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Abstract
Recently, the proof system MICE for the model counting problem #SAT was introduced by Fichte,
Hecher and Roland (SAT’22). As demonstrated by Fichte et al., the system MICE can be used for
proof logging for state-of-the-art #SAT solvers.

We perform a proof-complexity study of MICE. For this we first simplify the rules of MICE and
obtain a calculus MICE′ that is polynomially equivalent to MICE. Our main result establishes an
exponential lower bound for the number of proof steps in MICE′ (and hence also in MICE) for a
specific family of CNFs.
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1 Introduction

The problem to decide whether a Boolean formula is satisfiable (SAT) is one of central
problems in computer science, both theoretically and practically. From the theoretical side,
SAT is the canonical NP-complete problem [14], making it intractable unless P=NP. From
the practical side, the “SAT revolution” [31] with the evolution of practical SAT solvers has
turned SAT into a tractable problem for many industrial instances [5].

In this paper we consider the model counting problem (#SAT) which asks how many
satisfying assignments a given Boolean formula has. While #SAT is obviously a generalization
of SAT, it is presumably much harder. #SAT is the canonical complete problem for the
function class #P. While FP=#P would imply P=NP, it is known that FP=#P is even
equivalent to P=PP. The power of #SAT is also illustrated by Toda’s theorem [30] stating
that any problem in the polynomial hierarchy can be solved in polynomial time with oracle
access to #SAT.

Despite its higher complexity, #SAT solving has been actively pursued through the past
two decades [20] and a number of #SAT solvers have been developed throughout the years.
In fact, the past years have witnessed increased interest in #SAT solving with an annual
model counting competition being organised since 2020 as part of the SAT conference [17].
#SAT solvers allow to tackle a large variety of real-world questions, including all kinds of
problems in the areas probabilistic reasoning [2, 25], risk analysis [16, 34] and explainable
artificial intelligence [3, 28].

Unlike in SAT solving where conflict-driven clause learning (CDCL) [26] dominates the
scene, there are a number of conceptually different approaches to #SAT solving, including the
lifting of standard techniques from SAT-solving [29], employing knowledge compilation [24],
and via dynamic programming [19]. While some approaches try to approximate the number
of solutions, we will only consider exact model counting in the following.
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2:2 Proof Complexity of Propositional Model Counting

There is a tight correspondence between practical SAT solving and propositional proof
systems [9]. While we know that in principle every SAT solver implicitly defines a proof system,
a seminal result of [1, 27] established that CDCL (at least in its nondeterministic version) is
equivalent to the resolution proof system. However, practical CDCL with e.g. the VSIDS
heuristics corresponds to an exponentially weaker proof system than resolution [32]. In the
same vein, there has recently been a line of research to understand the correspondence between
solvers for quantified Boolean formulas (QBF) and QBF resolution proof systems [4, 6, 7].

This correspondence between solvers and proofs is not only of theoretical, but also of
immense practical interest as it can be used for proof logging, i.e. for certifying the correctness
of solvers on unsatisfiable SAT or QBF instances. Optimised proof systems have been devised
in terms of RAT/DRAT for SAT [22, 33] and QRAT for QBF [23] for this purpose. These
proof systems aim to capture all modern solving techniques, including preprocessing and
therefore tend to be very powerful [10,13]. In particular, in contrast to weak proof systems
such as resolution, no lower bounds are known for RAT or QRAT.

In sharp contrast, far less is known about the correspondence of model counting solvers
to proof systems. To our knowledge, there are currently two proof systems for #SAT. One
is a static proof system based on decision DNNFs called kcps(#SAT) (the acronym stands
for Knowledge Compilation based Proof System for #SAT) [11]. The other, a line based
proof system called MICE [18] (the acronym stands for Model-counting Induction by Claim
Extension), was just introduced at the last SAT conference [18]. Interestingly, the system
MICE not only provides a theoretical proof system for #SAT, but also allows proof logging for
a number of state-of-the-art solvers in model counting, including sharpSAT [29], DPDB [19]
and D4 [24], as demonstrated in [18]. Hence MICE proofs can be used to verify the correctness
of answers of these #SAT solvers.

1.1 Our Contributions
We perform a proof complexity analysis of the #SAT proof system MICE from [18]. Prior to
this paper, no proof complexity results for MICE were known. Our results can be summarised
as follows.

(a) A simplified proof system MICE’. We analyse the proof system MICE and define a
somewhat simplified calculus MICE′. Lines in MICE are of the form ((F, V ), A, c) where
F is a propositional formula V is a set of variables, A is a partial assignment and c ∈ N.
Semantically, these lines express that the formula F under the partial assignment A has
precisely c models. The system MICE then employs four rules to derive new lines with the
ultimate goal to derive a line ((F, vars(F )), ∅, c). Thus in the ultimate line, c is the number
of models of the formula F .

The four rules of the system include one axiom rule for satisfying total assignments and
three rules to compose, join and extend existing lines. All the rules have a rather extensive
set of side conditions to verify their applicability. For the composition rule this even includes
an external resolution proof to check that the composition of claims in the rule indeed covers
all models.

The variable set V does not feature in the semantical explanation above. While it might
be tempting to choose V = vars(F ) for all lines (as is done in the final claim), we show that
this restriction is too strong and results in an exponentially weaker system. Nevertheless,
we show that we can slightly adapt the rules of MICE (in particular the extension rule)
and obtain a system MICE′ for which we can impose V = vars(F ) for all lines without
weakening the system. Lines in MICE′ therefore can take the form (F, A, c). This allows
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allows to eliminate and simplify some of the side conditions for the original rules of MICE
when transferring to MICE′. Our simplified system MICE′ is as strong as MICE in terms of
simulations (Propositions 16 and 17). Hence also MICE′ can be used for proof logging for
the #SAT solvers mentioned above.

(b) Lower bounds for MICE and MICE’. In our main result we show an exponential lower
bound for the proof size in MICE′ (and hence also for MICE) for a specific family of CNFs.

As mentioned above, the composition rule of MICE (and MICE′) incorporates resolution
proofs. Exploiting this feature, it is not too hard to transfer resolution lower bounds to MICE′.
In fact, we can show that on unsatisfiable formulas, resolution is polynomially equivalent to
MICE′ (Theorem 18).

However, we would view such a transferred resolution lower bound not as a “genuine” and
interesting lower bound for MICE′. We therefore show a stronger bound for MICE′ for the
number of proof steps (where we disregard the size of the attached resolution proofs). In our
main result we show a lower bound of 2Ω(n) for the number of proof steps for a specific set of
CNFs, termed XOR-PAIRSn, based on the parity function (Theorem 23). Technically, our
lower bound is established by showing that in MICE′ proofs of XOR-PAIRSn, all applications
of the join and extension rules preserve the model count.

1.2 Relations to DNNFs
One of the anonymous reviewers highlighted that there is a close connection between our
work here and Decomposable Negation Normal Forms (DNNFs) as investigated in [8, 11,12].
We were not aware of that work and would like to thank the reviewer for pointing that out.

In particular, it appears that from a MICE′ proof a decision DNNF can be efficiently
extracted. Hence, alternatively to our directly obtained lower bound for MICE′ in Section 5,
one could employ decision DNNF lower bounds as shown via communication complexity
in [8] for MICE′ lower bounds.

1.3 Organisation
The remainder of this paper is organised as follows. After reviewing some standard notions
from propositional logic and proof systems in Section 2, we revise the #SAT proof system
MICE from [18] in Section 3 and show some properties of the system. This gives rise to a
simplified proof system MICE′ which we define in Section 4. Section 5 contains our main
results on the exponential lower bound for MICE′ (and hence for MICE). We conclude in
Section 6 with relations to some open questions and future directions.

2 Preliminaries

We introduce some notations used in this paper. A literal l is a variable z or its negation z,
with var(l) = z. A clause is a disjunction of literals, a conjunctive normal form (CNF) is
a conjunction of clauses. Often, we write clauses as sets of literals and formulas as sets of
clauses. We assume that every propositional formula is written in CNF.

For a formula F , vars(F ) denotes the set of all variables that occur in F , and lits(F ) is the
set of all literals of F . If C ∈ F is a clause and V ⊆ vars(F ) is a set of variables, we define
C|V = {l ∈ C | vars(l) ∈ V } and F |V denotes the formula F with every clause C replaced by
C|V . An assignment is a function α mapping variables to Boolean values. If a function F

evaluates to true under an assignment α, we say α satisfies F and write α |= F . We also
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2:4 Proof Complexity of Propositional Model Counting

allow α to be a partial assignment to vars(F ) or to contain variables not occurring in F .
Occasionally, we interpret an assignment as a CNF consisting of precisely those unit clauses
that specify the assignment. Therefore, the set operations are well defined for formulas and
assignments. We say that two assignments are consistent if their union is satisfiable. For
some set of variables X, ⟨X⟩ denotes the set of all 2|X| possible assignments to X.

In this paper we are interested in proof systems as introduced in [15]. Formally, a proof
system for a language L is a polynomial-time computable function f with rng(f) = L. If
f(w) = x, then w is called f -proof of x ∈ L. In order to compare proof systems we need the
notion of simulations. Let f and g be proof systems for language L. We say that f simulates
g, if for any g-proof w there exists an f -proof w′ with |w′| = |w|O(1) and f(w′) = g(w). If we
can compute w′ in polynomial time from w, we say that f p-simulates g. Two proof systems
are (p-)equivalent if they (p-)simulate each other.

For the language UNSAT of unsatisfiable CNFs, resolution is arguably the most studied
proof system. It operates on Boolean formulas in CNF and has only one rule. This resolution
rule can derive C ∪ D from C ∪ {x} and D ∪ {x} with arbitrary clauses C, D and variable
x. A resolution refutation of a CNF is a derivation of the empty clause □. We sometimes
add a weakening rule that enables us to derive C ∪ D from C for arbitrary clauses C and
D. However, it is well-known that any resolution refutation that uses weakening can be
efficiently transformed into a resolution refutation without weakening.

3 The Proof System MICE for #SAT

In this section we recall the MICE proof system for #SAT from [18] and show some basic
properties of the system.

▶ Definition 1 ([18]). A claim is a triple ((F, V ), A, c) where F is a propositional formula in
CNF, V is a set of variables, A is an assignment with vars(A) ⊆ V and c ∈ N. For such a
claim, let ModA(F, V ) := {α ∈ ⟨V ⟩ | α |= F ∪ A}. The claim is correct if c = |ModA(F, V )|.

Claims will be the lines in our proof systems for model counting. Semantically, they
describe that the formula F under the partial assignment A has exactly c models. The
partial assignment A is sometimes also referred to as the assumption. What is perhaps a bit
mysterious at this point is the role of the variable set V . We will get to this shortly.

The rules of MICE are Exactly One Model (1-Mod), Composition (Comp), Join (Join) and
Extension (Ext). They are specified in Figure 1. We give some intuition on the rules. The
axiom rule (1-Mod) states that if a complete assignment A satisfies a formula F , then F has
exactly one model under A.

With (Comp) we can sum up model counts of a formula F under different partial
assignments A1, . . . , An in order to weaken the assumption to a partial assignment A. This
is only sound if the solutions of F under assumptions A1, . . . , An form a disjoint partition of
the full solution space of F under A. That this is indeed the case can be verified with an
independent proof, e.g. in propositional resolution. This proof is called an absence of models
statement.

The (Join) rule allows us to multiply the model counts of two formulas that are completely
independent restricted to the assumptions. Finally, with (Ext), we can extend simultaneously
all models, i.e. we enlarge the formula and assumption without changing the count.

We can now formally define MICE proofs.

▶ Definition 2 (Fichte, Hecher, Roland [18]). A MICE trace is a sequence π = (I1, . . . , Ik)
where for each i ∈ [k], either
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Ii is a claim if Ii is derived by one of (1-Mod), (Join), (Ext) or
Ii = (I, ρ) if the claim I is derived by (Comp) and ρ is the resolution refutation for the
respective absence of models statement.

A MICE proof of a formula φ is a MICE trace π = (I1, . . . , Ik) where Ik is (or contains
in case of (Comp)) the claim ((φ, vars(φ)), ∅, c) for some c ∈ N.

In [18] it is shown that MICE is a sound and complete proof system for #SAT.
For measuring the proof size, we use two natural options. s(π) notates the size of π which

is the total number of claims plus the number of clauses in resolution proofs in the absence
of models statements. c(π) counts only the number of claims a proof has which is exactly
the number of inference steps that the proof needs.

Exactly One Model.

((F, V ), A, 1) (1-Mod)

(O-1) vars(A) = V ,
(O-2) A satisfies F .

Composition.

((F, V ), A1, c1), . . . , ((F, V ), An, cn)
((F, V ), A,

∑
i∈[n] ci)

(Comp)

(C-1) vars(A1) = vars(A2) = · · · = vars(An) and Ai ̸= Aj for i ̸= j,
(C-2) A ⊆ Ai for all i ∈ [n],
(C-3) there exists a resolution refutation of A ∪ {C|V | C ∈ F} ∪ {Ai | i ∈ [n]}. Such
a refutation is included into the trace and is called an absence of models statement.

Join.

((F1, V1), A1, c1), ((F2, V2), A2, c2)
((F1 ∪ F2, V1 ∪ V2), A1 ∪ A2, c1 · c2) (Join)

(J-1) A1 and A2 are consistent,
(J-2) V1 ∩ V2 ⊆ vars(Ai) for i ∈ {1, 2},
(J-3) vars(Fi) ∩ ((V1 ∪ V2) \ Vi) = ∅ for i ∈ {1, 2}.

Extension.

((F1, V1), A1, c)
((F, V ), A, c) (Ext)

(E-1) F1 ⊆ F , V1 ⊆ V ,
(E-2) V \ V1 ⊆ vars(A),
(E-3) A|V1 = A1,
(E-4) A satisfies F \ F1,
(E-5) for every C ∈ F1: A|V \V1 does not satisfy C.

Figure 1 Inference rules for MICE [18].

In a correct claim ((F, V ), A, c) the count c is uniquely determined by the the formula
F , set of variables V and assumption A. Therefore, we often omit c and refer to the claim
as ((F, V ), A). To ease notation we will usually just write a MICE proof as as sequence of
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2:6 Proof Complexity of Propositional Model Counting

claims I1, . . . , Im and do not explicitly record the used absence of models statements. We
just assume that whenever we use (Comp), the necessary resolution refutation is part of the
MICE proof.

If a formula F is satisfied by the partial assignment A, we can set the remaining variables
arbitrarily. Therefore, the component (F, vars(F )) has exactly 2|vars(F )|−|vars(A)| models
under assumption A. The following construction shows that we can efficiently derive the
corresponding claim in MICE.

▶ Proposition 3. If some assumption A satisfies an arbitrary formula F , there is a MICE
derivation of the claim I = ((F, vars(F )), A, 2|vars(F )\vars(A)|) with s(π) = 7·(|vars(F )\vars(A)|)
and c(π) = 4 · (|vars(F ) \ vars(A)|).

Proof. Let vars(F ) \ vars(A) = {x1, . . . , xn}. For every i ∈ [n] we derive I1
i = ((∅, vars(A) ∪

{xi}), A ∪ {xi}, 1) and I0
i = ((∅, vars(A) ∪ {xi}), A ∪ {xi}, 1) with (1-Mod). This is possible

since every assignment satisfies the empty formula. With (Comp) we get Ii = ((∅, vars(A) ∪
{xi}), A, 2) using the absence of models statement ρi = ((xi), (xi),□). We use (Join) of I1
and I2, then (Join) of the result and I3, and so on. The requirements (J-1), (J-2), and (J-3)
are satisfied. In this way we get ((∅, vars(F )), A, 2|vars(F )\vars(A)|). We use (Ext) to obtain
I = ((F, vars(F )), A, 2|vars(F )\vars(A)|). It is easy to see that all requirements (E-1) to (E-5)
are satisfied. For (E-4), we use that A satisfies F . In total we use 4n MICE steps to derive I

and we have n absence of models statements with 3 clauses each. ◀

We investigate some properties that any claim in a MICE proof has to fulfill. We assume
that any MICE proof has no redundant claims, i.e. in the corresponding proof dag, there is
a path from any node to the final claim. We also observe that for all inference rules, the
derived F and V never shrink. This leads to the following two observations:

▶ Observation 4. If ((F, V ), A) is derived from ((F1, V1), A1) in a MICE trace (not necessarily
in one step), then F1 ⊆ F and V1 ⊆ V .

Therefore, any claim ((F, V ), A) in a MICE proof of φ fulfills F ⊆ φ and V ⊆ vars(φ).

From Definition 1 it is not obvious how F and V are related. Intuitively, one might be
tempted to set V = vars(F ) for any claim ((F, V ), A). However, this would make the proof
system exponentially weaker as we will see later. Lemma 6 will show that we can at least
assume vars(F ) ⊆ V for every claim. To show this we need the following lemma:

▶ Lemma 5. For any claim ((F, V ), A) and any variable x, if x ∈ vars(F ) \ V , then literals
x and x cannot both occur in F .

Proof Sketch. Suppose there exists such an x. Since ((F, V ), A) is not redundant, there
is a path to the final claim. Thus, there have to be claims ((F1, V1), A1) and ((F2, V2), A2)
directly adjacent in the path with F ⊆ F1 ⊆ F2, V ⊆ V1 ⊆ V2 and x /∈ V1, x ∈ V2. Now
((F2, V2), A2) is directly derived from ((F1, V1), A1) in one step. We can argue that this is
not possible. ◀

▶ Lemma 6. Let a formula φ and a MICE proof π for φ be given. Then there is a MICE
proof π′ satisfying vars(F ) ⊆ V for any claim ((F, V ), A) ∈ π′ such that s(π′) = O(s(π)3)
and c(π′) = c(π).

Proof Sketch. Let π = (I1, . . . , Im) with Ii = ((Fi, Vi), Ai). Because of Lemma 5, for any
i ∈ [m], we can assume that there is no variable x ∈ vars(Fi)\Vi that occurs in both polarities
in Fi. Let αi ∈ ⟨vars(Fi) \ Vi⟩ be the assignment that does not satisfy any clause in Fi, i.e. if
x is in Fi we assign αi(x) = 0 and vice versa. For every claim Ii, αi exists and it is unique.
We define
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f(((Fi, Vi), Ai)) := ((Fi, Vi ∪ vars(Fi)), Ai ∪ αi)

with the unique αi defined above. We show by induction that (f(I1), . . . , f(Im)) is a valid
MICE proof for φ. ◀

In the following we always assume vars(F ) ⊆ V for any claim ((F, V ), A). With this
requirement, the conditions of the inference rules can be simplified.

▶ Corollary 7. If we require vars(F ) ⊆ V for every claim ((F, V ), A), the following simplific-
ations for the MICE rules apply:

We can simplify the absence of models statement in the requirement (C-2) to be a refutation
of F ∪ A ∪ {Ai | i ∈ [n]}.
We can remove condition (J-3) for (Join).
We can remove condition (E-5) for (Ext).

However, imposing the stronger condition vars(F ) = V for every claim ((F, V ), A) would
make the proof system exponentially weaker as we illustrate with the next proposition.

▶ Lemma 8. There is a family of formulas (Tn)n∈N such that for both measures s(·) and c(·)
holds:

Tn has polynomial-size MICE proofs and
if vars(F ) = V is required for all claims ((F, V ), A), the shortest MICE proof of Tn has
exponential size.

Proof Sketch. Consider the formula Tn that only has one clause (x1 ∨ x2 ∨ · · · ∨ xn).
To construct a polynomial-size MICE proof, we derive ((∅, vars(Tn)), {x1 = 1}, 2n−1) with

a small number of applications of (1-Mod) and (Join). We get ((Tn, vars(Tn)), {x1 = 1}, 2n−1)
with (Ext). Similarly, we derive ((Tn, vars(Tn)), {x1 = 0, x2 = 1}, 2n−2) and so on. With
applications of (Comp) we combine these claims to ((Tn, vars(Tn)), ∅, 2n − 1).

We can show that any MICE proof with the additional requirement vars(F ) = V needs to
have a claim ((Tn, vars(Tn)), α) for every model α ∈ Mod(Tn). Since Tn has 2n − 1 models,
the proof has size 2Ω(n). ◀

4 A Simplified Proof System MICE’ for #SAT

We now adapt MICE to a new proof system MICE′ that is as strong as MICE and only uses
claims ((F, V ), A) with components satisfying V = vars(F ). Therefore, we can drop the
explicit mentioning of the variable set V and only need to specify the formula F . This makes
the resulting proof system more intuitive and easier to investigate for lower bounds.

The rules of MICE′ are Axiom (Ax), Composition (Comp’), Join (Join’) and Extension
(Ext’). They are specified in Figure 2.

The intuition for the rules (Comp’) and (Join’) are very similar to (Comp) and (Join) from
MICE. The (Ax) rule enables us to derive the claim (∅, ∅, 1) which is trivially true. (Ext’) is
also similar to (Ext) with one important difference: If we use (Ext) in MICE, the assumption
has to assign all variables that are added to the claim. As result, we extend one model of the
original claim to one new model. In (Ext’) however, this is not necessarily the case. As long
as the new assumption satisfies all added clauses, we are allowed to leave new introduced
variables unassigned in the assumption. Like this we extend every model of the original claim
to a set of new models, one for every possible assignment of these unassigned variables.
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2:8 Proof Complexity of Propositional Model Counting

Axiom.

(∅, ∅, 1) (Ax)

Composition.

(F, A1, c1), . . . , (F, An, cn)
(F, A,

∑
i∈[n] ci)

(Comp’)

(C-1) vars(A1) = vars(A2) = · · · = vars(An) and Ai ̸= Aj for i ̸= j,
(C-2) A ⊆ Ai for all i ∈ [n],
(C-3) there exists a resolution refutation of A ∪ F ∪ {Ai | i ∈ [n]}. Such a refutation is
included into the trace and is called an absence of models statement.

Join.

(F1, A1, c1), (F2, A2, c2)
(F1 ∪ F2, A1 ∪ A2, c1 · c2) (Join’)

(J-1) A1 and A2 are consistent,
(J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.

Extension.

(F1, A1, c1)
(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

(Ext’)

(E-1) F1 ⊆ F ,
(E-2) A|vars(F1) = A1,
(E-3) A satisfies F \ F1.

Figure 2 Inference rules for MICE′.

▶ Definition 9 (Adapted Proof System MICE′). A claim is a triple (F, A, c) with vars(A) ⊆
vars(F ). For such a claim, let ModA(F ) := {α ∈ ⟨vars(F )⟩ | α |= F ∪ A}. The claim is
correct if c = |ModA(F )|. The rules of MICE′ are (Ax), (Comp’), (Join’) and (Ext’). The
notions of MICE′ traces and MICE′ proofs are defined analogously as for MICE. Furthermore,
we use the same two measures for the proof size s(·) and c(·).

As in the MICE proof system we often omit the count c of claims and assume that no
redundant claims exist in MICE′ proofs, i.e. all claims are connected to the final claim.

We prove that all four derivation rules are sound, i.e. for every derived claim (F, A, c)
holds c = |ModA(F )|. In doing so, we will also provide some intuition on the semantic
meaning of the rules.

▶ Lemma 10. The inference rules of MICE′ are sound.

Proof Sketch. To prove the soundness of every MICE′ rule, we associate every claim (F, A, c)
with the set containing exactly the c models in ModA(F ). With this interpretation, we can
specify how every rule modifies these models. This way, we can show that the resulting
model count is indeed correct for every MICE′ rule.

The soundness of (Ax) is obvious, since Mod∅(∅) = {∅}.
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To show soundness of (Comp’), let (F, A,
∑

i∈[n] ci) be derived with (Comp’) from correct
claims (F, A1, c1), . . . , (F, An, cn). Then we can show

ModA(F ) = {α ∈ ⟨vars(F )⟩ | α |= F ∪ A}.

Next, we show soundness of (Join’). For this, let (F1 ∪ F2, A1 ∪ A2, c1 · c2) be derived
with (Join’) from correct claims (F1, A1, c1) and (F2, A2, c2). We can show that

ModA1∪A2(F1 ∪ F2) = {α1 ∪ α2 | α1 ∈ ModA1(F1), α2 ∈ ModA2(F2)}.

Finally we have to show that (Ext’) is sound. Assume (F, A, c) is derived with (Ext’) from
the correct claim (F1, A1, c1). We can show

ModA(F ) = {α ∪ (A \ A1) ∪ β | α ∈ ModA1(F1), β ∈ ⟨vars(F ) \ (vars(F1) ∪ vars(A))⟩}.

Therefore, claims derived with MICE′ are correct. ◀

▶ Corollary 11. Let claim I = (F, A) and a model α ∈ ModA(F ) be given.
If I is derived with (Comp’) using claims (F, A1), . . . , (F, An), then there exists exactly
one i ∈ [n] such that α ∈ ModAi

(Fi).
If I is derived with (Join’) using claims (F1, A1) and (F2, A2), then for both i ∈ [2] we
have α|vars(Fi) ∈ ModAi

(Fi).
If I is derived with (Ext’) using claim (F1, A1), then α|vars(F1) ∈ ModA1(F1).

We introduce an additional rule (SA) which is similar to the construction in Proposition 3.

▶ Definition 12 (Satisfying Assumption Rule). Under the condition (S-1): A satisfies F , we
allow to derive

(F, A, 2|vars(F )\vars(A)|)
(SA).

This rule is sound and does not make MICE′ proofs much shorter.

▶ Lemma 13. (SA) is sound. Further, if formula φ has a MICE′ proof π that can use the
additional rule (SA), then there exists a MICE′ proof π′ of φ with s(π′) = s(π) + 1 and
c(π′) = c(π) + 1.

Proof. Assume that we applied (SA) in π to derive claim I = (F, A, 2|vars(F )\vars(A)|). Then
we can derive I without (SA) with two MICE′ steps in the following way. We use (Ax) to
get (∅, ∅, 1) and then (Ext’) to derive I. It is easy to see that conditions (E-1) and (E-2)
are fulfilled. (E-3) follows directly from (S-1). The resulting counts are the same since
1 · 2|vars(F )\(vars(F1))∪vars(A))| = 2|vars(F )\vars(A)|. Since we can simulate (SA) with the other
sound MICE′ rules, (SA) is sound as well. If we replace all applications of (SA) like this, then
the proof size increases at most by one, as we need (Ax) only once in the proof. ◀

To justify our definition of MICE′ we have to show that it is indeed a proof system for
#SAT.

▶ Theorem 14. MICE′ is a sound and complete proof system for #SAT.

Proof. The soundness of MICE′ follows directly from the soundness of the inference rules as
shown in Lemma 10.
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Next, we show that MICE′ is complete. For this, let an arbitrary formula φ be given. We
can derive Iα = (φ, α, 1) for every α ∈ Mod(φ) with (SA). For all these models together there
is an absence of models statement. Therefore, we can derive (φ, ∅, |Mod(φ)|) with (Comp’)
from all claims Iα. Note that for unsatisfiable formulas we can derive the final claim with a
single application of (Comp’).

In proof systems, it is also necessary that proofs can be verified in polynomial time. This
is possible in MICE′ since all conditions (C-1), (C-2), (C-3), (J-1), (J-2), (E-1), (E-2) and
(E-3) are easy to check in polynomial time. ◀

Next, we show some basic properties of MICE′.

▶ Lemma 15. Let claim (F1, A1) be used to derive (F, A) (not necessarily in one step). Then
F1 ⊆ F ,
if x ∈ vars(F1) ∩ vars(A), then x ∈ vars(A1) and A(x) = A1(x).

Proof. Because every MICE′ rule does not decrease the formula F , the first property is
obvious.

Let ((F1, A1), . . . , (Fn, An) = (F, A)) be a path in this derivation. It is easy to check that
for all four inference rules of MICE′ we have Ai+1|vars(Fi) ⊆ Ai for i ∈ [n − 1]. We can restrict
both sides and get

(Ai+1|vars(Fi))|vars(F1) = Ai+1|vars(Fi)∩vars(F1) = Ai+1|vars(F1) ⊆ Ai|vars(F1).

Therefore,

A|vars(F1) = An|vars(F1) ⊆ An−1|vars(F1) ⊆ · · · ⊆ A1|vars(F1) = A1.

From A|vars(F1) ⊆ A1 the second property follows. ◀

Using these properties, we can show that the new proof system MICE′ is polynomially
equivalent to MICE. Note that this result is true for both measures of proof size s(·) and c(·).
To prove this equivalence, we show both simulations separately.

First we show that MICE′ is at least as strong as MICE. This simulation is the more
important one for this paper as it implies that lower bounds for MICE′ do also apply for
MICE.

▶ Proposition 16. MICE′ p-simulates MICE.

Proof Sketch. Let π = (I1, . . . , Im) be a MICE proof of a given formula φ. We assume that
vars(F ) ⊆ V for all claims ((F, V ), A) in π which is justified by Lemma 6. We can show by
induction that for f(((F, V ), A)) := (F, A|vars(F )) the sequence π′ = (f(I1), . . . , f(Im)) is a
correct MICE′ proof of φ. ◀

Next we show that MICE′ is not stronger than MICE. Although this result is not needed
for the lower bounds, it is nice to know how our new proof system MICE′ relates to MICE
exactly.

▶ Proposition 17. MICE p-simulates MICE′.

Proof Sketch. Let π = I1, . . . , In with Ii = (Fi, Ai) be a MICE′ proof of a given for-
mula φ. We define f(Ii) := ((Fi, vars(Fi)), Ai) and show that we can derive f(Ik) using
f(I1), . . . , f(Ik−1) with O(|vars(φ)|) MICE steps. ◀
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5 Lower Bounds for MICE and MICE’

In this section we investigate the proof complexity of MICE′. For the analysis we use the two
different measures of proof size.

First, we consider the proof size s(·). For that, we can easily lift known lower bounds from
propositional resolution and get families of formulas that require MICE′ proofs of exponential
size.

However, one could argue, that this is not the kind of hardness we are interested in. In
the second part we get a stronger result by showing a lower bound for the number of inference
steps c(·), i.e. we ignore the sizes of the absence of models statements.

5.1 Lower Bounds for the Proof Size
In this subsection we only consider the proof size s(·) that counts the number of claims plus
the length of all resolution refutations. If we use MICE′ on unsatisfiable formulas, we have
to prove that the formula has zero models. Hence, we can use MICE′ as proof system for
the language UNSAT as well. We show that MICE′ is precisely as strong as resolution for
unsatisfiable formulas.

▶ Theorem 18. MICE′ is polynomially equivalent to Res for unsatisfiable formulas.

Proof Sketch. Let φ be an arbitrary unsatisfiable formula.
We first show that Res is simulated by MICE′. Suppose πRes is a resolution refutation of

φ, then we can use πRes as an absence of models statement and derive the final claim (φ, ∅, 0)
with a single application of (Comp) of zero claims.

Next, we show that MICE′ is simulated by Res. Let a MICE′ refutation π = (I1, . . . , Im)
for φ be given with Ii = (Fi, Ai, ci). Further, let πRes = (φ, X1, X2, . . . , Xm) where Xi is a
sequence of clauses defined as

Xi :=


empty sequence if ci ̸= 0
(Ai) if Ii is derived by (Join’) or (Ext’)
(C ∪ Ai | C ∈ ρ) if Ii is derived by (Comp’) and absence of models statement ρ.

We can show that πRes is a valid resolution trace (with weakening steps). ◀

Many hard families of formulas for resolution are known. One famous example is the
pigeonhole formula family PHP for which an exponential lower bound for resolution was first
shown in [21]. With Theorem 18 we can conclude that these hard formulas for resolution are
also hard for MICE′.

▶ Corollary 19. Any MICE′ proof π of PHPn has size s(π) = 2Ω(n).

We note that it is also quite straightforward to obtain exponential proof size lower bounds
for satisfiable formulas in MICE′ by forcing the system to refute some exponentially hard
CNFs in absence of models statements.

5.2 Lower Bounds for the Number of Inference Steps
One could argue that unsatisfiable formulas such as PHP are not particularly interesting for
model counting. We also note that they have very simple MICE′ proofs of just one step (as
in the simulation of resolution by MICE′ in Theorem 18) and that their hardness for MICE′
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stems solely from the fact that they are hard for resolution (and such resolution proofs need
to be included as an absence of models statement). However, we would argue that this does
not tell us much on the complexity of MICE′ proofs.

We therefore now tighten our complexity measure and consider the proof size measure c(·)
that only counts the number of MICE′ inference steps which is exactly the number of claims
a proof π has. This measure disregards the size of the accompanying resolution refutations
and hence formulas such as PHP become easy.

In our main result we present a family of formulas that is exponentially hard with respect
to this sharper measure of counting inference steps. Such hard formulas need to have many
models as the following upper bound shows.

▶ Observation 20. Every formula φ has a MICE′ proof π with c(π) = |Mod(φ)| + 2.

Proof. The MICE′ proof that we used to show the completeness in Theorem 14 needs one
(Ax) step, |Mod(φ)| applications of (Ext’), and one application of (Comp’). ◀

Therefore, to show exponential lower bounds to the number of steps we will need formulas
with 2Ω(n) models. Next, we show that MICE′ proofs for such formulas do not require claims
with c = 0. In particular, we can assume that there are no such claims in the proofs.

▶ Lemma 21. Let φ ∈ SAT and π be a MICE′ proof of φ. Then there is a MICE′ proof π′ of
φ that has no claim with count c = 0 such that s(π′) = O(s(π)2) and c(π′) ≤ c(π).

Proof Sketch. We consider an arbitrary claim I in the π with c = 0. Since I is not redundant,
there is a path to the final claim. The final claim has count c > 0, since φ is satisfiable.
Therefore, in this path there are two adjacent claims (F1, A1, c1) and (F2, A2, c2) with c1 = 0
and c2 > 0. We can argue that (F2, A2, c2) is derived with (Comp’). We can adapt the absence
of models statement such that (F1, A1, c1) is not needed for this (Comp’) application. ◀

Next, we introduce the family of formulas (XOR-PAIRSn)n∈N. They consist of variables
xi and zij for i, j ∈ [n] and are satisfied exactly if (zij = xi ⊕ xj) for every pair i, j ∈ [n].

▶ Definition 22. The formula XOR-PAIRSn consists of the clauses

C1
ij = (xi ∨ xj ∨ zij), C2

ij = (xi ∨ xj ∨ zij), C3
ij = (xi ∨ xj ∨ zij), C4

ij = (xi ∨ xj ∨ zij)

for i, j ∈ [n].

▶ Theorem 23. Any MICE′ proof π of XOR-PAIRSn requires size c(π) = 2Ω(n).

We start with some observations and lemmas and prove the lower bound at the end of
this section.

The idea of the proof is the following: The final claim has a large count. In order to get a
large count with a small number of MICE′ steps, we have to use (Ext’) or (Join’) such that the
previous counts get multiplied. However, we show that one factor of any such multiplication
is always 1. As a result, the only way to increase the count is with (Comp’). We start with
applications of (Ax) with count 1 and can only sum up those counts with (Comp’). As a
result, we need an exponential number of summands.

▶ Observation 24. XOR-PAIRSn has 2n models.

Proof. We can set xi arbitrarily for all i ∈ [n] and have a unique assignment for the remaining
z variables to satisfy XOR-PAIRSn. ◀
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For the following arguments we will only consider MICE′ proofs of XOR-PAIRSn without
redundant claims (i.e. all claims are connected to the final claim) and without claims with
c = 0 (this is possible by Lemma 21). Our next lemma states that if we have some clause
Cij in a claim, then all missing clauses Cij have to be satisfied by the assumption.

▶ Lemma 25. Let (F, A) be an arbitrary claim in a MICE′ proof of XOR-PAIRSn. If there
are i, j ∈ [n] such that {xi, xj , zij} ⊆ vars(F ), then A has to satisfy every clause Ck

ij for
k ∈ [4] that is not in F .

Proof Sketch. We fix variables i, j ∈ [n] such that {xi, xj , zij} ⊆ vars(F ) and a clause C =
Ck

ij /∈ F for some k ∈ [4]. We consider only the path from (F, A) to (XOR-PAIRSn, ∅) which
has to exist, because otherwise (F, A) is redundant. There have to be claims I1 = (F1, A1)
and I2 = (F2, A2) directly adjacent in this path with F ⊆ F1 ⊆ F2 ⊆ φ, C /∈ F1, C ∈ F2, i.e.
I1 is the last claim in the path that does not contain C. I2 is directly derived from I1 with
one of the four MICE′ steps. We can argue that this is only possible if A satisfies C. ◀

The following lemma is similar in spirit. It shows that if all clauses Cij are missing in a
claim, then xi and xj have to be set in the assumption.

▶ Lemma 26. Let a MICE′ proof of XOR-PAIRSn be given and let (F, A) be an arbitrary
claim in the proof. If there are i, j ∈ [n] such that {xi, xj} ⊆ vars(F ) and zij /∈ vars(F ), then
{xi, xj} ⊆ vars(A).

Proof Sketch. The proof is very similar to the one of Lemma 25. We consider a path from
(F, A) to the final claim and have a closer look at the first claim in this path that contains a
clause Ck

ij for some k ∈ [4]. We argue that we can only derive this claim if {xi, xj} ⊆ vars(A)
is fulfilled. ◀

Using the previous two lemmas, we show that the two inference rules that multiply counts,
i.e. (Join’) and (Ext’), do not affect the count at all for the XOR-PAIRS formulas.

▶ Lemma 27. Let a MICE′ proof of XOR-PAIRSn be given. If the proof contains a (Join’) of
two claims (F1, A1, c1) and (F2, A2, c2), then min(c1, c2) = 1.

Proof. Suppose otherwise, c1 ≥ 2 and c2 ≥ 2.
Assume that all x variables occurring in vars(F1) are assigned in A1. Since c1 ≥ 2,

vars(F1) \ vars(A1) ̸= ∅. In particular, there has to be a zij ∈ vars(F1) \ vars(A1) such that
there is at least one model of F1 and A1 with zij = 0 and one with zij = 1. Then we have
{xi, xj} ⊆ vars(F1) and {xi, xj} ⊆ vars(A1). As a result, A1 has to satisfy all clauses Ck

ij

that are in F1. Because of Lemma 25, A1 has to satisfy the clauses Ck
ij that are not in F1

as well. Thus, A1 has to satisfy all four clauses Ck
ij , which is only possible if zij ∈ vars(A1).

This contradicts the choice of zij . Similarly, we also see that there is at least one x variable
in vars(F2) \ vars(A2).

Hence, we can fix xi ∈ vars(F1) \ vars(A1) and xj ∈ vars(F2) \ vars(A2). Condition (J-2)
implies xi /∈ vars(F2), xj /∈ vars(F1) and in particular i ≠ j. Because of vars(A1) ⊆ vars(F1)
and xj /∈ vars(F1) we get xj /∈ vars(A1) and therefore also xj /∈ vars(A1 ∪ A2). The joined
claim is (F, A) = (F1 ∪ F2, A1 ∪ A2) with {xi, xj} ⊆ vars(F ) and Ck

ij /∈ F for all k, implying
zij /∈ vars(F ). With Lemma 26 we get the contradiction xj ∈ vars(A) = vars(A1 ∪ A2).

Therefore, our assumption c1 ≥ 2 and c2 ≥ 2 was false. ◀

Using this lemma we can show, that w.l.o.g. any MICE′ proof of XOR-PAIRSn does not
use (Join’).
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▶ Lemma 28. Let π be a MICE′ proof of XOR-PAIRSn. Then there is a MICE′ proof π′ that
does not use (Join’) with c(π′) ≤ 2 · c(π).

Proof. Using π we construct a MICE′ proof π′ that does not use (Join’).
For this suppose that in π, the claim I = (F1 ∪ F2, A1 ∪ A2) is derived with (Join’) of

(F1, A1, c1) and (F2, A2, c2). Because of Lemma 27 we can assume that c2 = 1. Thus, there is
a unique assignment α such that vars(A2) ∩ vars(α) = ∅, vars(A2 ∪ α) = vars(F2) and A2 ∪ α

satisfies F2. Then, we can apply (Ext’) to (F1, A1) resulting in (F1 ∪ F2, A1 ∪ A2 ∪ α). We
check the conditions to apply (Ext’).

(E-1) F1 ⊆ F1 ∪ F2 holds.
(E-2) We see that (A1 ∪ A2 ∪ α)|vars(F1) = A1|vars(F1) ∪ A2|vars(F1) ∪ α|vars(F1) = A1. In the
last equation we used three facts:
A1|vars(F1) = A1 is a direct consequence of vars(A1) ⊆ vars(F1).
A2|vars(F1) ⊆ A1 follows from vars(A2|vars(F1)) ⊆ vars(F2) ∩ vars(F1) ⊆ vars(A1) by (J-2)
and the fact that A1 and A2 are consistent by (J-1).
α|vars(F1) = ∅. Assume otherwise that x ∈ vars(α)∩vars(F1). Then x ∈ vars(α)∩vars(F1) ⊆
vars(F2) ∩ vars(F1) ⊆ vars(A2) by (J-2). Thus, x ∈ vars(A2) ∩ vars(α) contradicting the
construction of α.
(E-3) A1 ∪ A2 ∪ α satisfies (F1 ∪ F2) \ F1 ⊆ F2 as A2 ∪ α satisfies F2 by construction.

Applying (Comp’) on the claim (F1 ∪ F2, A1 ∪ A2 ∪ α) we get (F1 ∪ F2, A1 ∪ A2). In this
way we can remove every (Join’) application with one application of each (Ext’) and (Comp’).
Let π′ be the resulting MICE′ proof of XOR-PAIRSn that does not use (Join’). The number
of claims in the proof increases at most by a factor of two. ◀

▶ Lemma 29. Let a MICE′ proof of XOR-PAIRSn be given. Any claim (F, A, c) in the proof
that is derived with (Ext’) from (F1, A1, c1) satisfies c = c1.

Proof. Suppose c ̸= c1. Since c = c1 · 2|vars(F )\(vars(F1)∪vars(A))| there is a variable v ∈ vars(F )
with v /∈ vars(F1) ∪ vars(A). Variable v occurs in some clause Ck

ij ∈ F \ F1. Therefore,
{xi, xj , zij} ⊆ vars(F ). A has to satisfy all clauses of Cij that occur in F \ F1 because of
(E-3). Furthermore, A has to satisfy all clauses of Cij that do not occur in F as well due
to Lemma 25. Since, v /∈ vars(F1), there is no Cij ∈ F1. Therefore, A has to satisfy all four
clauses Cij . For this, xi, xj and zij have to be set in A. Since v occurs in Cij , we have
v ∈ vars(A) which contradicts the choice of v. ◀

Now we have all ingredients to finally prove that the XOR-PAIRS formulas require proofs
with an exponential number of MICE′ steps.

Proof of Theorem 23. Note that with Observation 24, Lemma 27 and Lemma 29 we can
infer immediately that any tree-like MICE′ proof of XOR-PAIRSn, i.e. any proof that uses
every claim except axiom at most one time, has at least size 2n + 2. However, dag-like MICE′

might be stronger than tree-like MICE′. Therefore, the lower bound is not shown yet.
To prove the lower bound in the general case, let π be an arbitrary MICE′ proof of

XOR-PAIRSn. Let π′ be a MICE′ proof of XOR-PAIRSn that does not use (Join’) with
c(π′) ≤ 2 · c(π) which has to exist because of Lemma 28.

We consider an arbitrary fixed path κ in π′ from the axiom to the final claim. Since π′

does not use (Join’), we can only enlarge the formula with (Ext’). Because of Lemma 29, we
have to assign all newly introduced variables when we use (Ext’), i.e. every variable is in at
least one assumption in κ. The only rule that can remove variables from the assumption is
(Comp’).
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Since the final claim has the empty assumption, we have to remove all variables from the
assumption in κ. Therefore, in κ there has to be at least one application of (Comp’) where
we remove a variable xi from the assumption for some i ∈ [n]. Let Iκ

1 = (F κ
1 , Aκ

1 ) be the
claim that was used for the first such (Comp’) in κ to derive Iκ

2 = (F κ
2 , Aκ

2 ).
Let X be the set of all x variables: X := {x1, . . . , xn}. We show

X ⊆ vars(F κ
1 ).

Let xi be a variable that is removed from the assumption by applying (Comp’) to Iκ
1 , i.e.

xi /∈ vars(Aκ
2 ). Suppose, there is a j ∈ [n] such that xj /∈ vars(F κ

1 ) and in particular Cs
ij /∈ F κ

1
for all s ∈ [4], implying zij /∈ vars(F κ

1 ). Let Iκ
r = (F κ

r , Aκ
r ) be the first claim in κ with

zij ∈ vars(F κ
r ) and therefore {xi, xj , zij} ⊆ vars(F κ

r ). Iκ
r has to be derived with (Ext’).

Because of condition (E-3), Aκ
r has to satisfy all clauses Cs

ij in F κ
r . Furthermore, Aκ

r has to
satisfy all clauses Cs

ij that are not in F κ
r because of Lemma 25. Hence, Aκ

r has to satisfy
Cs

ij for all s ∈ [4]. To do so, we have to assign all three variables xi, xj and zij in Aκ
r . In

particular, we have xi ∈ vars(Aκ
r ). Since xi /∈ vars(Aκ

2 ), Lemma 15 states xi /∈ vars(Aκ
r ).

With this contradiction we see that such an xj with xj /∈ vars(F κ
1 ) cannot exist.

Since X ⊆ vars(F κ
1 ), all variables in X were introduced and assigned in the assumption

with (Ext’) in Iκ
1 or previously in κ. Per construction there are no other (Comp’) applications

before Iκ
1 in κ that remove variables in X. Therefore, we have

X ⊆ vars(Aκ
1 ).

We show that for every α ∈ Mod(XOR-PAIRSn) there is a path κ in π′ with α|X = Aκ
1 |X .

Assume that for some fixed model α there is no such path. Since π′ does not use (Join’) and
α ∈ Mod∅(XOR-PAIRSn), Corollary 11 implies that there is a path κ from axiom to the final
claim, such that every claim (F, A) in κ fulfills α|vars(F ) ∈ ModA(F ). In particular,

α|vars(F κ
1 ) ∈ ModAκ

1
(F κ

1 ).

If we restrict both sides on the variables in X and use X ⊆ vars(F κ
1 ), we get

α|X ∈ {β|X | β ∈ ModAκ
1
(F κ

1 )}.

Since X ⊆ vars(Aκ
1 ), all models β ∈ ModAκ

1
(F κ

1 ) have β|X = (Aκ
1 )|X . Therefore, the right

set has only one element which is (Aκ
1 )|X , leading to α|X = (Aκ

1 )|X . Hence, κ is a path with
the claimed property for α.

Since XOR-PAIRSn has 2n models, there are (at least) 2n paths in π′ and in particular 2n

claims Iκ
1 . Because every model of XOR-PAIRSn assigns the x variables differently, all these

claims Iκ
1 are pairwise different. Therefore, π′ has at least 2n claims.

Finally, we see that the arbitrarily chosen MICE′ proof π has size c(π) ≥ 1
2 · c(π′) ≥ 2n−1

leading to the lower bound. ◀

6 Conclusion

We performed a proof-complexity study of the #SAT proof system MICE, exhibiting hard
formulas, both in terms of unsatisfiable CNFs, where their complexity in MICE matches their
resolution complexity, and for highly satisfiable CNFs with many models. As Fichte et al. [18]
show that MICE proofs can be extracted from solver runs for sharpSAT [29], DPDB [19] and
D4 [24], this implies a number of hard instances for these #SAT solvers.
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We believe that the ideas for the lower bound for our formula XOR-PAIRS can be extended
to show hardness of further CNFs with many models. A natural problem for future research
is to construct stronger #SAT proof systems (and #SAT solvers) where formulas such as
XOR-PAIRS become easy.

As pointed out by one reviewer and mentioned in Section 1.2, there appears to be a close
connection between MICE′ proofs and decision DNNFs. Therefore, it seems promising to
investigate if known results from decision DNNFs can be transferred to MICE′. This may
lead to more hard formulas and lower bounds for MICE′.

It would also be interesting to determine the exact relations between the systems MICE,
MICE′ and the kcps(#SAT) proof system from [11] based on certified decision DNNFs.
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