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Abstract
We study the nascent setting of online computation with imperfect advice, in which the online
algorithm is enhanced by some prediction encoded in the form of an imperfect, and possibly erroneous
binary string. The algorithm is oblivious to the advice error, but defines a desired tolerance, namely
an upper bound on the number of erroneous advice bits it can tolerate. This is a model that
generalizes the Pareto-based advice model, in which the performance of the algorithm is only
evaluated at the extreme values of error (namely, if the advice has either no errors, or if it is
generated adversarially). It also subsumes the model in which the algorithm elicits a prediction on
the online sequence, via imperfect responses to a number of binary queries.

In this work, we establish connections between games with a lying responder, also known
as Rényi-Ulam games, and the design and analysis of online algorithms with imperfect advice.
Specifically, we demonstrate how to obtain upper and lower bounds on the competitive ratio for
important online problems such as time-series search, online bidding, and fractional knapsack. Our
techniques provide the first lower bounds for online problems in this model. We also highlight
and exploit connections between competitive analysis with imperfect advice and fault-tolerance in
multiprocessor systems. Last, we show how to waive the dependence on the tolerance parameter, by
means of resource augmentation and robustification.
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1 Introduction

Online computation, and competitive analysis, in particular, have served as the definitive
framework for the theoretical analysis of algorithms in a state of uncertainty. While the early,
standard definition of online computation [37] assumes that the algorithm has no knowledge
in regard to the request sequence, in practical situations, the algorithm may indeed have
certain limited, but possibly inaccurate such information (e.g., some lookahead, or historical
information on typical sequences). Hence, there is a clear need for more nuanced models that
capture the power and limitations of online algorithms enhanced with external information.

One such approach, within Theoretical Computer Science, is the framework of advice
complexity; see [18, 9, 20], the survey [10] and the book [25]. In the advice-complexity model
(and in particular, the tape model [8, 9]), the online algorithm receives a string that encodes
information concerning the request sequence, and which can help improve its performance.
The objective is to quantify the tradeoffs between the size of the advice (in terms of the
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number of bits) and the competitive ratio of the algorithm. This model places stringent
requirements: the advice is assumed to be error-free, and may be provided by an omnipotent
oracle. Thus, as noted in [34], this model is mostly of theoretical significance.

A different and more practical approach studies the effect of predictions towards improving
the competitive ratio. In this model, the online algorithm is enhanced with some imperfect
information concerning the request sequence, without restrictions on its size. One is interested
in algorithms whose performance degrades gently as a function of the prediction error, and
specifically perform well if the prediction is error-free (what is called the consistency of the
algorithm), but also remain robust under any possible error (what is called the robustness of
the algorithm). This line of research was initiated with the works [31] and [35], and a large
number of online problems have been studied under this model (see, e.g., the survey [34] and
the online collection [29]).

A combination of the advice complexity and prediction models is the untrusted or Pareto-
based advice model, introduced in [5]. Here, parts of the advice may be erroneous, and
the algorithm’s performance is evaluated in two extreme situations, in regard to the advice
error. At the one extreme, the advice is error-free, whereas, at the other extreme, the
advice is generated by a (malicious) adversary who aims to maximize the performance
degradation of the algorithm. Using the terminology of algorithms with predictions, these
two competitive ratios are called consistency and robustness, respectively. The objective is
to identify algorithms that are Pareto-efficient, and ideally Pareto-optimal, i.e., attain the
best-possible tradeoffs between these two extreme measures. Several online problems have
been studied recently within this framework of Pareto-optimality (both within the advice
and the predictions models); see, e.g., [39, 28, 26, 4, 6].

1.1 Online computation with imperfect advice
The starting observation that motivates this work is that the Pareto-based framework of
untrusted advice only focuses on extreme competitive ratios, namely the consistency and the
robustness. A more general issue, instead, is to evaluate the impact of the advice error on the
performance of the online algorithm. Given an advice string of size k, let us denote by η ≤ k

the number of erroneous bits. Naturally, the algorithm does not know the exact advice error
ahead of time. Instead, the algorithm defines an application-specific parameter H ≤ k which
determines the desired tolerance to errors, or, equivalently, an anticipated upper bound on
the advice error. This is motivated by recent works in learning-enhanced online algorithms
with weak predictions, in which the prediction is an upper bound of some pertinent parameter
of the input (see e.g., online knapsack with frequency predictions [23], where the prediction
is an upper bound on the number of items of each value that appear online). Our objective
is to quantify the tradeoffs between advice size, tolerance and competitive ratio, both from
the point of upper and lower bounds.

A different interpretation of imperfect advice treats each advice bit as a (potentially
erroneous) response to a binary query concerning the input. Hence, one may think of k-bit
advice as a prediction elicited by means of k imperfect binary experts. Note that queries are
known to help improve the performance of approximation algorithms in ML applications.
For example, [33] studied clustering with noisy queries, where a query asks whether two
points should belong in the same cluster, and where each query receives a correct response
with probability p that is known to the algorithm. A different example is parsimonious
learning-augmented caching [22], in which the system learns the predicted next-arrival time
of certain appropriately queried pages.
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In this work, we study the power, but also the limitations of online algorithms with
adversarially erroneous queries. Unlike [33], we do not rely on any probabilistic assumptions
concerning the query responses. To our knowledge, the imperfect advice model (in particular,
its binary query-based interpretation) has only been applied to the problems of contract
scheduling [6] and time-series search [7], from the point of view of upper bounds. While these
works showed that binary queries help improve the algorithmic performance, both in terms
of theoretical and empirical analysis, no principled methodology for obtaining lower bounds
has been developed so far.

1.2 Contribution
We establish connections between games with a lying responder and the design and analysis
of online algorithms with imperfect advice. Namely, we show how to leverage results from
the analysis of Rényi-Ulam games, and obtain both positive and negative results on the
competitive analysis. We apply these tools to three important and well-studied online
problems, namely time-series search, online bidding, and online fractional knapsack. Our
results improve the known upper bounds for these problems, where such results were already
known, but also provide the first lower bounds on the competitive ratio of online problems
in this setting, without any restrictive assumptions.

More precisely, we begin as a warm-up1 with the time-series search problem in Section 3,
which illustrates how these techniques can help us improve upon the results of [7]; we also
show how to evaluate the competitive ratios, using approximations based on the binary
entropy function. In Section 4, we study a more complex application, namely the online
bidding problem, first studied in [5] in the context of untrusted advice. Here, the crucial part
is establishing near-optimal lower bounds. We achieve this by formulating a multi-processor
version of online bidding in l ≤ 2k processors, in which a certain number of processors may
be faulty; we then relate the competitive ratio of this problem to the imperfect advice setting,
by relating fault-tolerance in the processor level, to the inherent error in Rényi-Ulam games.
In Section 5 we study the online fractional knapsack problem. Here, we present an algorithm
whose competitive ratio converges to 1 at a rate exponential in k, as long as H < k/2. We
also present a near-matching lower bound that shows that our algorithm is close-to-optimal.
For the upper bound, the crux is to allocate queries so as to approximate two appropriately
defined parameters of the instance. For the lower bound, we use an information theoretic
argument. Specifically, we show a reduction from Rényi-Ulam games: if there existed an
algorithm of competitive ratio better than a certain value, one could play the game beyond
the theoretical performance bound, which is a contradiction.

As explained above, the parameter H expresses the algorithm’s desired tolerance to
errors, and is thus application-specific. In Section 6 we show how to waive the assumption
that the precise tolerance is known ahead of time, in two different ways: First, by resource-
augmentation arguments, i.e., by comparing the performance of an algorithm with perfect
(error-free) advice of size k to that of an algorithm with l > k advice bits but potentially
very high advice error. Second, by robustifying the algorithm, namely by requiring that the
algorithm performs well even if the error happens to exceed the tolerance parameter.

The techniques we develop can be applicable to other online problems. Specifically, our
approach to the online bidding problem defines the following general framework: For upper
bounds, one would aim to define a collection of “candidate” algorithms that are closely

1 For ski rental, which is another canonical warm-up problem, [5] showed that a single advice bit suffices
to obtain optimal consistency/robustness. Hence, the problem is resolved under the imperfect advice
model as well.
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ranked in terms of their worst-case performance. Then the advice can be used so as to select
a suitable candidate from this collection that is close to the best-possible. For lower bounds,
one would aim to show that in any collection of candidate algorithms, the erroneous queries
may have to always return a solution sufficiently far, in terms of “rank”, from the best one;
then one needs to relate the concept of “rank” to performance, from a lower-bound point
of view. This last part highlights connections between an online problem with adversarial
advice and its fault-tolerant version in a parallel system (with no advice). On the other
hand, our approach to the time-series and fractional knapsack problems illustrate another
general technique: For upper bounds, one should identify some important parameters of the
problem, then allocate the queries appropriately so as to approximate them in the presence
of response errors. For lower bounds, information-theoretic arguments should establish a
reduction from a Rényi-Ulam game to the online problem.

There are two additional observations concerning the results in this work. First, we allow
adaptive queries, in that the response to the i-th query is a function of responses to the
previous i − 1 queries. Second, it is important to note that the results we present cannot
be obtained straightforwardly by applying some error-correcting code. More precisely, one
may be tempted to dedicate some advice bits towards error correction and use the remaining
error-free bits in the spirit of classic advice complexity results. However, such an approach
may very well be suboptimal since, depending on the problem at hand, an optimal algorithm
may benefit more from a large number of somewhat erroneous advice bits than from a smaller
number of perfect bits, and the analysis must take into account this possibility.

Due to space limitations, we omit or only sketch certain technical proofs. We refer to the
full version on arXiv for the complete proofs.

2 Games with a lying responder

We review some core results related to games with a lying responder which will be in the
heart of the analysis of online problems with imperfect advice. We are particularly interested
in [36], which studied games between a questioner and a responder, related to an unknown
value x drawn from a domain D, where D is a subset of reals or in general a totally ordered
set. The questioner may ask general queries of the form “is x in S”, where S is some subset of
D, and which are called subset queries. The upper bounds of [36] hold even if the questioner
asks much simpler queries, namely comparison queries of the form “is x at most a”, for some
given a. Both the upper and lower bounds in [36] are expressed in terms of partial sums of
binomial coefficients. Formally, we define:((

N

m

))
:=

m∑
j=0

(
N

j

)
, for m ≤ N.

We are interested, in particular, in the following game played over a continuous space:

CONTINUOUSSEARCH(k, H) game. In this game, x is a real number with x ∈ D = (0, 1],
and the questioner asks k queries, at most H of which may receive erroneous responses. The
objective of the questioner is to find an interval Ix such that x ∈ Ix and |Ix| is minimized.

▶ Lemma 1 ([36]). Any questioner’s strategy for ContinuousSearch(k, H) with H ≤ k/2
is such that |Ix| ≥

((
k
H

))
/2k. Moreover, for H ≤ k/2, there is a strategy, named C-

Weighting, that uses comparison queries and outputs an interval IW,x with |IW,x| ≤((
k−H

H

))
/2k−H .
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The following game will be useful in our analysis of online time-series and fractional
knapsack.

FIND(k, H) game. In this game, given k and H ≤ k/2, and D = {1, . . . , m}, the objective
is to find an unknown x ∈ D, using k queries, up to H of which may be answered incorrectly.

The proof of the following theorem is direct from Lemma 1:

▶ Theorem 2. The largest positive integer µ(k, H) such that a questioner can identify any
number x ∈ {1, 2, . . . , µ(k, H)} in the Find(k, H) game is such that

2k−H/

((
k − H

H

))
≤ µ(k, H) ≤ 2k/

((
k

H

))
.

We define two further games that will be of interest to our analysis. The first is related
to searching in cyclic permutations, and will be useful in the upper-bound analysis of online
bidding.

MINCYCLIC(n, k, H) game. Given an array A[0 . . . n − 1] whose elements are an unknown
cyclic permutation of {0, . . . , n − 1}, the objective is to use k queries, at most H ≤ k/2 of
which can be erroneous, so as to output an index of the array whose element is as small as
possible.

▶ Theorem 3. There is a questioner’s strategy for MinCyclic(n, k, H) based on k comparison
queries that outputs an index j such that A[j] ≤ ⌈n

((
k−H

H

))
/2k−H⌉, for all H ≤ k/2.

Last, we define a game that is related to searching in general permutations, and it will be
useful in establishing lower bounds on the competitiveness of online bidding.

SEARCH(n, k, H) game. Given an array, A[0, . . . , n − 1] whose elements are an unknown
permutation of {0, . . . , n − 1}, the objective is to use k queries, at most H of which can be
erroneous, so as to output an index of the array whose element is as small as possible.

▶ Theorem 4. For any questioner’s strategy for the Search(n, k, H) game, there is a respon-
der’s strategy such that if e is the element of A that is returned, then A[e] ≥ ⌊n

((
k
H

))
/2k⌋.

3 A warm-up: Online time-series search

The online (time series) search problem formulates a simple, yet fundamental setting in
decision-making under uncertainty. In this problem, a player must sell an indivisible asset
within a certain time horizon, e.g., within a certain number of days d, that is unknown to the
player. On each day i, a price pi is revealed, and the player has two choices: either accept
the price, and gain a profit pi (at which point the game ends), or reject the price (at which
point the game continues to day i + 1). If the player has not accepted a price by day d, then
it accepts by default the last price pd. The competitive ratio of the player’s algorithm is the
worst-case ratio, over all price sequences, of the maximum price in the sequence divided by
the price accepted by the player.

The problem was introduced and studied in [19] that gave a simple, deterministic algorithm
that achieves a competitive ratio equal to

√
M/m, where M, m are upper and lower bounds

on the maximum and minimum price in the sequence, respectively, and which are assumed
to be known to the algorithm. This bound is optimal for deterministic algorithms. Time-
series search is a basic paradigm in online financial optimization, and several variants and

MFCS 2023
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generalizations have been studied [17, 30, 40, 16]; see also the survey [27]. The problem
has also been used as a case study for evaluating several performance measures of online
algorithms, including measures alternative to competitive analysis [11, 1].

Time-series search was recently studied under the imperfect advice framework in [7], who
showed an upper bound of (M/m)22H−k/2 on the competitive ratio with k-bit advice and
tolerance H, under the assumption that H ≤ k/4. Note that no upper bound is known for
H ∈ (k/4, k/2]. If the advice is error-free, i.e., in the advice-complexity model, then a tight
bound on the competitive ratio equal to (M/m)

1
2k+1 is due to [16].

We show the following result, as an application of the Find(k, H) game discussed in
Section 2.

▶ Theorem 5. Consider the online time series search problem, with imperfect advice of size
k and tolerance H ≤ k/2. There is an algorithm that uses k comparison queries, and that
has competitive ratio at most (M/m)

1
U+1 , where U = ⌊2k−H/

((
k−H

H

))
⌋, for any H ≤ k/2.

In contrast, no (deterministic) algorithm based on k subset queries has competitive ratio less
than (M/m)

1
L+1 , where L = ⌈2k/

((
k
H

))
⌉.

Proof. We first show the upper bound. Let a1, . . . aU , r be defined such that r = a1
m = a2

a1
=

. . . = aU

aU−1
= M

aU
, hence r = (M/m)1/(U+1). The algorithm uses k comparison queries so

as to find the best reservation price, in the set {ai}U
i=1, i.e., a threshold p above which the

algorithm will always accept a price in the sequence. In particular, it can choose p to be the
maximum value in {ai}U

i=1 that does not exceed the maximum price in the sequence. This
follows from Theorem 2, since U ≤ 2k−H/

((
k−H

H

))
. From the definition of the set {ai}U

i=1,
it easily follows that this algorithm has competitive ratio at most r, which completes the
proof of the upper bound.

We now show the lower bound. By way of contradiction, suppose that there is an
algorithm A for time-series search with k-bit imperfect advice, and of competitive ratio less
than C = (M/m)

1
L+1 . We will show that A could then be used in the Find(k, H) game so

as to identify, using k queries, an unknown value in {1, . . . , L + 1}, which is a contradiction
to the upper bound of Theorem 2.

To arrive at the contradiction, define a1, . . . , aL and r′ such that

r′ = a1

m
= a2

a1
= . . . = aL

aL−1
= M

aL
,

hence r′ = (M/m)
1

L+1 = C. Consider a game between the online algorithm A and the
adversary, in which the request sequences consist of prices in {m, a1, . . . , aL, M}. More
precisely, consider the set of request sequences of the form σi = m, a1, . . . , ai, for all i ∈
[1, L + 1], where aL+1 is defined to be equal to M . In σi, A must accept price ai to be strictly
less than C-competitive. Equivalently, A uses k queries with at most H errors, and finds ai

in the set {aj}L+1
j=1 , which contradicts Theorem 2. ◀

3.1 Comparison of the bounds
In order to compare the upper and lower bounds of Theorem 5, we need to be able to evaluate
the partial sum of binomial coefficients. Since this partial sum does not have a closed form,
we will rely on the following useful approximation from [32]. Let H denote the binary entropy
function. Then

2NH( m
N )√

8m(1 − m
N )

≤
((

N

m

))
≤ 2NH( m

N ), for 0 < m < N/2. (1)
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We will also use the following property of the binary entropy function

4p(1 − p) ≤ H(p) ≤ (4p(1 − p))1/ ln 4, for all p ∈ (0, 1). (2)

We first show that the algorithm of Theorem 5 improves upon the one of [7]. First, note
that [7] assumes that H ≤ k/4, whereas Theorem 5 applies to all H ≤ k/2. Furthermore,
we improve on the competitive ratio for all values of H and k. For this, it suffices to show
that

((
k−H

H

))
/2k−H < 22H−k/2, which, from (1) holds if 2(k−H)(H( H

k−H )−1) < 22H−k/2, or
equivalently (k − H)(H( H

k−H ) − 1) < 2H − k/2. Let τ be such that τ = H/k (hence τ ≤ 1/2),
then the latter is equivalent to showing that H( τ

1−τ ) < 1+2τ
2−2τ . Using (2), it suffices to show

that

(4τ(1 − 2τ)
(1 − τ)2 )1/ ln 4 <

1 + 2τ

2 − 2τ
,

which holds for all τ ≤ 1/2.
Next, we investigate how close the upper and lower bounds of Theorem 5 are to each

other. Recall that the bounds are of the form (M/m)1/(U+1), and (M/m)1/(L+1). Using (1),
and ignoring for simplicity the floors and ceilings, we obtain that

U ≥ 2k(1−τ)(1−H( τ
1−τ )) and L ≤

√
8kτ(1 − τ)2k(1−H(τ)).

The above inequalities, along with (2) show that the upper and lower bounds are very close
to each other, since for any fixed value of τ , we have that U ≥ 2Θ(k) and L ≤ 2Θ(k).

4 Online bidding

Online bidding was introduced in [15] as a canonical problem for formalizing doubling-based
strategies in online and offline optimization problems, such as searching for a target on the
line, minimum latency, and hierarchical clustering. In this problem, a player wants to guess
a hidden, unknown real value u ≥ 1. To this end, the player defines an (infinite) sequence
X = (xi) of positive, increasing bids, which is called its strategy. The cost of discovering the
hidden value u using the strategy X, denoted by c(X, u), is defined to be equal to

∑ju

i=1 xi,
where ju is such that xju−1 < u ≤ xju

. Hence one naturally defines the competitive ratio of
the bidder’s strategy X as Cr(X) = supu

c(X,u)
u .

In the standard version of the problem, i.e, assuming no advice, the doubling strategy
xi = 2i achieves optimal competitive ratio equal to 4. Online bidding was studied under the
untrusted advice model in [5], which gave bounds on the consistency/robustness tradeoffs.
It was also studied under a model in which the prediction is the hidden value in [3, 5].
The problem is related to contract scheduling, studied in [6], see also the discussion in
Section 4.1.3.

4.1 Online bidding with imperfect advice
4.1.1 Upper bound
The idea behind the upper bound is as follows. We will consider bidding sequences from a
space of 2k geometrically-increasing sequences (see Definition 6). In the ideal situation of
perfect advice, the k advice bits could be used to identify the best strategy in this space. In
the presence of advice errors, we will show how to exploit the cyclic structure of this space,
in conjunction with our upper bound for the MinCyclic game (Theorem 3), so as to find a
strategy that is not too far from the optimal.

We first define the space of geometrically-increasing bidding sequences.

MFCS 2023
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▶ Definition 6. For given b > 1, and l ∈ N+ define Xb,l as the set of bidding sequences
{X0, . . . Xl−1}, in which Xi = (bi+jl)∞

j=0, for all i ∈ [0, l − 1].

From the definition of Xb,l, it is easy to see that for any potential target u, there is a
cyclic permutation π of {0, . . . l − 1} which determines an ordering of the strategies in Xb,l in
terms of their performance. More precisely, suppose that Xπ(0) is the best sequence that
discovers u at least cost, say C. Then Xπ(i) discovers u at cost at most biC. This property
can help us show the following upper bound:

▶ Theorem 7. There is a bidding strategy based on k comparison queries of competitive ratio

at most 1+U
2k

(
1 + 2k

1+U

)1+ 1+U

2k

, where U = ⌈2H
((

k−H
H

))
⌉.

4.1.2 Lower bound
The idea behind the lower bound is as follows. With k advice bits, the best one can do is
choose the best strategy from a set X that consists of at most 2k strategies. Note that if the
advice were error-free, |X | could be as large as 2k; however, in the presence of errors, the
algorithm may choose to narrow |X |.

Our approach combines two ideas. The first idea uses the abstraction of the
Search(n, k, H) game, and the lower bound of Theorem 4. This result will allow us
to place a lower bound on the rank of the chosen strategy, where the best strategy has rank
0. The second idea is to define a measure that relates how much worse a strategy of rank j

in X has to be relative to the best strategy in X . We will accomplish this by appealing to
the concepts of parallelism and fault tolerance.

More precisely, given integers p, and ϕ, with ϕ < p, we define the fault-tolerant parallel
bidding problem, denoted by FPB(p, ϕ), as follows. The player is allowed to run, in parallel, p

bidding strategies; however, ϕ of these strategies can be faulty, in that they never discover
the target; e.g., we can think of a fault strategy as one in which the player abruptly stops
submitting bids, at some point in time, akin to a “byzantine” failure. The cost of discovering
a target u is then defined as the minimum cost at which one of the p − ϕ non-faulty strategies
discovers the target, noting that the faults are dictated by an adversary that aims to maximize
this cost. The competitive ratio is defined accordingly.

The next theorem is the main technical result for FPB(p, ϕ), which gives a lower bound
on the competitive ratio of any strategy for this problem, as a function of the parameters p,
ϕ and αX̄ . Here, X̄ is defined as the sorted sequence of all bids in the p-parallel strategy X,
in non-decreasing order. Moreover, given a sequence X of positive reals, we define αX to be
equal to lim supi→∞ x

1/i
i .

▶ Theorem 8. Every p-parallel strategy X for FPB(p, ϕ) has competitive ratio Cr(X) ≥
αp+1+ϕ

X̄

αp

X̄
−1 .

Proof sketch. We use properties of p-parallel strategies so as to show that any such strategy

satisfies Cr(X) ≥ supq

∑q+ϕ+1
i=0

x̄i∑q−(p−1)
i=q

x̄i

. We then use Gal’s functional theorem [21] to obtain the

result. We omit several technical details. ◀

We now show how to obtain a lower bound for the problem by combining the above ideas.
We emphasize a subtle point: unlike error-free advice of size k, where one should always
choose the best strategy out of a collection of exactly 2k strategies, it is conceivable that, in
the presence of errors, this collection could very well be of size l < 2k. This is because, as l

decreases, so does the effect of errors on the competitive ratio. In other words, we need to
establish the result for all values l ≤ 2k, and not only for l = 2k.
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▶ Theorem 9. For every bidding sequence X and k subset queries in the imperfect advice
model, we have Cr(X) ≥ 1

L (1 + L)1+1/L, where L = 2k/
((

k
H

))
.

Proof. Every bidding strategy will use the query responses so as to select a strategy from a
set X = {X0, . . . , Xl−1} of candidate sequences, for some l ≤ 2k. For a given target value
u, there is an ordering of the l sequences in X such that Xπ(i) has no worse competitive
ratio than Xπ(i+1), namely the permutation orders the sequences in decreasing order of
performance. From Theorem 4, it follows that the strategy will choose a sequence Xj such
that π(j) ≥ ⌊l

((
k
H

))
/2k⌋. The competitive ratio of the selected sequence is at least the

competitive ratio of the l-parallel strategy defined by X , in which up to ϕl = ⌊l
((

k
H

))
/2k⌋

sequences may be faulty. From Theorem 8,

Cr(X) ≥
αl+1+ϕl

X̄

αl
X̄

− 1
, with ϕl = ⌊l

((
k

H

))
/2k⌋. (3)

We now consider two cases. Suppose first that l < L. In this case, case ϕl = 0, and
therefore (3) implies that Cr(X) ≥ αl+1

X̄
/(αl

X̄
−1), which is minimized for αX̄ = (l+1)1/l > 1,

therefore Cr(X) ≥ 1
l (l + 1)1+1/l. This function is decreasing in l, and since l < L we

have Cr(X) ≥ 1
L (1 + L)1+1/L. Next, suppose that l ∈ [L, 2k]. In this case, (3) gives

Cr(X) ≥ α
l(1+1/L)
X̄

αl
X̄

−1 . The above expression is minimized for αX̄ = (1+L)1/l, and by substitution

we obtain again Cr(X) ≥ 1
L (1 + L)1+1/L. ◀

4.1.3 Comparison of the bounds
We can prove that the ratio between the two bounds is approximately

log UB
LB ≤

√
8kτ(1 − τ)k(1 − τ)(1 − H( τ

1−τ ))
2k(1−τ)(1−H( τ

1−τ )) − k(1 − H(τ))
2k(1−H(τ)) ,

where τ = H/k. We infer that as k increases, and for any fixed value of τ , the upper and
lower bounds become very close to each other.

Note that the techniques of [6] imply an online bidding strategy with imperfect advice
of competitive ratio roughly equal to f(2k/H), where f is the decreasing function f(x) =
1
x (1 + x)1+ 1

x . Thus, if H = Θ(k), then the competitive ratio is independent of the number of
queries k. In contrast, the competitive ratio of Theorem 7 is roughly equal to f(2k/U), which
is smaller than f(2k/H), and which rapidly decreases as the number of queries k increases.

We also note that our analysis implies a tight bound on the advice complexity of online
bidding. No previous bounds on the advice complexity of this problem were known.

5 Online fractional knapsack

In the online fractional knapsack problem, the request sequence consists of items, where item
i has a value vi ∈ R+ and a size si ∈ (0, 1]. The algorithm has a knapsack of unit capacity,
and when considering item i, it can accept irrevocably a fraction fi ∈ (0, 1] of the item,
subject to capacity constraints. More precisely, the algorithm aims to maximize

∑
i

(fi · vi)

subject to
∑
i

(fi · si) ≤ 1. Online fractional knapsack has important applications in sponsored

search auctions, ad allocation and online trading, and has been studied in several settings,
e.g., [2, 24, 38, 14]. In this section, we study this problem in the imperfect advice setting.
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Let di = vi/si denote the density of item i. While the offline version of the problem admits
an optimal solution via a simple greedy algorithm (that sorts all items by non-decreasing
order of density, and accepts items in this order until the knapsack is full), the online version
is more challenging. Suppose that di ∈ [L, U ], for L, U known to the algorithm. [13, 12] gave
matching O(log(U/L)) and Ω(log(U/L)) upper and lower bounds on the competitive ratio of
the problem, respectively, and [41] showed an optimal bound of ln(U/L) + 1 for deterministic
algorithms.

5.1 Upper bound
As in all previous work, we assume that the density of all items is in [L, U ] for known values
of L and U . Let d∗ denote the smallest density of an item included at a positive fraction
in the optimal solution. That is, the optimal algorithm Opt accepts a fraction 1 of items
with density larger than d∗, and fills the remaining space with a fraction of items of density
d∗. Unfortunately, knowing d∗ (even its exact value) is not sufficient for an online algorithm
to be anywhere as efficient as Opt. For example, an algorithm that accepts a fraction 1 of
items of density larger than d∗ has unbounded competitive ratio in sequences that consist
only of items of density d∗. Similarly, an algorithm that accepts a fraction 1 of items with
density at least d∗ has unbounded competitive ratio in sequences in which items of density
d∗ appear early in the sequence, and items of greater density later in the sequence. However,
if we denote by c∗ ∈ (0, 1) the fraction of the knapsack in the optimal solution that is either
empty or occupied with items of density d∗, then knowing the exact value of both d∗ and c∗

suffices to achieve optimality. Our approach will then aim to use k comparison queries so as
to approximate c∗ and d∗, then use these approximations to choose fractional items.

5.1.1 Algorithm and analysis
We describe the online algorithm. We first define two types of partitions, related to the
parameters d∗ and c∗. In what concerns d∗, partition the interval [L, U ] into s sub-intervals
I1, . . . , Is such that Ii = [di−1, di), for s that will be specified later. We also set L = d0, U = ds.
The values di are defined so that: β = d1

d0
= d2

d1
= . . . = ds

ds−1
. Thus, we have β = (U/L)1/s

and di = L · βi, and note that d∗ ∈ Ix for some x ∈ [1, s].
In what concerns the parameter c∗, we partition the interval [0, 1] into m sub-intervals

I ′
1, . . . , I ′

m such that I ′
i = [ci−1, ci); we have c0 = 0 and cm = 1. The value of m will be

determined later; the values ci are defined so that c1 = c2 − c1
β = c3 − c2

β = . . . = cm − cm−1
β .

It readily follows that for i ≥ 1, we have ci = βm+i−1−βm+i−2

βm−1 . In particular, c1 = βm−βm−1

βm−1 ,
and 1

1−c1
= βm−1

βm−1−1 . Note also that c∗ ∈ I ′
y for some y ∈ [1, m].

Provided that s · m ≤ ⌊2k−H/
((

k−H
H

))
⌋, Theorem 2 shows that the algorithm can use k

comparison queries so as to identify both x and y. Given these values, the algorithm reserves,
in its knapsack, a capacity c = cy−1 for items with density in the range Ix = [dx−1, dx), to
which we refer as critical items. The algorithm uses the remaining capacity of 1 − c for items
of density larger than dx, to which we refer as heavy items, and accepts a fraction 1 of all
critical items, as long as the capacity c reserved for them allows. Similarly, the algorithm
accepts a fraction 1 of heavy items and places them in their dedicated space of the knapsack.
Given that c∗ ∈ Iy, we have 1 − c > 1 − c∗; that is, the reserved capacity for heavy items is
at least equal to the total size of these items. In other words, the algorithm can afford to
accept all heavy items. The algorithm rejects all items of density smaller than dx−1.
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▶ Theorem 10. For any H ≤ k/2, the above algorithm has competitive ratio

min
s,m∈N

fm(β) where β = (U/L)1/s, and fm(β) = βm − 1
βm−1 − 1

subject to s · m ≤ ⌊2k−H/

((
k − H

H

))
⌋.

5.2 Lower bound
We will show a lower bound C(k, H) on the competitive ratio of any algorithm with imperfect
advice. For the sake of contradiction, suppose there is an algorithm A of competitive
ratio better than C(k, H). Our proof is based on a reduction from the Find(k, H) game.
Specifically, we prove that, based on A, we obtain a questioner’s strategy for Find(k, H)
which can find a value z ∈ {1, . . . , p}, with p = ⌈2k/

((
k
H

))
⌉+1, which contradicts Theorem 2.

We give the intuition behind the proof. Let s and m be any two positive integers such
that s · m ≤ p and s · (m + 1) > p. Define β = (U/L)1/s, and di = U · βi, for i ∈ [1, s]. Given
a pair (x, y) of integers, where x ∈ {1, . . . , s} and y ∈ {1, . . . m + 1}, define the sequence

σx,y = ((d1, 1), (d2, 1), . . . , (dx−1, 1), (dx, cy),

where (di, j) indicates a subsequence of j/ϵ items, each of which has size ϵ and density di,
and where ϵ is infinitesimally small. cy ∈ [0, 1] is defined appropriately in the proof. For this
sequence, OPT(σx,y) = (1 − cy)dx−1 + cydx. There are s · (m + 1) > p such sequences, and
σx,y is a prefix sequence of σx,y+1, and σx,m is a prefix sequence of σx+1,1. In the proof, we
consider request sequences of this form, and we show that if A is C(k, H)-competitive, its
decisions can help find any given z ∈ {1, . . . , p}, which contradicts Theorem 2.

▶ Theorem 11. For the fractional knapsack problem, where items densities are in [L, U ],
no deterministic algorithm with k subset queries, out of which H ≤ k/2 may have erroneous
responses, can achieve a competitive ratio better than

C(k, H) = min
s,m∈N

gm(β) where β = (U/L)1/s, gm(β) = (β2 − β + 1
2β + 1 )1/(m+1)

subject to s · m ≤ ⌈2k/

((
k

H

))
⌉ + 1.

Comparison of the bounds

Let τ = H/k. Since βm−1
βm−1−1 ≤ β, using (1), the upper bound of Theorem 10 is at most (U/L)q,

where q ≤ 1/2k(1−τ)(1−H( τ
1−τ )). Furthermore, since β2−β+1

2β+1 ≥ β
3 (for all β ≥ 3), the lower

bound of Theorem 11 is at least (U/L)q′(1/3)q′ , where q′ ≥ 1/(2
√

8kτ(1 − τ)2k(1−H(τ)) + 1),
for all U/L ≥ 3. For simplicity, we omitted the floors and ceilings.

6 Waiving the assumption of the tolerance parameter

In the imperfect advice setting we have studied so far, the algorithm defines an application-
specific tolerance parameter that measures its desired tolerance to errors (or equivalently,
an anticipated upper bound on the error). This parameter is in a sense required, since the
analysis of Rényi-Ulam games in [36] involves the extreme value of error (i.e., H) instead
of the instance-specific error value (i.e., η). Nevertheless, in this section, we discuss how
to mitigate the need for pre-determining a tolerance parameter. We propose two different
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approaches, based on resource-augmentation, and robustification, which we discuss in what
follows. We use the time-series search and online bidding problems as illustrations, even
though our approach may carry through in other online problems, at the expense of more
complex calculations.

6.1 Resource augmentation
In this setting, we compare an oblivious online algorithm A with l advice bits and no
information on the error bound, to an online algorithm B that has k ideal (i.e. error-free)
advice bits. Specifically, we are interested in finding the smallest l ≥ k (as a function of k)
for which algorithm A is at least as good as algorithm B, regardless of the advice error of A.

The following theorem shows that O(1)-factor resource augmentation suffices to obtain
an oblivious algorithm that is at least as efficient as any algorithm that operates in the ideal
setting of error-free advice, and even if a fraction 1/3 − c of the advice bits may be erroneous,
for any constant c.

▶ Theorem 12. Consider the time-series and the online bidding problems. For all sufficiently
large k, and any c ∈ (0, 1/3), there is an oblivious online algorithm A with advice of size l,
whose competitive ratio is at least as good as that of any online algorithm B with k bits of
perfect (i.e. error-free) advice, where l = 1

( 2
3 +c)(1−H(

1
3 −c

2
3 +c

))
k + 1, for any error η ≤ (1/3 − c)l

in the advice of A.

6.2 Robustification
In this setting, we augment the imperfect advice framework by requiring not only that the
algorithm minimizes the competitive ratio assuming that the advice error is at most the
tolerance H, but also that its competitive ratio does not exceed a robustness requirement r,
for some specified r, if the error exceeds H (and in particular, if the advice is adversarially
generated). We call such online algorithms r-robust. Thus, this model can be seen as an
extension of both the imperfect advice and the untrusted advice model of [5].

For the time-series problem, we obtain the following result, which generalizes Theorem 5.
In particular, note that Theorem 5 is a special case of Theorem 13 for ρ = 1.

▶ Theorem 13. Consider the online time series search problem, with imperfect advice of
size k, tolerance H ≤ k/2, and robustness r = (M/m)ρ, where ρ ∈ (1/2, 1]. There is
an r-robust algorithm that uses k comparison queries, and has competitive ratio at most
(M/m)

2ρ−1
U+1 , where U = ⌊2k−H/

((
k−H

H

))
⌋, for any H ≤ k/2. Moreover, no (deterministic)

algorithm based on k subset queries has competitive ratio better than (M/m)
2ρ−1
L+1 , where

L = ⌈2k/
((

k−H
H

))
⌉.

The analysis of r-robust algorithms for online bidding is more challenging, in particular
in what concerns the impossibility results. We give an overview of the approach. For the
upper bound, we can follow an analysis along the lines of Theorem 7, however, each bidding
sequence in the collection Xb,2k must be individually r-robust. This is easy to enforce, and it
requires that b much be such that b2/(b − 1) ≤ r. The lower bound is more subtle: the proof
follows the lines of Theorem 9, but uses the fact that if all the l sequences in X0, . . . , Xl−1
must be r-robust, then α2

X̄
/(αX̄ − 1) ≤ r. We obtain the following:
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▶ Theorem 14. For every r ≥ 4 there is an r-robust bidding strategy with k-bit imperfect
advice that has competitive ratio at most

min
b>1

b2k+U+1

b2k − 1
, subject to b2k+1

/(b2k

− 1) ≤ r, and where U = ⌈2H

((
k − H

H

))
⌉.

Furthermore, every r-robust bidding strategy has competitive ratio at least

min
α>1

α2k+L+1

α2k − 1
subject to α2k/(αk − 1) ≤ r, and where L = ⌊

((
k

H

))
⌋.
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