
QMusExt: A Minimal (Un)satisfiable Core
Extractor for Quantified Boolean Formulas
Andreas Plank # Ñ

Johannes Kepler Universität Linz, Austria

Martina Seidl #Ñ

Johannes Kepler Universität Linz, Austria

Abstract
In this paper, we present QMusExt, a tool for the extraction of minimal unsatisfiable sets (MUS)
from quantified Boolean formulas (QBFs) in prenex conjunctive normal form (PCNF). Our tool
generalizes an efficient algorithm for MUS extraction from propositional formulas that analyses and
rewrites resolution proofs generated by SAT solvers.

In addition to extracting unsatisfiable cores from false formulas in PCNF, we apply QMusExt
also to obtain satisfiable cores from Q-resolution proofs of true formulas in prenex disjunctive normal
form (PDNF).

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Minimal Unsatisfiable Core, Quantified Boolean Formula

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.20

Supplementary Material Software (Source Code): https://github.com/PlankAndreas/QMusExt
archived at swh:1:dir:29b2426d2111cd93ebe0c5a9c41e9dc1f337fcce

Funding This work has been supported by the LIT AI Lab funded by the State of Upper Austria.

1 Introduction

We present the tool QMusExt that computes a minimal unsatisfiable set (MUS), also called
minimal unsatisfiable core, of a false quantified Boolean formula (QBF) Π.ϕ in prenex
conjunctive normal form. An MUS is a subformula of ϕ′ ⊆ ϕ such that Π.ϕ′ is false and
removing any clause from ϕ′ would make the formula true. Hence, an MUS describes a set
of contradicting constraints from which no clause may be removed without eliminating the
inconsistency as well. As this information is very important for understanding the reason of
an inconsistency, many approaches have been presented to compute minimal unsatisfiable
cores for propositional formulas [6]. In general, the MUS of a formula is not necessarily
unique, a formula can have multiple MUSes and usually the smaller ones are preferred, i.e.,
size is a measure on the quality of the MUS extraction algorithm.

For QBFs, only few approaches for calculating MUSes exist so far, although MUS
extraction is an important problem here as well. In [7, 6], theoretical properties of MUS
extraction have been studied. An approach that extracts unsatisfiable cores which are not
necessarily minimal is employed in [13] to validate the correctness of QBF solving results.
In [4] the extraction of unsatisfiable cores is discussed in the context of the quantified MaxSAT
problem. An approach to extract minimal unsatisfiable cores from false QBFs in PCNF was
presented by Lonsing and Egly [8]. In this work, the solver DepQBF was equipped with
an interface for incremental solving that provides a clause grouping feature. They showed
that with this feature, the iterative clause set refinement approach with selector variables
is straight-forward to implement for PCNF formulas. To the best of our knowledge, they
provided the first available tool for MUS extraction. Most recently, Niskanen et al. presented
an approach to find a smallest MUS of a false QBF based on implicit hitting sets [12].

© Andreas Plank and Martina Seidl;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 20; pp. 20:1–20:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.plank@jku.at
https://www.jku.at/institut-fuer-symbolic-artificial-intelligence/team/andreas-plank
https://orcid.org/0000-0002-2653-0689
mailto:martina.seidl@jku.at
https://www.jku.at/institut-fuer-symbolic-artificial-intelligence/team/martina-seidl/
https://orcid.org/0000-0002-3267-4494
https://doi.org/10.4230/LIPIcs.SAT.2023.20
https://github.com/PlankAndreas/QMusExt
https://archive.softwareheritage.org/swh:1:dir:29b2426d2111cd93ebe0c5a9c41e9dc1f337fcce;origin=https://github.com/PlankAndreas/QMusExt;visit=swh:1:snp:8b25e1ec93717d0494340059dd7e283b822cd1b5;anchor=swh:1:rev:15d70eb1259bd6963e24e3962c96563741683c10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Minimal (Un)satisfiable Core Extraction for QBFs

The approach implemented in our tool QMusExt works differently. It applies a proof-based
approach that was originally suggested for propositional formulas [2]. In particular, it reduces
the set of initial clauses of a Q-resolution proof as produced by modern QBF solvers until an
MUS is extracted. Therefore, the proof needs to be iteratively updated. By exploiting the
duality of true and false QBFs, satisfiable cores of true QBFs can be obtained by employing
our approach. Our tool QMusExt is implemented in C and is available under MIT license at

https://github.com/PlankAndreas/QMusExt.

2 Preliminaries

We consider QBFs of the form Π.ϕ, where Π = Q1X1...QnXn is called the quantifier prefix,
X1, . . . , Xn are pairwise disjoint sets of Boolean variables, Qi ∈ {∀,∃}, and Qi ̸= Qi+1.
The matrix ϕ is a propositional formula either in prenex conjunctive normal form (PCNF),
i.e., it is a conjunction of clauses, or in prenex disjunctive normal form (PDNF), i.e., it
is a disjunction of cubes. As usual, a clause is a disjunction of literals and a cube is a
conjunction of literals. If convenient, we interpret clauses and cubes as sets of literals. A
literal is a variable or a negated variable. We define Var(l) = x if l = x or l = x̄ for any
literal l. We say a literal is existential (universal), if its variable is existentially (universally)
quantified. Further, l̄ = x if l = x̄ and l̄ = x̄ if l = x. A quantifier prefix Q1X1 . . . QnXn

imposes an ordering < on the variables: if xi ∈ Xi, xj ∈ Xj , and i < j, then xi < xj . For a
propositional formula ϕ, ϕl denotes the formula obtained by setting variable x to true if l =
x and by setting x to false if l = x̄. A QBF ∀XΠ.ϕ is true iff ∀X ′Π.ϕx and ∀X ′Π.ϕx̄ are
true where X ′ = X \ {x}. Respectively, a QBF ∃XΠ.ϕ is true iff ∃X ′Π.ϕx or ∃X ′Π.ϕx̄ is
true. For example ∀x∃y.(x ∨ y) ∧ (x̄ ∨ ȳ) is true and ∃x∀y.(x ∨ y) ∧ (x̄ ∨ ȳ) is false. Every
false QBF Π.ϕ in PCNF can be refuted by Q-resolution [5] which consists of the following
three clause-derivation rules:

Axiom: Any clause of ϕ can be derived.
Resolution: From already derived clauses C ∨ x and D ∨ x̄, a clause C ∨ D can be
derived if there is no literal l with l, l̄ ∈ C ∪ D, x ̸∈ D, x̄ ̸∈ C, and x is existentially
quantified.
Universal Reduction: From an already derived clause C ∨ l, a clause C can be derived
if l is universal and there is no existential literal k ∈ C with l < k.

A QBF is false iff the empty clause □ can be derived via Q-resolution. Dually, every true
QBF Π.ϕ in PCNF can be proven by Q-resolution [3] which consists of the following three
cube-derivation rules:

Axiom: Let σ be a satisfying assignment of ϕ. Then cube
∧

l∈σ l can be derived.
Resolution: From already derived cubes C ∧ x and D ∧ x̄, a cube C ∧D can be derived
if there is no literal l with l, l̄ ∈ C ∪D, x ̸∈ D, x̄ ̸∈ C, and x is universally quantified.
Existential Reduction: From an already derived cube C ∧ l, a cube C can be derived
if l is existential and there is no universal literal k ∈ C with l < k.

A QBF is true iff the empty cube can be derived via Q-resolution. A clause/cube derived via
the resolution rule is called resolvent, while the parent clauses/cubes are called antecedents.
Clauses with no antecedents are called initial clauses. Respectively, cubes without antecedents
are called initial cubes. While initial clauses are directly available from the given PCNF
formula, initial cubes have to be found by the QBF solver. Q-resolution proofs can be
described in terms of resolution graphs. For a false QBF Π.ϕ, a resolution graph P = (V,E)
is a directed acyclic graph (DAG). The set of vertices V = V i ∪ V d consists of initial clauses
V i ⊆ ϕ and derived clauses V d. Edges connect two antecedents and their resolvent, or a
clause C and a clause C ′ that is obtained by universally reducing C. The only sink vertex is
the empty clause denoted by □. Resolution graphs for true QBFs are defined respectively.

https://github.com/PlankAndreas/QMusExt


A. Plank and M. Seidl 20:3

A vertex D is called reachable in resolution graph P from a vertex C iff there is a path
from vertex C to vertex D. With cone(P,C) we denote the set of all vertices reachable
from vertex C in a resolution graph P (the cone of a clause C). Dually the set unRe(P,C )
contains all clauses not reachable from clause C. Finally, we define a resolution graph P to
be non-redundant if all vertices are connected. In the following, we will use Q-resolution
proofs to detect minimal (un)satisfiable cores which are defined as follows.

▶ Definition 1 (Minimal Unsatisfiable Core). For a false QBF Φ = Π.ϕ in PCNF, a sub-
formula ϕ′ ⊆ ϕ is a minimal unsatisfiable core of Φ, if Π.ϕ′ is false and Π.ϕ′\{C} is true
for all C ∈ ϕ′.

The size of an unsatisfiable core is the number of its clauses. In general, minimal
unsatisfiable cores are not unique and they can be of different size. For example, the formula
∃x∀y∃z.((x ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (z̄) ∧ (x ∨ y ∨ z̄) ∧ (z ∨ y)) has minimal unsatisfiable cores
((x ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (z̄)), ((z̄) ∧ (z ∨ y)), and ((x ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (x ∨ y ∨ z̄)).

▶ Definition 2 (Minimal Satisfiable Core). For a true QBF Φ = Π.ϕ in PDNF, a sub-formula
ϕ′ ⊆ ϕ is a minimal satisfiable core of Φ, if Π.ϕ′ is true and Π.ϕ′\{C} is false for all C ∈ ϕ′.

3 QMusExt

Our tool QMusExt extracts unsatisfiable cores from Q-resolution refutations of false QBFs.
Further, it extracts satisfiable cores from Q-resolution satisfaction proofs of true QBFs. In
both cases, QMusExt processes Q-resolution proofs in the QRP-format1 and repeatedly calls
the QBF solver DepQBF [9] in version 6.03 for deciding PCNF formulas and for producing
proofs of modified formulas. In the following, we first introduce the algorithm implemented
in QMusExt for extracting unsatisfiable cores, and then discuss the extraction of satisfiable
cores.

Algorithm 1 Minimal Unsatisfiable Core Extraction.

Data: False QBF Π.ϕ in PCNF
Result: Minimal Unsat Core V i

1 (False, P ) ← QBFSolver (Π.ϕ) with P = (V i ∪ V d, E);
2 P ← trim (P );
3 while unmarked clauses exists in V i do
4 C i ← pickUnmarkedClause(V i);
5 (Val, P ′) ← QBFSolver (Π.unRe(P,C i));
6 if Val == True then
7 mark C i as a MUS member;
8 else
9 P ′′ ← rebuildProof (P , P ′);

10 P ← trim (P ′′);
11 end
12 end

1 http://fmv.jku.at/qbfcert/qrp.format

SAT 2023

http://fmv.jku.at/qbfcert/qrp.format


20:4 Minimal (Un)satisfiable Core Extraction for QBFs

3.1 Basic Algorithm for the Extraction of Unsatisfiable Cores
Our tool QMusExt is based on the algorithm for the extraction of minimal unsatisfiable
cores for propositional formulas presented in [2]. Whereas the original approach relies on
propositional resolution proofs, QMusExt processes Q-resolution proofs. The latter contain
not only applications of the axiom and the resolution rule, but also universal reductions.
While this has some impacts on the implementation of QMusExt, conceptually the original
algorithm is similar.

The approach implemented by QMusExt is summarized in Algorithm 1. The input is
a false QBF Φ = Π.ϕ in PCNF. First a QBF solver like DepQBF is called. We assume
that the QBF solver returns a pair (Val, P ) where Val is the truth value of the solved
formula and P = (V i ∪ V d, E) is a Q-resolution refutation of Φ. In order to ensure that P is
non-redundant, the function trim is called. Next, QMusExt checks if there is an unmarked
clause in V i. If a clause is unmarked it has not been checked so far if it belongs to the MUS.
As long as there is one unmarked clause in V i, such a clause C i is selected. Then the QBF
Π.ϕ′ is solved where ϕ′ consists of the clauses of P (initial and derived clauses) that are
not in the cone of C i, i.e., those clauses of P that are unreachable from C i. If Φ.ϕ′ is true,
then C i is marked as MUS member. Otherwise, the solver returns a refutation P ′ of Π.ϕ′.
This proof does not contain C i as initial clause, but P ′ could contain clauses from V d as
initial clauses which are not part of V i and therefore also not part of the original clause set
ϕ. Hence, it is not a proof of Π.ϕ in general. Based on information from proof P , P ′ can be
modified to a proof P ′′ such that it contains only initial clauses from V i. In consequence,
P ′′ is a proof of Π.ϕ. This proof P ′′ contains at least one initial clause less than P (clause
C i), but in many cases other clauses other than C i from V i are no initial clauses of P ′′ as
well, because they are not needed to justify initial clauses from P ′. In this way, multiple
clauses not belonging to the MUS can be eliminated in one step. For the next iteration, P is
replaced by a trimmed version of P ′′, i.e., all clauses that are not connected are removed to
ensure that P is non-redundant. The approach is illustrated by the following example.

▶ Example 3. Consider the following QBF Φ1 = Π.ϕ which has seven clauses

∃a, b∀x, y∃c, d.(b̄∨x∨c)∧(b∨x∨c)∧(b∨ȳ∨c̄∨d̄)∧(b̄∨y∨d)∧(ā∨x)∧(a∨x∨c̄∨d̄)∧(a∨x∨c).

The resolution proof P1 in Figure 1 witnesses that this formula is false. For convenience, the
initial clauses V i are labeled by C i

j (with 1 ≤ j ≤ 7) and the derived clauses V d are labeled
by Cd

k (with 1 ≤ k ≤ 10). In this resolution graph with V i = ϕ all clauses are connected to
the empty clause. Hence, it is already non-redundant.

In the first step, we remove clause C i
1 = (b̄ ∨ x ∨ c) as well as its cone clauses Cd

6 =
(x ∨ c), Cd

8 = (x ∨ ȳ ∨ d), Cd
9 = (x ∨ ȳ), and Cd

10 = □. Those clauses are highlighted
in Figure 1. Now a QBF solver is invoked on all remaining clauses, i.e., on the QBF
Φ2 = Π.V i \ {C i

1} ∪ V d \ {Cd
6 , C

d
8 , C

d
9 , C

d
10}.

Also Φ2 is false. Therefore, we can conclude that the clause C i
1 = (b̄ ∨ x ∨ c) is not part

of the minimal unsatisfiable core and can be removed permanently. The resolution proof P2
of Φ2 (the highlighted part of the proof shown in Figure 2 is not a resolution proof of Φ1
as it contains initial clauses that do not occur in ϕ. However, the proof of Φ1 can be used
to rewrite the proof of Φ2 such such that it becomes a proof of Φ1 without using C i

1. In
particular, we need to introduce derivations for initial clauses of P2 that are from V d. These
derivations are obtained from P1. For example, the derivation for Cd

4 needs to be added. In
the new proof, clause C i

2 is not needed for proving Φ1. Therefore, it is also not part of the
MUS. The new proof has only five initial clauses. In the next five iterations, we find out that
none of them can be removed, i.e., all of them are part of the MUS.



A. Plank and M. Seidl 20:5

Cd
10 : □

Cd
9 : {x, ȳ}

Cd
8 : {x, ȳ, d}

Cd
7 : {ȳ, c̄, d}

Cd
5 : {b̄}

Cd
4 : {b̄, x, y}

Cd
3 : {x, d̄}

Cd
2 : {a, x, d̄}

C i
7 : {a, x, c}C i

6 : {a, x, c̄, d̄}

Cd
1 : {ā}

C i
5 : {ā, x}C i

4 : {b̄, y, d}C i
3 : {b, ȳ, c̄, d}

Cd
6 : {x, c}

C i
2 : {b, x, c}C i

1 : {b̄, x, c}

Figure 1 Initial resolution refutation for QBF Φ of Example 3 as returned by the QBF solver.
Assume that the clause C i

1 is tested for its MUS membership. The highlighted clauses are in the
cone of C i

1. Only those clauses which are not highlighted are passed to the QBF solver in the next
iteration.

3.2 Extraction of Satisfiable Cores
In contrast to SAT where only unsatisfiable formulas have resolution proofs, also true QBFs
have resolution proofs. As QBFs are usually in PCNF, the solver has to provide initial cubes
that are satisfying assignments of the matrix, i.e., for a true QBF Π.ϕ in PCNF, the solver
provides a PDNF representation Π.ψ from which the empty cube is derived by using the
resolution rule and the existential reduction rule. We can now ask the question what is a
minimal satisfiable core of Π.ψ? Our tool can directly answer this question by processing the
Q-resolution satisfaction proof in a similar manner as discussed above. Minimal satisfiable
cores might be used to find smaller proofs for true formulas. For true formulas, the clausal
representation of the input formula is disadvantageous in general, leading to large initial cubes
and large proofs. As an effect, the proofs are often very large and also the Skolem functions,
the solutions that are extracted from the proofs according to approaches as presented in [1],
are large as well.

4 Evaluation

In this section, we evaluate our tool QMusExt on false (true) instances to extract minimal
unsatisfiable cores and minimal satisfiable cores. In our implementation we used hash maps
as the data structure to store the resolution refutation. This design choice causes a slightly
higher memory usage compared to arrays, however tests showed a significant speed up in
computation time, due to efficient proof manipulations during the iterations. We also decided
to closely interact with DepQBF via API calls, reducing the time needed for the required

SAT 2023



20:6 Minimal (Un)satisfiable Core Extraction for QBFs

Cd
10 = □

Cd
9 = {x, ȳ}

Cd
8 : {x, ȳ, d}

Cd
6 : {x, c}

Cd
1 : {ā}

C i
5 : {ā, x}

Cd
7 : {ȳ, c̄, d}

Cd
5 : {b̄}

Cd
4 : {b̄, x, y}

Cd
3 : {x, d̄}

Cd
2 : {a, x, d̄}

C i
7 : {a, x, c}C i

6 : {a, x, c̄, d̄}C i
4 : {b̄, y, d}C i

3 : {b, ȳ, c̄, d}

Figure 2 Rewritten resolution refutation after one iteration. The highlighted part is the proof
for the formula that contains the clauses not reachable from C i

1 (the clauses not highlighted in the
proof above). Hence, this is not a proof of Φ. The dashed edges and vertices from the matrix of Φ
are added in order to obtain a proof for Φ. This proof does not include C i

1 as initial clause. Further,
it does not include C i

2.

solver calls. All experiments were run on a cluster of dual-socket AMD EPYC 7313 @ 16 ×
3.7GHz machines with 4GB memory limit and 1800 seconds as timeout. All experimental
data is available at the webpage of our tool.

4.1 Extraction of Unsatisfiable Cores
For MUS extraction, we consider the formulas of the PCNF track of the QBFEval 2022 and
of the QBFEval 2008. All formulas are available at QBFLib.2 To identify false formulas we
run DepQBF [9] in standard configuration and selected all false formulas that could be solved
within a time limit of 1800 seconds. Out of 1141 formulas of the eval2008 benchmark set
(resp. 259 of the eval2022 benchmark set) 683 (resp. 137) formulas were found to be false.
For the 2008 benchmarks, QMusExt could find the MUSes of 436 formulas with an average
size of 533.50 clauses while the proofs contain 650.58 initial clauses and the original PCNFs
16903.04 clauses on average. For the 2022 benchmarks, QMusExt could find the MUSes of
62 formulas with an average size of 406.63 clauses while the proofs contain 500.53 initial
clauses and the original PCNFs 12270.57 clauses on average. Hence we observe an decrease of
96.84 % and 96.68 % of used clauses compared to the initial clauses and a reduction in proof
clauses of 18.00 % and 18.76 %. The reductions are summarized in Table 2. The average
runtime for successful executions was 120.67 seconds for the 2008 benchmarks and 131.01
seconds for the 2022 benchmarks. On average 444.70 and 265.81 solver calls were needed

2 http://www.qbflib.org

http://www.qbflib.org


A. Plank and M. Seidl 20:7

	1

	10

	100

	1000

	10000

	100000

	1 	10 	100 	1000 	10000 	100000

So
lv
er
	C
al
ls	
-	Q

M
us
Ex

t

Clause	Sizes

Eval2008
Eval2022

(a) Number of solver calls per formula within
QMusExt.

	0

	500

	1000

	1500

	2000

	2500

	3000

	3500

	4000

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000

Co
re
	S
ize

	-	
QM

us
Ex

t

Core	Size	-	DepQBF

Eval2008
Eval2022

(b) Comparison of MUS sizes produced by DepQBF
vs. MUS sizes produced by QMusExt.

Figure 3 Results for false formulas.

	1

	10

	100

	1000

	10000

	1 	10 	100 	1000 	10000

Co
re
	S
ize

	-	
QM

us
Ex

t

Initial	Cube	Size

Eval2008
Eval2022

(a) Size reduction of the initial cubes from
Q-resolution satisfaction proofs.

	1

	10

	100

	1000

	10000

	100000

	1x106

	1 	10 	100 	1000 	10000 	100000 	1x106

Sk
ol
em

	S
ize

	-	
QM

us
Ex

t

Skolem	Size	-	DepQBF

Eval2008
Eval2022

(b) Size comparison of Skolem functions from ini-
tial proof vs Skolem functions from satisfiable core
proofs.

Figure 4 Results for true formulas.

to find MUSes. Figure 3a relates number of solver calls and clause sizes. In the worst case,
only one clause is eliminated per iteration, i.e., the approach is linear in the formula size. In
practice, fewer calls are need indicating the scalability of the approach.

We compared QMusExt to the approach implemented in DepQBF [8] and the recent
approach SMUSer [12] that computes minimum unsatisfiable cores, i.e., a MUS with the
smallest possible cardinality. As finding the smallest MUSes is a computationally harder
problem than finding any MUS, it is not surprising that SMUSer finds fewer MUSes compared
to the other two approaches within the given time limit. In particular, it finds the smallest
MUS for 32 formulas form the 2008 benchmark set. For the 2022 benchmark set, we did
not obtain any result from SMUSer. For all of the formulas for which SMUSer could find a
result, also QMusExt and DepQBF found MUSes. For 24 of these, our tool found cores of the
same size as the cores found by SMUSer. The others differ by 18 clauses at most. Table 1
summarizes the number of solved instances and the average core sizes.

DepQBF is able to find MUSes of 679 (benchmarks from 2008) and of 134 (formulas from
2022). It is not surprising that DepQBF finds more MUSes with the incremental approach
than QMusExt, although QMusExt also relies on DepQBF internally. For the algorithm

SAT 2023



20:8 Minimal (Un)satisfiable Core Extraction for QBFs

Table 1 Comparison of the evaluation results.

solved instances average core size
FALSE TRUE FALSE TRUE

eval08 eval22 eval08 eval22 eval08 eval22 eval08 eval22
683 inst. 137 inst. 458 inst. 122 inst.

QMusExt 436 62 253 31 534 407 316 589
DepQBF 679 134 – – 2438 1695 – –
SMUSer 32 – – – 146 – – –

implemented in QMusExt, proofs have to be generated, analyzed and rewritten. If proof
generation is enabled, certain pruning techniques have to be disabled slowing down the
solving process. Further, the proof size can be very large, requiring the implementation of
efficient hashing techniques for finding nodes in the resolution graph. When we compare the
sizes of the MUSes produced by DepQBF to the sizes of the MUSes produced by QMusExt as
done in Figure 3b we see that the cores found by QMusExt are of equal size or smaller.

4.2 Extraction of Satisfiable Cores

We also applied QMusExt on true formulas and observe it it can also find minimal satisfiable
cores of the PDNF. For our experiments, we selected those formulas from the 2022 formulas
and, respectively, from the 2008 formulas, which could be solved by DepQBF in 1800 seconds.
Out of 458 (122) true formulas, our tool could find satisfiable cores for 253 and, respectively,
31 formulas. Out of these, 28 could by decreased in average by 61.32 %. Figure 4a shows the
reduction for the individual formulas. In the most extreme case, a PDNF with 10096 cubes
could be reduced to a PDNF with 25 cubes. We also calculated the Skolem functions from the
original set of initial cubes as well as from the formula reduced to a minimal satisfiable core.
The result is shown in Figure 4b. The Skolem functions are extracted with the QBFCert
framework [11] and represented as And-Inverter Graphs in the Aiger format.3 We measure
the size in terms of gate numbers. In some cases, we observe a slight increase in the size
of the Skolem functions, while there are also cases where the size could be considerably
decreased. In the most extreme case, the Skolem function could be reduced by 99.98 %.
Details are summarized in Table 1 and Table 2.

Table 2 Average size of cores generated by QMusExt (core), average formula sizes (formula),
average number of axiom clauses/cubes (proof), reductions when applying QMusExt and average
run time of QMusExt.

avg. size reductions
formula proof core formula size proof avg. run time (s)

FALSE eval08 651 16904 534 96.84% 17.97% 120.67
eval22 501 12271 407 96.68% 18.76% 131.01

TRUE eval08 840 17950 316 98.24% 62.38% 439.11
eval22 595 70213 589 99.16% 1.01% 179.15

3 http://fmv.jku.at/aiger/

http://fmv.jku.at/aiger/


A. Plank and M. Seidl 20:9

5 Conclusion

We presented QMusExt, the first tool that implements the extraction of unsatisfiable cores of
false QBFs based on Q-resolution proofs. Originally, the approach was successfully applied
for SAT [2]. Our experiments indicate that the approach is also promising for QBFs. In
particular, we could observe that the number of necessary solver calls is smaller than the
number of clauses of the input formula. Not surprisingly, an approach based on selector
variables implemented with the incremental interface of the QBF solver DepQBF is more
efficient in terms of runtime. However, the approach of QMusExt finds smaller unsatisfiable
cores in many cases. Further, due to the duality of false and true QBFs, the tool can be be
applied for the extraction of satisfiable cores from PDNF formulas as produced by solvers as
well.

In the future we plan to adapt optimizations of the basic algorithm as proposed in [10]
for QBFs and combine Q-resolution based approaches with approaches based on selector
variables. In addition, we further plan to investigate the pruning potential of proofs and
function extraction.

This work has been supported by the LIT AI Lab funded by the State of Upper Austria.

References
1 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.

Formal Methods Syst. Des., 41(1):45–65, 2012. doi:10.1007/s10703-012-0152-6.
2 Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A scalable algorithm for minimal

unsatisfiable core extraction. In Proc. of the 9th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT 2006), volume 4121 of Lecture Notes in Computer Science, pages
36–41. Springer, 2006. doi:10.1007/11814948_5.

3 Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/term resolution and
learning in the evaluation of quantified boolean formulas. J. Artif. Intell. Res., 26:371–416,
2006. doi:10.1613/jair.1959.

4 Alexey Ignatiev, Mikolás Janota, and João Marques-Silva. Quantified maximum satisfiability.
Constraints, 21(2):277–302, 2016. doi:10.1007/s10601-015-9195-9.

5 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified boolean
formulas. Inf. Comput., 117(1):12–18, 1995. doi:10.1006/inco.1995.1025.

6 Hans Kleine Büning and Oliver Kullmann. Minimal unsatisfiability and autarkies. In Handbook
of Satisfiability – Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, pages 571–633. IOS Press, 2021.

7 Hans Kleine Büning and Xishun Zhao. Minimal false quantified boolean formulas. In Armin
Biere and Carla P. Gomes, editors, Proc. of the 9th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT 2006), volume 4121 of Lecture Notes in Computer Science, pages
339–352. Springer, 2006.

8 Florian Lonsing and Uwe Egly. Incrementally computing minimal unsatisfiable cores of qbfs
via a clause group solver API. In Proc. of the 18th Int. Conf. on Theory and Applications of
Satisfiabily Testing (SAT 2015), volume 9340 of Lecture Notes in Computer Science, pages
191–198. Springer, 2015. doi:10.1007/978-3-319-24318-4_14.

9 Florian Lonsing and Uwe Egly. Depqbf 6.0: A search-based QBF solver beyond tradi-
tional QCDCL. In Proc. of the 26th Conf. on Automated Deduction (CADE 26), volume
10395 of Lecture Notes in Computer Science, pages 371–384. Springer, 2017. doi:10.1007/
978-3-319-63046-5_23.

10 Alexander Nadel. Boosting minimal unsatisfiable core extraction. In Proc. of 10th Int. Conf.
on Formal Methods in Computer-Aided Design (FMCAD 2010), pages 221–229. IEEE, 2010.
URL: https://ieeexplore.ieee.org/document/5770953/.

SAT 2023

https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/11814948_5
https://doi.org/10.1613/jair.1959
https://doi.org/10.1007/s10601-015-9195-9
https://doi.org/10.1006/inco.1995.1025
https://doi.org/10.1007/978-3-319-24318-4_14
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1007/978-3-319-63046-5_23
https://ieeexplore.ieee.org/document/5770953/


20:10 Minimal (Un)satisfiable Core Extraction for QBFs

11 Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere. Resolution-
based certificate extraction for QBF – (tool presentation). In Proc. of the 15th Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT 2012), volume 7317 of Lecture Notes in
Computer Science, pages 430–435. Springer, 2012.

12 Andreas Niskanen, Jere Mustonen, Jeremias Berg, and Matti Järvisalo. Computing smallest
muses of quantified boolean formulas. In Proc. of the 16th Int. Conf. on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2022), volume 13416 of Lecture Notes in Computer
Science, pages 301–314. Springer, 2022. doi:10.1007/978-3-031-15707-3_23.

13 Yinlei Yu and Sharad Malik. Validating the result of a quantified boolean formula (QBF) solver:
theory and practice. In Proc. of the 2005 Conf. on Asia South Pacific Design Automation,
(ASP-DAC 2005), pages 1047–1051. ACM Press, 2005.

https://doi.org/10.1007/978-3-031-15707-3_23

	1 Introduction
	2 Preliminaries
	3 QMusExt
	3.1 Basic Algorithm for the Extraction of Unsatisfiable Cores
	3.2 Extraction of Satisfiable Cores

	4 Evaluation
	4.1 Extraction of Unsatisfiable Cores
	4.2 Extraction of Satisfiable Cores

	5 Conclusion

