs, the two options
for directing each edge cause an increase in the numbers exponentially. Table 6 gives an
overview of k-connected graphs and weakly k-connected digraphs for k ≤ 5 for both general
and planar settings. Since planar (directed) graphs have connectivity at most 5, we here
only discuss the case k ≤ 5. For more information on higher connectivity on general graphs,
we refer to the table in OEIS/A259862.

Only sequences for weakly k-connected digraphs with k ∈ {0, 1} were known; hence
we created sequences for k ∈ {2, 3}. We also created sequences for weakly k-connected
planar directed graphs for all k ∈ {0, . . . , 3} and added them to OEIS. Surprisingly, when we

https://oeis.org/A5470
https://oeis.org/A49339
https://oeis.org/A49339
https://oeis.org/A49365
https://oeis.org/A49339
https://oeis.org/A49369
https://oeis.org/A49373
https://oeis.org/A49372
https://oeis.org/A49373
https://oeis.org/A255600
https://oeis.org/A58378
https://oeis.org/A361578
https://oeis.org/A361366
https://oeis.org/A259862
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Table 6 Sequences for k-connected planar graphs and weakly k-connected planar digraphs.
Entries marked with ∗ are new.

graphs digraphs

k-connected general planar general planar

k = 0 OEIS/A88 OEIS/A5470 OEIS/A273 OEIS/A361366*
k = 1 OEIS/A1349 OEIS/A3094 OEIS/A3085 OEIS/A361368*
k = 2 OEIS/A2218 OEIS/A21103 OEIS/A361367* OEIS/A361369*
k = 3 OEIS/A6290 OEIS/A944 OEIS/A361370* OEIS/A361371*
k = 4 OEIS/A86216 OEIS/A7027 ? ?
k = 5 OEIS/A86217 OEIS/A361578* ? ?

recently submitted our results to OEIS, Andrew Howroyd extended the sequence for weakly
2-connected graphs by using an approach based on generating functions and combinatorial
species. This gives a beautiful example of how our contribution can stimulate research in
enumerative combinatorics.

Last, we should mention the well-understood class of maximal planar graphs, known as
triangulations. The entries OEIS/A109, OEIS/A7021, and OEIS/A111358 count 3, 4, and
5-connected triangulations, respectively.

6 Conclusion

We have presented a comprehensive study on SAT-based planar graph generation using encod-
ings with dynamic symmetry breaking. Our experimental results compare the effectiveness
and scalability of the Kuratowski-based and order-based encodings in solving combinatorial
problems related to planar graphs. In particular, we provided progress concerning the
computation of planar Turán numbers and the Earth-Moon problem. Furthermore, we have
shown the potential of the SMS framework equipped with planarity encodings by verifying
and extending several OEIS sequences related to planar graph enumeration.

Additionally, we suggest exploring the adaptation of the Kuratowski [18, Section 1.4] and
Schnyder encodings [20] for outerplanar graphs, which presents an interesting application
area for SMS.

For planar graphs, there exists a polynomial-time canonization algorithm [25, 31]. Cook’s
Theorem [11] allows us to translate this algorithm into a polynomially-sized SAT encoding
for planar graph canonization. It would be interesting to see, whether such a symmetry
breaking tailored to planar graphs outperforms the general symmetry breaking in a practical
setting.
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