
A Comparison of SAT Encodings for Acyclicity of
Directed Graphs
Neng-Fa Zhou #

The City University of New York, NY, USA
Relational AI, Berkeley, CA, USA

Ruiwei Wang #

National University of Singapore, Singapore

Roland H. C. Yap #

National University of Singapore, Singapore

Abstract
Many practical applications require synthesizing directed graphs that satisfy the acyclic constraint
along with some side constraints. Several methods have been devised for encoding acyclicity of
directed graphs into SAT, each of which is based on a cycle-detecting algorithm. The leaf-elimination
encoding (LEE) repeatedly eliminates leaves from the graph, and judges the graph to be acyclic if
the graph becomes empty at a certain time. The vertex-elimination encoding (VEE) exploits the
property that the cyclicity of the resulting graph produced by the vertex-elimination operation entails
the cyclicity of the original graph. While VEE is significantly smaller than the transitive-closure
encoding for sparse graphs, it generates prohibitively large encodings for large dense graphs. This
paper reports on a comparison study of four SAT encodings for acyclicity of directed graphs, namely,
LEE using unary encoding for time variables (LEE-u), LEE using binary encoding for time variables
(LEE-b), VEE, and a hybrid encoding which combines LEE-b and VEE. The results show that the
hybrid encoding significantly outperforms the others.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning; Computing methodologies → Planning and scheduling; Hardware → Theorem proving
and SAT solving

Keywords and phrases Graph constraints, Acyclic constraint, SAT encoding, Graph Synthesis

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.30

Funding R. Wang and R. H. C. Yap’s work was partly suported by NUS grant T1 251RES2219.

1 Introduction

Many practical combinatorial problems require synthesizing acyclic directed graphs, such as
utility networks, planning problems [9], Markov networks [2], neural networks, and Bayesian
networks [1, 8]. As there are side constraints involved beyond acyclic constraints, these
problems are more complicated than simply checking if a synthesized subgraph is acyclic. In
this paper, we focus on how to solve such problems with SAT solvers by encoding the acyclic
constraint into SAT. While efficient algorithms exist for checking the acyclicity of directed
graphs, it is still unknown which method performs well for encoding acyclicity of directed
graphs into SAT.

Several methods have been devised for encoding acyclicity of directed graphs into SAT,
each of which is based on a cycle-detecting algorithm. The leaf-elimination encoding
(LEE), which is basically the same as the tree-reduction encoding [4] and the binary labeling
encoding [6], is inspired by the leaf-elimination algorithm. The algorithm repeatedly eliminates
leaves from the graph, and judges the graph to be acyclic if the graph becomes empty at a
certain time.

© Neng-Fa Zhou, Ruiwei Wang, and Roland H. C. Yap;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 30; pp. 30:1–30:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhou@sci.brooklyn.cuny.edu
mailto:e0280167@u.nus.edu
mailto:ryap@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.SAT.2023.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 A Comparison of SAT Encodings for Acyclicity of Directed Graphs

Another approach is the transitive-closure encoding for directed graphs, which relies on
the proposition that a graph’s transitive closure preserves the graph’s acyclicity. However the
transitive closure encoding can be prohibitively large. For that reason, GraphSAT, which is an
SMT solver integrating acyclicity checking into SAT solving, has been proposed [4]. Recently,
the vertex-elimination encoding (VEE) [10] was proposed, which exploits the property that
the cyclicity of the resulting graph produced by the vertex-elimination operation [11] entails
the cyclicity of the original graph. VEE can be significantly smaller than the transitive-closure
encoding for sparse graphs. However, for dense graphs, it is asymptotically the same as the
transitive-closure encoding.

This paper first presents a comparison study of three SAT encodings for acyclicity of
directed graphs, namely, LEE using unary encoding for time variables (LEE-u), LEE using
binary encoding for time variables (LEE-b), and VEE. This paper then proposes a hybrid
encoding, which combines the strengths of LEE-b and VEE. The hybrid encoding starts
with VEE, and switches to LEE-b when the resulting graph after vertex elimination becomes
dense. The experimental results show that the hybrid encoding significantly outperforms the
others.

2 Preliminaries

The constraint acyclic_d(V, E) takes a base directed graph G = (V, E), where V is a set of
vertices, and E is a set of directed edges. The task is to synthesize a acyclic subgraph of
G. More precisely, each vertex in V has a binary variable, called a characteristic variable,
associated with it, which is 1 iff the vertex is in the subgraph to be synthesized. Each edge in
E also has an associated characteristic variable, which indicates if the edge is in the subgraph.
The constraint acyclic_d(V, E) is true if the subgraph of G determined by the characteristic
variables is acyclic.

In the following, we use the notation (u, v) to denote a directed edge from vertex u to
vertex v. The function b(x) returns the characteristic variable of x. A vertex v is called an
in-vertex if b(v) = 1, and an edge e = (v1, v2) is called an in-edge if b(e) = 1. For each edge
e = (v1, v2) in E, b(e) → b(v1) ∧ b(v2), meaning that if an edge is in the subgraph, then both
end vertices connected by the edge must be in the subgraph as well.

For a directed graph G = (V, E), the function nbs−(v) returns the set of in-neighbors
connected to v by incoming edges in the base graph:

nbs−(v) = {u | (u, v) ∈ E}

and the function nbs+(v) returns the set of out-neighbors connected to v by outgoing edges
in the base graph:

nbs+(v) = {u | (v, u) ∈ E}.

A vertex v is said to be peripheral if either it has no in-neighbors or it has no out-neighbors.
In particular, a peripheral vertex v is called a leaf in this paper if it has no out-neighbors.
Note that singleton vertices that are not connected to any other vertices are treated as leaves.

3 The Leaf-Elimination Encoding (LEE)

Given a directed graph, the leaf-elimination algorithm detects cycles by repeatedly eliminating
leaves from the graph from time 0 to a certain maximum time. If the graph is empty at the
maximum time, then the graph is acyclic; otherwise, the graph is cyclic.

N.-F. Zhou, R. Wang, and R. H. C. Yap 30:3

The maximum time is determined by the longest path in the graph. As the graph that
comprises a list of linearly connected vertices has the longest path, the maximum time is
upper bounded by n, where n = |V |. While finding the longest path in a graph is NP-hard,
a tight upper bound can be obtained in some cases.

There is a straightforward CSP (Constraint Satisfaction Problem) model for the acyclicity
constraint, which mimics the leaf-elimination algorithm for detecting cycles. For each vertex,
a variable, called a time variable, is utilized to indicate the time at which the vertex becomes a
leaf and is removed from the graph. The domain of the time variables is 0..m, where m is the
maximum time. The constraints ensure that only leaves can be removed at each time, and the
graph must be empty at time m. If the graph is cyclic, then the CSP model is unsatisfiable.
The encodings of the CSP model into SAT are called leaf-elimination encodings (LEE).
Different methods can be utilized to encode time variables, such as unary encoding (also
called direct encoding [3]) and binary encoding (also called log encoding [5]). When binary
encoding is used for time variables, LEE, called LEE-b, is compact and can encode large
graphs. However, it is well known that binary encoding has weak propagation strength [7],
yet, the results in Section 6 show that the binary encoding pays off.

3.1 LEE-u
LEE-u (similar to tree reduction in [10]) employs a matrix of binary variables A of size n×m,
where n = |V |, the number of vertices in the base graph, and m is the maximum time. The
entry Av,t is 1 if and only if vertex v has been eliminated by time t. The encoding imposes
the following constraints on the variables:

For v ∈ V :
∑

u∈nbs+(v) b((v, u)) = 0 ↔ Av,0 (1)

For v ∈ V , t ∈ 1..m: Av,t−1 → Av,t (2)

For v ∈ V , t ∈ 1..m, u ∈ nbs+(v): b((v, u)) ∧ ¬Au,t−1 → ¬Av,t (3)

For v ∈ V : Av,m (4)

Constraint (1) states that all leaves, i.e., vertices that have no outgoing edges, are eliminated
at time 0. Constraint (2) enforces that once a vertex is eliminated, it is eliminated forever.
Constraint (3) entails that a vertex cannot be eliminated at time t if any of its out-neighbors
is not eliminated at time t − 1. Constraint (4) forces every vertex to be eliminated at time m.

The correctness of the encoding is supported by the fact that the vertices that occur in a
cycle can never be eliminated, i.e. Av,t cannot be equal to 1 for t ∈ 1 . . . m, and constraints
(3) and (4) are unsatisfiable for any vertex in a cycle.

The number of variables, besides the characteristic variables, used by LEE-u is the size
of A, which is O(n × m). The number of clauses used by LEE-u, which is dominated by
Constraint (3), is O(n × m × d), where d is the average degree of the vertices in the base
graph.

3.2 LEE-b
LEE-b is a variant of LEE, which encodes time variables using binary encoding. Binary
encoding is more compact than unary encoding. It employs a sequence of binary variables for
encoding a domain variable. Each combination of values of the binary variables represents a
value for the domain variable. If there are holes in the domain, then not-equal constraints are

SAT 2023

30:4 A Comparison of SAT Encodings for Acyclicity of Directed Graphs

generated to disallow assigning those hole values to the variable. Also, inequality constraints
(≥ and ≤) are generated to prohibit assigning out-of-bounds values to the variable if either
bound is not 2k − 1 for some k. A detailed description of general techniques for binary
encodings for domain variables and primitive constraints can be found in [13].

LEE-b uses a variable Tv with the domain 0..m for each vertex v in V , where m is the
maximum time. LEE-b imposes the following constraints on time variables:

For v ∈ V :
∑

u∈nbs+(v) b((v, u)) = 0 ↔ Tv = 0 (5)

For v ∈ V , u ∈ nbs+(v): b((v, u)) → Tv > Tu (6)

Constraint (5) states that Tv = 0 if and only if vertex v is a leaf. Constraint (6) entails that
for each directed edge (v, u), Tv > Tu, meaning that vertex v is removed after vertex u. The
encoding of Tv > Tu can be found in [12].

The correctness of the encoding is supported by the fact that the constraint Tv > Tu is
not commutative and constraint (6) is unsatisfiable if u and v occur in a cycle.

The number of variables, besides the characteristic variables, used by LEE-b is O(n ×
log2(m)). The number of clauses used by LEE-b is O(n× log2(m)×d), where d is the average
degree of the vertices in the base graph.

4 Vertex-Elimination Encoding

The vertex-elimination encoding (VEE) [10] exploits the fact that the sequence of graphs
produced by the vertex elimination operation [11] with respect to an elimination ordering
preserves the acyclicity of the original graph.

Let O be an elimination ordering, O = [v1, v2, . . . , vn], and G0 be the original directed
graph, G0 = ([v1, v2, . . . , vn], E0). It is assumed that there are no vertices with self-loops in
G0. VEE produces a sequence of graphs G1, G2, . . ., Gn by eliminating vertices according
to the elimination ordering. The vertex-elimination graph is the union of the graphs G∗ =
G0

⋃
G1 . . .

⋃
Gn. Let Gi−1 = ([vi, . . . , vn], Ei−1). The graph Gi = ([vi+1, . . . , vn], Ei) is

obtained by eliminating vi from Gi−1, where

Ei = Ei−1 −
{(u, vi)|u ∈ nbs−(vi)} −
{(vi, u)|u ∈ nbs+(vi)} +
{(u, w)|u ∈ nbs−(vi), w ∈ nbs+(vi), u ̸= w}.

The operation eliminates vi’s adjacent edges, and adds the edge (u, w) into Ei for each u in
vi’s in-neighbors and each w in vi’s out-neighbors if u ̸= w and the edge is not contained in
Ei. Each newly added edge (u, w) is attached with a characteristic binary variable b((u, w)).
In addition, for all u in nbs−(vi) and w in nbs+(vi) such that u ̸= w, the variable b((u, w))
is entailed by the variables b((u, vi)) and b((vi, w)):

b((u, vi)) ∧ b((vi, w)) → b((u, w)). (7)

For each u in nbs−(vi), if u ∈ nbs+(vi), VEE, after eliminating vi, generates the following
constraint to ensure that there is no cycle between u and vi in Ei−1

¬b((u, vi)) ∨ ¬b((vi, u)). (8)

Constraints (7) and (8) ensure that the acyclicity of Ei entails the acyclicity of Ei−1.
Therefore, with the accumulated constraints, E0 is acyclic if Ei is acyclic by induction on i.

N.-F. Zhou, R. Wang, and R. H. C. Yap 30:5

The correctness of VEE is guaranteed by the fact that a cycle of any length in G0 will
lead to a cycle of size 2 in Gi−1 (i ∈ 1..n), which will make constraint (8) unsatisfiable.

The number of binary variables used by VEE, which is upper bounded by O(n2), is
determined by the number of edges in the original graph and the number of new edges added
during the vertex elimination process. The number of clauses generated by VEE is O(d2 × n),
where n =|V | and d is the average degree of the vertex-elimination graph. In comparison,
the transitive closure encoding uses O(n2) variables and generates O(n3) clauses [10]. While
VEE is significantly more compact than the transitive clause encoding for sparse graphs, it
is asymptotically the same as the transitive-closure encoding in the worst case.

5 Hybrid Encoding

The resulting graph obtained after each vertex elimination tends to be more dense than the
original graph, and VEE becomes closer to the transitive-closure encoding. Thus, the encoding
may become prohibitively large. One idea to alleviate code explosion while harnessing the
propagation strengths of VEE is to start with VEE when the graph is sparse, and switch
to LEE-b when the graph becomes dense. We call this encoding that combines VEE and
LEE-b a hybrid encoding.

Formally, given any elimination ordering [v1, v2, . . . , vn] and a switch position 0 ≤ i ≤ n,
the hybrid encoding uses the constraints (7) and (8) of VEE to generate the graph Gi by
eliminating the vertices v1, · · · , vi from the original graph G0. Then constraints (5) and (6)
of LEE-b are used to encode the acyclicity of Gi.

The correctness of a hybrid encoding is guaranteed by the correctness of VEE and LEE-b.
For any i ∈ 0 . . . n, constraints (7) and (8) ensure that if Gi is acyclic then G0 is also acyclic.
If LEE ensures that Gi is acyclic, and VEE ensures that there are no cycles in G1, G2, . . .,
Gi−1, then the hybrid encoding also ensures that the graph G0 is acyclic. The encoding size
depends on the encoding sizes of VEE and LEE-b, as well as the switching heuristic.

A concrete hybrid encoding needs to decide when to switch to LEE-b. In our imple-
mentation, the hybrid encoding uses the mindegree heuristic (selecting a vertex with the
smallest total number of incoming and outgoing edges in the graph generated by the vertex
elimination). It switches to LEE-b if the current graph Gc = G0

⋃
G1 · · ·

⋃
Gi contains 2.3

times as many edges as the original graph G0 or the current graph Gc contains more than
30 × n edges based on preliminary experiments, where n is the number of vertices in the
original graph G0.

6 Experimental Results

All the encodings discussed above have been implemented in Picat1 (version 3.4). Picat
provides a state-of-art SAT-based CSP solver. For example, it won two gold medals in the
2022 XCSP solver competition2 and two silver medals in the 2022 MiniZinc Challenge.3
Picat encodes constraints into SAT and employs Kissat4 as the underlying SAT solver.

This section presents the results of an experiment comparing the encodings on the
GraphSAT benchmarks.5 The benchmarks consist of five categories of instances with graph
sizes ranging from 15 to 10002 vertices. The GraphSAT benchmarks are modelled with

1 http://picat-lang.org
2 https://www.xcsp.org/competitions/
3 https://www.minizinc.org/challenge2022/results2022.html
4 https://github.com/arminbiere/kissat
5 https://users.aalto.fi/~rintanj1/software.html

SAT 2023

http://picat-lang.org
https://www.xcsp.org/competitions/
https://www.minizinc.org/challenge2022/results2022.html
https://github.com/arminbiere/kissat
https://users.aalto.fi/~rintanj1/software.html

30:6 A Comparison of SAT Encodings for Acyclicity of Directed Graphs

Table 1 Summary of results.

#Insts Benchmark LEE-u LEE-b VEE HYB Virtual-HYB
26 COMB 28.03 42.54 0.13 0.13 0.13
31 EMPTYCORNER 160.89 1.99 3.84 1.99 1.51
36 EMPTYMIDDLE 67.01 6.93 0.92 2.02 0.87
9 ESCAPE 379.45 22.74 285.91 23.64 15.38
14 ROOMCHAIN 343.35 342.99 15.38 15.34 11.94

116
TOTAL 16350.64 6423.84 2944.2 565.29 387.09

AVE 140.95 55.38 25.38 4.87 3.34
#SOLVED 94 108 112 116 116

conjunctive-normal-form clauses and some graph constraints encoded as acyclic constraints.
These benchmarks are introduced by [9] and have been also used to evaluate implementations
of the acyclic constraint in [10]. All the CPU times reported below were measured on Linux
Ubuntu with a 3.20GHz and 16G RAM Intel i7-8700 machine. The time limit used was 10
minutes per instance.

Table 1 gives a summary of the experimental results, where the column #Insts indicates
the number of instances, the column Benchmark indicates the benchmark category, and each
of the remaining columns indicates the average CPU time taken by an encoding. Virtual-
HYB is the “virtual best” encoding among 21 different hybrid encodings, each of which
uses VEE to eliminate p ∈ {0, 5, · · · , 100} percent of vertices and then switches to LEE-b.
Note that the hybrid encoding with p = 0 is equivalent to LEE-b, and the hybrid encoding
with p = 100 is VEE. The row Total gives the total CPU time for all instances, AVE the
average CPU time per instance, and #Solved the number of solved instances within the
time limit. In the experiments, the maximum time m used in LEE is n.6

It can be seen that, among the four encodings, HYB performs the best. HYB succeeds
on all of the 116 instances, while LEE-u, LEE-b, and VEE, respectively, fail on 22, 8 and 4
instances. It can also be seen that while both LEE-u and LEE-b are based on the idea of
leaf elimination, LEE-b is much better than LEE-u. On average, HYB is 5 times as fast
as VEE, and 10 times as fast as LEE-b. HYB is also more robust than VEE and LEE-b.
For each category, HYB has similar performance to the best of LEE-u, LEE-b, and VEE.
Virtual-HYB performs the best on each category, but it is intended as a comparison with
a form of virtual best heuristic. The results of Virtual-HYB entail that there is potential
to improve the hybrid encoding by giving a better heuristic to decide when to switch from
VEE to LEE-b.

Figure 1a gives the runtime distribution of the five encodings. Virtual-HYB overall
outperforms the other encodings, and HYB always solves more instances than VEE, LEE-b
and LEE-u when the solving time limit is set to more than 6 seconds. Also as the solving
time increases, HYB gets close to Virtual-HYB. Figure 1b compares the solving time of
HYB with (VEE + LEE-b)/2, the average CPU time of VEE and LEE-b. Each dot in
the figure denotes an instance. It can be seen that HYB is faster than the average of VEE
and LEE-b on most non-trivial instances (i.e. the instances not solved in 1 second by either
VEE or LEE-b). This illustrates that HYB encoding is robust. The performance of HYB
can be closer to the best between VEE and LEE-b. Figure 1c shows the average number of

6 We experimented with optimizing for some special cases, such as removing peripheral vertices, but the
difference was negligible.

N.-F. Zhou, R. Wang, and R. H. C. Yap 30:7

30

40

50

60

70

80

90

100

110

120

20 21 22 23 24 25 26 27 28

#
In

st
an

ce
s

Time (in second)

HYB
Virtual-HYB

VEE
LEE-b
LEE-u

(a) Runtime distribution.

2-6

2-4

2-2

20

22

24

26

28

2-6 2-4 2-2 20 22 24 26 28
(V
EE
+
LE
E-
b
)/
2

HYB

EMPTYMIDDLE
EMPTYCORNER

COMB
ROOMCHAIN

ESCAPE

(b) The robustness of HYB.

210

212

214

216

218

220

222

224

226

0 20 40 60 80 100

#
Ed

g
es

%Eliminated Vertices

EMPTYMIDDLE
EMPTYCORNER

COMB
ROOMCHAIN

ESCAPE

(c) The average number of edges.

Figure 1 Detailed comparisons between the encodings.

Table 2 A comparison on encoding sizes.

Benchmark |V| |E| LEE-u LEE-b VEE HYB
#vars #cls #vars #cls #vars #cls #vars #cls

COMB005-3 134 1215 24473 208373 13559 86741 4241 13483 4241 13483
COMB010-3 389 3595 170363 1599113 43319 276548 12306 39618 12306 39618

EMPTYCORNER024-1 578 2877 347359 1697K 37951 164478 18990 105021 35753 209184
EMPTYCORNER075-1 5252 26247 fail fail 427631 1945K 255548 4491K 459127 2680K
EMPTYMIDDLE025-2 1252 10610 fail fail 155233 878838 75075 883099 159303 1071K
EMPTYMIDDLE030-1 902 4497 834330 4110K 59490 260162 32174 224943 61454 359879

escape08-1 4098 89688 fail fail 1269K 8047K fail fail 1618K 11180K
escape10-1 10002 229252 fail fail 3675K 23235K fail fail 4569K 30856K

ROOMCHAIN005-2 510 4223 282256 2385K 52076 295302 19328 76752 19328 76752
ROOMCHAIN006-3 917 11025 901673 10932K 147290 866044 49244 253186 49244 253186

edges in the vertex-elimination graph of each category generated by using VEE to eliminate
p ∈ {0, 5, · · · , 100} percent of vertices. We can see that VEE is much faster than LEE-b
on the categories where the graph size is small and grows slowly, such as the COMB and
ROOMCHAIN categories.

Table 2 gives the graph sizes of 10 selected instances and the encoding sizes. The column
|V| gives the number of vertices, and |E| gives the number of edges in the base graph.
For each encoding, the table gives the number of variables (#vars) and the number of
clauses (#cls) in the generated code. The entry fail indicates that the encoder fails to finish
generating the encoding, i.e. the encoder runs out of memory or time. LEE-u fails on 4 of
the instances, VEE fails on 2 of the instances, while LEE-u and HYB succeed on all the
instances. Naturally for failed encodings, the SAT solver is never invoked. The results also
show that LEE-u produces the largest encodings, and for the EMPTYMIDDLE instances
the encoder runs out of memory. This may explain why the performance of LEE-u is also
the worst.

Table 3 gives the CPU time of each run, which includes both the translation time and
solving time. The entry T.O. indicates that the run does not finish within the time limit.
HYB succeeds in solving all the 10 instances, while each of the other encoders fails to solve
some of the instances. In addition, HYB is faster than both VEE and LEE-b on some
instances, such as the EMPTYCORNER075-1 instance. LEE-b is significantly faster than
VEE on instances where VEE fails, such as escape08-01.

SAT 2023

30:8 A Comparison of SAT Encodings for Acyclicity of Directed Graphs

Table 3 A comparison on CPU times.

Benchmark LEE-u LEE-b VEE HYB
COMB005-3 7.21 17.36 0 .08 0.08
COMB010-3 115.17 195.78 0.59 0.59

EMPTYCORNER024-1 26.86 0.3 0.42 0.35
EMPTYCORNER075-1 fail 14.52 24.58 11.5
EMPTYMIDDLE025-2 fail 43.15 5.66 11.49
EMPTYMIDDLE030-1 26.44 0.84 1.05 1.03

escape08-1 fail 15.96 fail 29.04
escape10-1 fail 150.98 fail 101.84

ROOMCHAIN005-2 T.O. T.O. 45.55 45.79
ROOMCHAIN006-3 T.O. T.O. 11.56 11.61

7 Discussion and Conclusion

This paper compares several SAT encodings for the acyclic constraint on directed graphs.
For LEE, this paper compares two encodings of time variables, and shows that the decision
on which encoding to select has a great impact on the performance. While LEE-b is compact,
it fails on some mid-sized instances due to its weak propagation caused by the binary
representation of time variables. Our study also confirms that, while VEE is effective for
sparse mid-sized graphs, it generates prohibitively large encodings for larger graphs even
when the graphs are sparse.

Most importantly, our study finds that the hybrid encoding, which starts with VEE and
switches to LEE-b when the graph becomes dense, significantly outperforms both LEE-b
and VEE. The good performance of the hybrid encoding is attributed to its combination of
VEE’s strong propagation and LEE-b’s conciseness. The hybrid encoding clearly advances
the state of the art. Ultimately, to solve more difficult problems, scalability is needed. The
hybrid encoding will be a new starting point for future researchers and practitioners.

As the idea of hybridization is new in this context, it warrants more investigation. For
example, further work needs to be done to find even better heuristics for switching from VEE
to LEE-b. Also, the idea of hybridization may also be effective for encoding other graph
constraints, such as the reachability constraint.

References
1 Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning Optimal Bounded Treewidth

Bayesian Networks via Maximum Satisfiability. In Samuel Kaski and Jukka Corander, editors,
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics,
volume 33 of Proceedings of Machine Learning Research, pages 86–95, Reykjavik, Iceland,
22–25 April 2014. PMLR. URL: https://proceedings.mlr.press/v33/berg14.html.

2 Jukka Corander, Tomi Janhunen, Jussi Rintanen, Henrik J. Nyman, and Johan Pensar.
Learning chordal markov networks by constraint satisfaction. In Christopher J. C. Burges,
Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pages 1349–1357, 2013. URL: https://proceedings.neurips.cc/paper/2013/hash/
c06d06da9666a219db15cf575aff2824-Abstract.html.

3 Johan de Kleer. A comparison of ATMS and CSP techniques. In N. S. Sridharan, editor,
Proceedings of the 11th International Joint Conference on Artificial Intelligence. Detroit,
MI, USA, August 1989, pages 290–296. Morgan Kaufmann, 1989. URL: http://ijcai.org/
Proceedings/89-1/Papers/046.pdf.

https://proceedings.mlr.press/v33/berg14.html
https://proceedings.neurips.cc/paper/2013/hash/c06d06da9666a219db15cf575aff2824-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/c06d06da9666a219db15cf575aff2824-Abstract.html
http://ijcai.org/Proceedings/89-1/Papers/046.pdf
http://ijcai.org/Proceedings/89-1/Papers/046.pdf

N.-F. Zhou, R. Wang, and R. H. C. Yap 30:9

4 Martin Gebser, Tomi Janhunen, and Jussi Rintanen. SAT modulo graphs: Acyclicity. In
Eduardo Fermé and João Leite, editors, Logics in Artificial Intelligence – 14th European
Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings,
volume 8761 of Lecture Notes in Computer Science, pages 137–151. Springer, 2014. doi:
10.1007/978-3-319-11558-0_10.

5 Kazuo Iwama and Shuichi Miyazaki. Sat-varible complexity of hard combinatorial problems. In
Björn Pehrson and Imre Simon, editors, Technology and Foundations – Information Processing
’94, Volume 1, Proceedings of the IFIP 13th World Computer Congress, Hamburg, Germany, 28
August – 2 September, 1994, volume A-51 of IFIP Transactions, pages 253–258. North-Holland,
1994.

6 Mikolas Janota, Radu Grigore, and Vasco M. Manquinho. On the quest for an acyclic graph.
CoRR, abs/1708.01745, 2017. arXiv:1708.01745.

7 Donald Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability.
Addison-Wesley, 2015.

8 Zhenyu A. Liao, Charupriya Sharma, James Cussens, and Peter van Beek. Finding all bayesian
network structures within a factor of optimal. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 – February 1, 2019,
pages 7892–7899. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33017892.

9 Binda Pandey and Jussi Rintanen. Planning for partial observability by SAT and graph
constraints. In Mathijs de Weerdt, Sven Koenig, Gabriele Röger, and Matthijs T. J. Spaan,
editors, Proceedings of the Twenty-Eighth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018, pages 190–198. AAAI
Press, 2018. URL: https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17756.

10 Masood Feyzbakhsh Rankooh and Jussi Rintanen. Propositional encodings of acyclicity and
reachability by using vertex elimination. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 – March 1, 2022, pages 5861–5868. AAAI
Press, 2022. URL: https://ojs.aaai.org/index.php/AAAI/article/view/20530.

11 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5(2):266–283, 1976. doi:10.1137/0205021.

12 Neng-Fa Zhou and Håkan Kjellerstrand. The Picat-SAT compiler. In Marco Gavanelli and
John H. Reppy, editors, Practical Aspects of Declarative Languages – 18th International
Symposium, PADL 2016, St. Petersburg, FL, USA, January 18-19, 2016. Proceedings, volume
9585 of Lecture Notes in Computer Science, pages 48–62. Springer, 2016. doi:10.1007/
978-3-319-28228-2_4.

13 Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for arithmetic constraints.
In CP, pages 671–686, 2017. doi:10.1007/978-3-319-66158-2_43.

SAT 2023

https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/978-3-319-11558-0_10
https://arxiv.org/abs/1708.01745
https://doi.org/10.1609/aaai.v33i01.33017892
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17756
https://ojs.aaai.org/index.php/AAAI/article/view/20530
https://doi.org/10.1137/0205021
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-66158-2_43

	1 Introduction
	2 Preliminaries
	3 The Leaf-Elimination Encoding (LEE)
	3.1 LEE-u
	3.2 LEE-b

	4 Vertex-Elimination Encoding
	5 Hybrid Encoding
	6 Experimental Results
	7 Discussion and Conclusion

