Multivariate to Bivariate Reduction for Noncommutative Polynomial Factorization

Vikraman Arvind
The Institute of Mathematical Sciences (HBNI), Chennai, India
Chennai Mathematical Institute, Siruseri, Kelambakkam, India

Pushkar S. Joglekar
Vishwakarma Institute of Technology, Pune, India

Abstract

Based on a theorem of Bergman [6, Theorem 4.5.3] we show that multivariate noncommutative polynomial factorization is deterministic polynomial-time reducible to the factorization of bivariate noncommutative polynomials. More precisely, we show the following:

1. In the white-box setting, given an n-variate noncommutative polynomial $f \in \mathbb{F}(X)$ over a field \mathbb{F} (either a finite field or the rationals) as an arithmetic circuit (or algebraic branching program), computing a complete factorization of f into irreducible factors is deterministic polynomial-time reducible to white-box factorization of a noncommutative bivariate polynomial $g \in \mathbb{F}(x, y)$; the reduction transforms f into a circuit for g (resp. ABP for g), and given a complete factorization of g (namely, arithmetic circuits (resp. ABPs) for irreducible factors of g) the reduction recovers a complete factorization of f in polynomial time.

2. Additionally, we show over the field of rationals that bivariate linear matrix factorization of 4×4 matrices is at least as hard as factoring square-free integers. This indicates that reducing noncommutative polynomial factorization to linear matrix factorization (as done in [1]) is unlikely to succeed over the field of rationals even in the bivariate case. In contrast, multivariate linear matrix factorization for 3×3 matrices over rationals is in polynomial time.

2012 ACM Subject Classification

Theory of computation → Algebraic complexity theory

Keywords and phrases
Arithmetic circuits, algebraic branching programs, polynomial factorization, automata, noncommutative polynomial ring

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.14

Acknowledgements
We thank the reviewers for insightful suggestions and comments.

1 Introduction

The main aim of this paper is to show that multivariate polynomial factorization in the free noncommutative ring $\mathbb{F}(x_1, x_2, \ldots, x_n)$ is polynomial-time reducible to bivariate noncommutative polynomial factorization in the bivariate ring $\mathbb{F}(x, y)$. Such a result for commutative polynomial factorization is well-known due to Kaltofen’s seminal work [9, 10] on multivariate polynomial factorization in the commutative polynomial ring $\mathbb{F}[y_1, y_2, \ldots, y_n]$. However, this problem was open for noncommutative polynomials. Recently, a randomized polynomial-time algorithm was obtained for the factorization of noncommutative polynomials over finite fields, where the input polynomial is given by a noncommutative formula [1].

Broadly speaking, the algorithm of [1] works via Higman linearization ([8] [6] [7]) and reduces the problem to linear matrix factorization which turns out to have a randomized polynomial-time algorithm over finite fields.

1 Factorization of homogeneous noncommutative polynomials is easier as it can be reduced to factorization of a special case of commutative polynomials. See [4] for details.
Problem 1 (Linear Matrix Factorization Problem). The linear matrix factorization problem over a field \(F \) takes as input a linear matrix: \(L = A_0 + \sum_{i=1}^{n} A_i x_i \), where the \(A_i \) are \(d \times d \) scalar matrices (over \(F \)), the \(x_i, 1 \leq i \leq n \) are noncommuting variables, and \(A_0 \) is assumed invertible for technical reasons. The problem is to compute a factorization of \(F \langle x \rangle \) as a product of irreducible linear matrices.

The study of matrix factorization (linear matrix factorization, in particular) is an important part of Cohn’s factorization theory over general free ideal rings. [6, 5].

Coming back to the polynomial factorization algorithm described in [1], the algorithm reduces polynomial factorization to linear matrix factorization which is, in turn, reducible to the problem of computing a common invariant subspace for a collection of \(n \) matrices. The common invariant subspace problem over finite fields can be efficiently solved using Ronyai’s algorithm [12] which is based on the Artin-Weil theorem for decomposition of algebras. This approach, however, runs into serious difficulties over rationals. Given a simple matrix algebra\(^2\) \(A \) over rationals, we do not know an efficient algorithm for checking if \(A \) is a division algebra or whether it has zero divisors. This is one of our motivations for obtaining a reduction from multivariate polynomial factorization to bivariate factorization. Because Higman Linearization of a bivariate noncommutative polynomial given by a formula will yield a bivariate linear matrix. One could hope that factorization of a bivariate linear matrix is computationally easier than factorization of an \(n \)-variate linear matrix. Unfortunately, this is not the case. As we will see, even for 4-dimensional bivariate linear matrices the problem of factorization is at least as hard as factoring square-free integers.

Multivariate to Bivariate

We start with some formal preliminaries. Let \(F \) be any field and \(X = \{x_1, x_2, \ldots, x_n\} \) be a set of \(n \) free noncommuting variables. Let \(X^* \) denote the set of all free words (which are monomials) over the alphabet \(X \) with concatenation of words as the monoid operation and the empty word \(\epsilon \) as identity element.

The free noncommutative ring \(F\langle X \rangle \) consists of all finite \(F \)-linear combinations of monomials in \(X^* \), where the ring addition + is coefficient-wise addition and the ring multiplication \(* \) is the usual convolution product. More precisely, let \(f, g \in F\langle X \rangle \) and let \(f(m) \in F \) denote the coefficient of monomial \(m \) in polynomial \(f \). Then we can write \(f = \sum_m f(m)m \) and \(g = \sum_m g(m)m \), and in the product polynomial \(fg \) for each monomial \(m \) we have \(fg(m) = \sum_{m_1m_2=m} f(m_1)g(m_2) \). The degree of a monomial \(m \in X^* \) is the length of the monomial \(m \), and the degree \(\deg f \) of a polynomial \(f \in F\langle X \rangle \) is the degree of a largest degree monomial in \(f \) with nonzero coefficient. For polynomials \(f, g \in F\langle X \rangle \) we clearly have \(\deg(fg) = \deg f + \deg g \).

A nontrivial factorization of a polynomial \(f \in F\langle X \rangle \) is an expression of \(f \) as a product \(f = gh \) of polynomials \(g, h \in F\langle X \rangle \) such that \(\deg g > 0 \) and \(\deg h > 0 \). A polynomial \(f \in F\langle X \rangle \) is irreducible if it has no nontrivial factorization and is reducible otherwise. For instance, all degree 1 polynomials in \(F\langle X \rangle \) are irreducible. Clearly, by repeated factorization every polynomial in \(F\langle X \rangle \) can be expressed as a product of irreducibles.

The problem of noncommutative polynomial identity testing (PIT) for multivariate polynomials is known to easily reduce to noncommutative PIT for bivariate polynomials: the reduction is given by the \(x_i \mapsto xy_i, 1 \leq i \leq n \), which transforms a given arithmetic circuit (or formula or algebraic branching program) computing a polynomial \(f(x_1, x_2, \ldots, x_n) \) to the

\(^2\) i.e. the algebra has no nontrivial two-sided ideals.
bivariate polynomial \(g(x, y) = f(xy, xy^2, \ldots, xy^n) \). As this substitution map ensures that every monomial of \(f \) is mapped to a distinct monomial of \(g(x, y) \), \(f \) is the zero polynomial if and only if \(g(x, y) \) is the zero polynomial. Indeed, this map even gives an injective homomorphism from the ring \(\mathbb{F}(x_1, x_2, \ldots, x_n) \) to \(\mathbb{F}(x, y) \) [6, Problem 14, Exercises 2.5]. However, it does not preserve factorizations. For example, the polynomial \(f = x_1x_2 + x_4x_2 + x_4x_1 + x_5x_2 \in \mathbb{F}(x) \) is clearly irreducible. But the image of \(f \) under this map has the nontrivial factorization \((xy^3 + xy^3)(gxy + g^2xy^2)\). Thus, it cannot be used to obtain a reduction from noncommutative multivariate polynomial factorization to bivariate polynomial factorization.

Bergman’s 1-inert embedding

However, based on a theorem of Bergman [6, Theorem 4.5.3], we can obtain a polynomial-time reduction from factorization of multivariate noncommutative polynomials in \(\mathbb{F}(x_1, x_2, \ldots, x_n) \) given by arithmetic circuits (resp. noncommutative algebraic branching programs (ABP)) to factorization of bivariate noncommutative polynomials in \(\mathbb{F}(x, y) \), again given by arithmetic circuit (resp. an ABP). This reduction is polynomial-time bounded for both finite fields and rationals. In the case of rationals we need to ensure that the bit complexities of all numbers involved are polynomially bounded. Furthermore, we show that essentially the same reduction works in the black-box setting as well.

The notion of 1-inert embeddings is defined below for free noncommutative polynomials.

Definition 2 (1-inert embedding). [5] Let \(X^\infty = \{x_1, x_2, \ldots \} \) be a countably infinite set of free noncommuting variables and \(x, y \) be two free noncommuting variables. A 1-inert embedding of \(\mathbb{F}(X^\infty) \) into \(\mathbb{F}(x, y) \) is an injective homomorphism \(\varphi : \mathbb{F}(X) \to \mathbb{F}(x, y) \) such that for each polynomial \(f \in \mathbb{F}(X) \), if its image \(\varphi(f) \) factorizes nontrivially in \(\mathbb{F}(x, y) \) as \(\varphi(f) = g_1 \cdot g_2 \) then their preimages \(\varphi^{-1}(g_1) \) and \(\varphi^{-1}(g_2) \) exist and, since \(\varphi \) is a homomorphism, it gives a nontrivial factorization \(f = \varphi^{-1}(g_1) \varphi^{-1}(g_2) \) of \(f \) in \(\mathbb{F}(X) \).

Remark 3. The above definition implies that for all factorizations \(\varphi(f) = g_1g_2 \), the polynomials \(g_1 \) and \(g_2 \) are in the range of \(\varphi \). Cohn [6, 5] treats 1-inert embeddings \(\varphi : R_1 \to R_2 \) for general noncommutative integral domains \(R_1 \) and \(R_2 \), which we do not require for our results.

Definition 4. A complete factorization of noncommutative polynomial \(f \in \mathbb{F}(X) \) is a factorization \(f = f_1 \cdot f_2 \cdots f_r \) into a product of irreducible polynomials \(f_i \in \mathbb{F}(X) \).

Given an algebraic branching program (resp. Arithmetic Circuit) for \(f \), we can efficiently obtain an algebraic branching program (resp. Arithmetic Circuit) for \(\varphi(f) \) and then we use idea of running a substitution automata on ABPs or circuits (see e.g. [4], [2], [3]) to construct a complete factorization of \(f \) given a complete factorization of \(\varphi(f) \). In the next section we will elaborate and expand upon Bergman’s embedding theorem [5] and show how to get an effective algorithmic version which is useful for our purpose of reconstruction of factors of \(f \) from factors of \(\varphi(f) \).

The rest of the paper is organized as follows: In Section 2 we give necessary details of Bergman’s result. In Section 3 we present the reductions. Motivated by the connection between noncommutative polynomial factorization and linear matrix factorization, in Section 4 we show a hardness result for bivariate linear matrix factorization for \(4 \times 4 \) linear matrices over rationals. In contrast we obtain an efficient linear matrix factorization algorithm for \(3 \times 3 \) linear matrices over rationals.
2 Bergman’s embedding

We recall the graded lexicographic ordering \(\prec \) on monomials in \(\{x, y\}^* \), which is a total ordering on \(\{x, y\}^* \) defined as follows:

For monomials \(m_1, m_2 \in \{x, y\}^* \), we say \(m_1 \prec m_2 \) if either \(\deg(m_1) < \deg(m_2) \) or \(\deg(m_1) = \deg(m_2) \) and in the leftmost position \(i \) where they differ we have \(m_1[i] = y \) and \(m_2[i] = x \).

For any polynomial \(g \), let \(\text{supp}(g) \) denote the set of all monomials of \(g \) with non-zero coefficient. When \(m_1 \prec m_2 \) we say that monomial \(m_1 \) is smaller than monomial \(m_2 \). Equivalently, we say \(m_2 \) is larger than \(m_1 \). The leading monomial of a polynomial \(g \in \mathbb{F}(x, y) \) is the monomial \(m \in \text{supp}(g) \) (denoted by \(\text{lm}(g) \)) such that \(w < m \) for all \(w \in \text{supp}(g) \). That is, the leading monomial of \(g \) is the largest monomial in \(\text{supp}(g) \).

For a monomial \(m \in \{x, y\}^* \) let \(d_x(m) \) (resp. \(d_y(m) \)) denote the number of occurrences of \(x \) (resp. \(y \)) in \(m \). The imbalance \(i(m) \) of the monomial \(m \) is defined as
\[
i(m) = d_x(m) - d_y(m).
\]

Let \(B \subset \mathbb{F}(x, y) \) be the set of all polynomials \(f \) such that every monomial \(m \in \text{supp}(f) \) has imbalance zero, i.e. \(i(m) = 0 \) for all \(m \in \text{supp}(f) \). Clearly, \(B \) is a subalgebra of \(\mathbb{F}(x, y) \).

Let \(T \) be the set of all monomials in \(B \). That is, for \(m \in T \) either \(m \prec \epsilon \) or \(i(m) > 0 \). Notice that for all monomials \(m \in T \setminus \{\epsilon\} \) its leftmost symbol \(m[1] \) is \(x \). We arrange the nontrivial monomials in \(T \) in increasing \(\prec \)-ordering. Let \(u_i \) denote the \(i \)-th monomial in this ordering. Let \(\overline{u_i} \) be the monomial obtained from \(u_i \) by replacing every occurrence of \(x \) by \(y \) and \(y \) by \(x \). Let \(\overline{T} = \{\overline{u_i} \mid i \geq 1\} \). It is easy to see that the monomials in \(T \cup \overline{T} \) generate the algebra \(B \).

In fact, every monomial \(m \in B \) is uniquely expressible as a product \(g_1 g_2 \cdots g_r \), where each \(g_j \in T \cup \overline{T} \). If \(g_j \in T \) it is a \(T \)-factor of \(m \) and if \(g_j \in \overline{T} \) it is a \(\overline{T} \)-factor of \(m \). Let \(C \) be the subalgebra of \(B \) generated by \(\{u_i + \overline{u_i} \mid i \geq 1\} \).

Lemma 5. Let \(B \) and \(C \) be the subalgebras of \(\mathbb{F}(x, y) \) as defined above.

- The leading monomial \(m \) of any polynomial \(m \in B \cup C \) can be written as \(m = u_j u_{j_1} \cdots u_{j_l} \), where each \(u_{j_i} \) is a \(T \)-factor. That is, \(m \) does not have any \(\overline{T} \)-factor.

- Every polynomial \(f \in B \setminus C \) can be written as \(f = g + h \) for some \(g \in C \) and \(h \in B \setminus C \), such that the leading monomial of \(h \) has a \(T \)-factor.

Proof. By definition, each \(g \in C \) is an linear combination of products of the form \(\prod_{k=1}^l (u_{i_k} + \overline{u_{i_k}}) \). Hence, if \(\text{supp}(g) \) contains the monomial \(v_1 v_2 \cdots v_l \), where \(v_k \in \{u_{i_k}, \overline{u_{i_k}}\} \) for \(k \in [l] \), then \(\text{supp}(g) \) also contains the degree-\(d \) monomial \(u_{j_1} u_{j_2} \cdots u_{j_l} \) (in fact, with the same coefficient as \(v_1 v_2 \cdots v_l \)). If \(u_{j_1} u_{j_2} \cdots u_{j_l} \neq v_1 v_2 \cdots v_l \) then, by definition of \(\prec \), the monomial \(u_{j_1} u_{j_2} \cdots u_{j_l} \) is larger than \(v_1 v_2 \cdots v_l \). Therefore, the leading monomial of any polynomial \(g \in C \) has the form claimed.

Next, let \(f \in B \setminus C \). We will show the second part of the lemma by induction on the leading monomial of \(f \) w.r.t. the \(\prec \)-ordering (which is a well ordering on monomials).

The base case of the induction is when the leading monomial of \(f \) has a \(T \)-factor then the claim follows as \(f = 0 \) and \(0 \in C \). Suppose the leading monomial of \(f \) is \(m = u_{j_1} u_{j_2} \cdots u_{j_l} \).

If the coefficient of \(m \) in \(f \) is \(c \neq 0 \), let
\[
f_1 = f - c (u_{j_1} + \overline{u_{j_1}})(u_{j_2} + \overline{u_{j_2}}) \cdots (u_{j_l} + \overline{u_{j_l}}).
\]
If \(m_1 \) is the leading monomial of \(f_1 \) then clearly \(m_1 \prec m \). Furthermore, \(f_1 \in B \setminus C \) as \(f = f_1 + C \). By induction hypothesis, we have \(f_1 = g' + h \) such that \(g' \in C \) and the leading monomial of \(h \) has a \(T \)-factor. Since \(f = (f - f_1) + g' + h \) and \(g = (f - f_1) + g' \in C \), this completes the induction and the proof.
Let \(X_\infty = \{x_1, x_2, \ldots \} \) be a countably infinite set of free noncommuting indeterminates. Consider the mapping \(\varphi : F(X_\infty) \to F(x, y) \) defined as follows:

- Let \(\varphi(x_i) = u_i + \pi_i \) for all \(x_i \in X_\infty \).
- Extend \(\varphi \) to all monomials by multiplication. That is, \(\varphi(x_i, x_i, \ldots, x_i) = \prod_{j=1}^k \varphi(x_i) \).
- Further, extend \(\varphi \) to the ring \(F(X_\infty) \) by linearity: \(\varphi(\sum_{i=1}^t \alpha_i m_i) = \sum_{i=1}^t \alpha_i \varphi(m_i) \), for monomials \(m_i \in X_\infty \) and scalars \(\alpha_i \in F \) for \(i = 1 \) to \(t \).

Lemma 6. The map \(\varphi \) defined above is an injective homomorphism (i.e., a homomorphic embedding) from the ring \(F(X_\infty) \) to \(F(x, y) \).

Proof. To see that \(\varphi \) is a homomorphism, we first note that, by linearity, we have \(\varphi(f + g) = \varphi(f) + \varphi(g) \) for \(f, g \in F(X_\infty) \). To verify that \(\varphi(fg) = \varphi(f)\varphi(g) \), let \(f = \sum_{m} f_m m \) and \(g = \sum_{w} g_w w \) where \(f_m, g_w \in F \) are the coefficients of monomial \(m \) in \(f \) and \(g \), respectively. Then \(\varphi(fg) = \varphi(\sum_{m, w} f_m g_w mw) = \varphi(\sum_{m, w} f_m g_w mw) \). Which, by linearity of \(\varphi \), equals \(\sum_{m, w} f_m g_w \varphi(m)\varphi(w) = \varphi(f)\varphi(g) \).

In order to show \(\varphi \) is injective, it suffices to show \(\varphi(f) \neq 0 \) for \(f \neq 0 \). Suppose \(m \in \text{supp}(f) \). Then \(\varphi(m) \neq 0 \), by the definition of \(\varphi \). Hence, if \(m \) is the only monomial in \(\text{supp}(f) \) it follows that \(\varphi(f) \neq 0 \).

Otherwise, suppose \(m' \in \text{supp}(f) \) and \(m' \neq m \). Let \(u \) be largest common prefix of \(m \) and \(m' \). Then \(m = uxv \) and \(m' = ux'v \), for monomials \(u, v, w \in X_\infty \) and \(x, x' \notin x \). Noting that \(\varphi(x_i) = u_i + \pi_i \) and \(\varphi(x_j) = u_j + \pi_j \) we have \(\varphi(m) = \varphi(u)(u_i + \pi_i)\varphi(v) \) and \(\varphi(m') = \varphi(u)(u_j + \pi_j)\varphi(w) \). From the definition of \(\varphi \), clearly \(\varphi(u) \) is a homogeneous polynomial in \(F(x, y) \). Let deg(\(\varphi(u) \)) = \(D \). Suppose \(\ell = |u_i| = |\pi_i| \) and \(\ell' = |u_j| = |\pi_j| \). Without loss of generality suppose that \(u_i \prec u_j \). Hence \(\ell \leq \ell' \). As \(u_i \) and \(u_j \) are minimally balanced, \(u_i \) cannot be a prefix of \(u_j \). Also, as \(u_i[1] = x \) and \(\pi_j[1] = y \), \(u_i \) cannot be a prefix of \(\pi_j \). Therefore, for any monomials \(w_1 \in \text{supp}(\varphi(m)) \) and \(w_2 \in \text{supp}(\varphi(m')) \), \(w_1 \) and \(w_2 \) will differ in the length \(\ell \) subword starting at location \(D + 1 \). It follows that \(\text{supp}(\varphi(m)) \cap \text{supp}(\varphi(m')) = \emptyset \). Hence, \(\varphi(f) \neq 0 \) implying that \(\varphi \) is injective.

The subalgebra \(C \) has the important property that if \(f \in C \) then all factors of \(f \) are in \(C \) as well. In order to keep our presentation self-contained we include a complete proof with more details than are given in [5].

Theorem 7 (Bergman; [5, Chapter 4, Theorem 5.2]). Let \(f \in C \). For any factorization \(f = g \cdot h \) the polynomials \(g \) and \(h \) are in \(C \).

Proof. First we show that all monomials of \(g \) have the same imbalance. Likewise, all monomials of \(h \) have the same imbalance. Suppose \(a_{\text{min}} \) and \(a_{\text{max}} \) are the minimum and the maximum imbalances of monomials of \(g \). Let \(b_{\text{min}} \) and \(b_{\text{max}} \) be the minimum and the maximum imbalance of monomials of \(h \). Let \(m_{\text{min}} \) be a smallest monomial (with respect to \(\prec \)) in \(\text{supp}(g) \) with imbalance \(a_{\text{min}} \), and \(m_{\text{max}} \) be a largest monomial (with respect to \(\prec \)) in \(\text{supp}(g) \) with imbalance \(a_{\text{max}} \). Let \(w_{\text{min}}, w_{\text{max}} \) be monomials similarly defined for polynomial \(h \) corresponding to \(b_{\text{min}} \) and \(b_{\text{max}} \). Now consider the product monomial \(u = m_{\text{max}}w_{\text{max}} \). We claim that \(u \) is uniquely expressible as a product of a monomial of \(g \) and a monomial of \(h \). To see this, suppose \(u = m'w' \) where \(m' \in \text{supp}(g) \), \(w' \in \text{supp}(h) \) and \(m_{\text{max}} \neq m' \) or \(w_{\text{max}} \neq w' \). Now, as \(i(u) = i(m'_{\text{max}}) + i(w'_{\text{max}}) = i(m') + i(w') \) and \(m_{\text{max}}, w_{\text{max}} \) are the monomials with highest imbalance of \(g \) and \(h \) respectively, we must have \(i(m') = i(m_{\text{max}}) \) and \(i(w') = i(w_{\text{max}}) \). So we get, \(m' \prec m_{\text{max}} \) and \(w' \prec w_{\text{max}} \) by the choice of \(m_{\text{max}} \) and \(w_{\text{max}} \). But as \(u = m_{\text{max}}w_{\text{max}} = m'w' \), clearly either \(m_{\text{max}} \) is a strict prefix of \(m' \) or \(w_{\text{max}} \) is a strict prefix of \(w' \). In the former case we have \(m_{\text{max}} \prec m' \), and in the later case \(w_{\text{max}} \prec w' \).
These contradict the fact that $m' \prec m_{\text{max}}$ and $w' \prec w_{\text{max}}$. Hence, $u = m_{\text{max}}w_{\text{max}}$ is the unique expression of u as a product of a monomial of g and a monomial of h. Consequently, u has non-zero coefficient in $f = gh$. Clearly, u has imbalance $a_{\text{max}} + b_{\text{max}}$. Similarly, monomial $v = m_{\text{min}}w_{\text{min}}$ is non-zero in f and has imbalance $a_{\text{min}} + b_{\text{min}}$. As $f \in C$, each monomial of f has imbalance 0. Hence, $a_{\text{max}} + b_{\text{max}} = 0$ and $a_{\text{min}} + b_{\text{min}} = 0$. It follows that $a_{\text{max}} = -b_{\text{max}} \leq -b_{\text{min}} = a_{\text{min}}$, implying $a_{\text{min}} = a_{\text{max}} = a$ and $b_{\text{min}} = b_{\text{max}} = -a$.

Thus, all monomials of g have imbalance a and all monomials of h have imbalance $-a$.

Let m be the leading monomial of f. Clearly, m is a maximum degree monomial of f. Moreover, m is largest among the max-degree monomials of f. Let $m = m_1m_2$ with $m_1 \in \text{supp}(g)$ and $m_2 \in \text{supp}(h)$. We have $i(m_1) = a$, $i(m_2) = -a$. As $f \in C$, the monomial \bar{m} obtained by replacing every occurrence of x by y, and y by x in m is also in $\text{supp}(f)$. Moreover, \bar{m} is the smallest monomial among the max-degree monomials of f. This forces that the monomial \bar{m}_1 (obtained by interchanging x, y in m_1) is in $\text{supp}(g)$. Similarly, monomial \bar{m}_2 (obtained by swapping x, y in m_2) is in $\text{supp}(h)$. We have $i(\bar{m}_1) = -a$ and $i(\bar{m}_2) = a$. Now, all monomials of g have the same imbalance, and $m_1, \bar{m}_1 \in \text{supp}(g)$. This forces $a = -a = 0$. Consequently, all monomials in $\text{supp}(g) \cup \text{supp}(h)$ have imbalance zero which implies $g, h \in B$. Now, applying Lemma 5 to g and h we have:

1. $g = g_1 + g_2$, $h = h_1 + h_2$, $g_1, h_1 \in C$, such that $\text{lm}(g_2)$ has a T-factor \bar{v}, and $\text{lm}(h_2)$ has a \bar{T}-factor \bar{v}.

2. Consequently, the deg(g_2) prefix of $\text{lm}(g_2h_1)$ contains the T-factor \bar{v} and the deg(h_2) suffix of $\text{lm}(g_1h_2)$ contains the \bar{T}-factor \bar{v}.

3. Finally, the deg(g_2) prefix and the deg(h_2) suffix of $\text{lm}(g_2 \cdot h_2)$ contain, respectively, the T-factors \bar{v} and \bar{v}.

Hence the leading monomials $\text{lm}(g_2 \cdot h_1), \text{lm}(g_1 \cdot h_2)$, and $\text{lm}(g_2 \cdot h_2)$ are all distinct and cannot mutually cancel. Therefore, the leading monomial of $\hat{f} = g_2 \cdot h_1 + g_1 \cdot h_2 + g_2 \cdot h_2$ contains a \bar{T}-factor unless both $g_2 = 0$ and $h_2 = 0$. Now, $\hat{f} = g_2h_1 + g_1h_2 + g_2h_2 = f - g_1h_1$. As $f \in C$ and $g_1, h_1 \in C$ it implies $\hat{f} \in C$. However, by Lemma 5, the leading monomial of \hat{f} cannot have a \bar{T}-factor. It forces $g_2 = 0$ and $h_2 = 0$ which implies $g, h \in C$.

Theorem 7 implies that φ is a 1-inert embedding (Definition 2).

Theorem 8. Let $f \in \mathbb{F}(X)$, where $X = \{x_1, \ldots, x_n\}$. Suppose $f' = \varphi(f) = g' \cdot h'$ is a non-trivial factorization of $\varphi(f)$ in $\mathbb{F}(x, y)$. Then there is a non-trivial factorization $f = g \cdot h$ for $g, h \in \mathbb{F}(X)$, such that $\varphi(g) = g'$ and $\varphi(h) = h'$.

Proof. As $\mathbb{F}(X) \subset \mathbb{F}(X_{\infty})$, the embedding φ maps $f \in \mathbb{F}(X)$ to some $f' = \varphi(f) \in C$. Suppose $f' = g' \cdot h'$ is a nontrivial factorization of f' in $\mathbb{F}(x, y)$. By Theorem 7, as $f' \in C$, its factors $g', h' \notin C$. Since $g' \in C$, it is an \mathbb{F}-linear combination of products of the form $(u_{t_1} + \overline{u_{t_1}})(u_{t_2} + \overline{u_{t_2}})\ldots(u_{t_\ell} + \overline{u_{t_\ell}})$. By definition of φ,

$$(u_{t_1} + \overline{u_{t_1}})(u_{t_2} + \overline{u_{t_2}})\ldots(u_{t_\ell} + \overline{u_{t_\ell}}) = \varphi(x_{t_1}x_{t_2} \ldots x_{t_\ell}).$$

Hence, by linearity, it follows that $g' = \varphi(g)$ for some nontrivial polynomial $g \in \mathbb{F}(X_{\infty})$, similarly there is a nontrivial polynomial $h \in \mathbb{F}(X_{\infty})$ such that $h' = \varphi(h)$. Since φ is a homomorphism, we have

$$\varphi(f) = f' = g' \cdot h' = \varphi(g) \cdot \varphi(h) = \varphi(g \cdot h).$$

As φ is injective, we have $f = g \cdot h$. To complete the proof we need to argue that $g, h \in \mathbb{F}(X)$. Let $\text{Var}(g)$ be the subset of variables that occur in some non-zero monomial of g. We claim that $\text{Var}(g) \subseteq X$. Suppose $\text{Var}(g)$ contains some $x_i \notin X$. Let $m \in \text{supp}(g)$ be the largest
monomial (in \texttt{-ordering}) in which \(x_i\) occurs. Then the monomial \(m \cdot \ln(h)\) contains the variable \(x_i\) and has a non-zero coefficient in \(f = gh\). This is a contradiction as \(f \in \mathbb{F}(X)\) and \(X\) does not contain \(x_i\). Hence \(\text{Var}(g) \subseteq X\). Similarly, \(\text{Var}(h) \subseteq X\).

\section{Multivariate to Bivariate reduction}

We now apply Bergman’s theorem (Theorem 7) to show that multivariate noncommutative polynomial factorization is reducible to bivariate noncommutative polynomial factorization. We require some preparatory observations.

Let \(X = \{x_1, x_2, \ldots, x_n\}\), and \(v_1, v_2, \ldots, v_n\) be any \(n\) distinct and minimally balanced monomials in \(\{x, y\}^*\). We define \(\varphi : \mathbb{F}(X) \rightarrow \mathbb{F}(x, y)\): \(\varphi(x_i) = v_i + \pi_i\) for all \(i\), which extends by multiplication, i.e. \(\varphi(x_{i_1} x_{i_2} \ldots x_{i_k}) = \prod_{i=1}^k \varphi(x_{i_i})\), to monomials, and by linearity to \(\mathbb{F}(X)\). The definition of \(\varphi\) is essentially like in the proof of Bergman’s theorem, except that \(X\) is finite and the \(v_i, 1 \leq i \leq n\) are any \(n\) distinct minimally balanced monomials. The following lemma is on the same lines as Theorem 7 and Theorem 8. The straightforward proof is by a suitable renaming of the variables \(x_1, \ldots, x_n\) before and after application of Theorem 7 in the proof of Theorem 8.

\textbf{Lemma 9.} Let \(X = \{x_1, \ldots, x_n\}\) and \(f \in \mathbb{F}(X)\). Suppose \(v_1, v_2, \ldots, v_n \in \{x, y\}^*\) are distinct minimally balanced monomials. If \(f' = \varphi(f) = g' \cdot h'\) is a non-trivial factorization of \(f'\) in \(\mathbb{F}(x, y)\) then there are polynomials \(g, h \in \mathbb{F}(X)\) such that \(g' = \varphi(g), h' = \varphi(h)\) and \(f = g \cdot h\).

In order to obtain a polynomial-time computable reduction it is convenient to choose \(v_1, v_2, \ldots, v_n\) such that each \(v_i\) has the same length. The next lemma ensures that \(\ell = O(\log n)\) suffices. This follows from the fact that the number of minimally balanced monomials of length \(2\ell\) is at least as large as the \((\ell - 2)^{th}\) Catalan number, and well-known asymptotic lower bounds on Catalan numbers.

\textbf{Lemma 10.} There are at least \(n\) minimally balanced monomials of length \(2\ell\) in \(\{x, y\}^*\) for \(\ell \geq \max[\log 2n, 6]\). Furthermore, the lexicographically first \(n\) minimally balanced monomials of length \(2\ell\) can be computed in time polynomial in \(n\).

\textbf{Proof.} Consider monomials \(v\) of the form \(v = x \cdot w \cdot y\), where \(w\) is a Dyck monomial. That is, \(w\) is a balanced monomial such that every prefix of \(w\) has at most as many \(y\)’s as \(x\)’s. Notice that \(w \in \{x, y\}^{2\ell - 2}\). It follows that any nontrivial prefix of \(v\) has strictly more \(x\) than \(y\). So any such monomial is minimally balanced of length \(2\ell\). The number of Dyck monomials of length \(2\ell - 2\) is \(C_{\ell-1}\) (the \((\ell - 1)^{th}\) Catalan number). A standard estimate yields \(C_k \sim \frac{2^{\frac{k^2}{2}}}{k^{\frac{k+1}{2}}}\), which implies that \(C_k > 2^{\frac{k}{8}}\) for \(k \geq 5\). If \(n < 2^{\ell - 1}\) and \(\ell \geq 6\) then there are at least \(n\) minimally balanced monomials of length \(2\ell\), for \(\ell = \max[\log 2n, 6]\). Clearly, we can compute the \(v_i, 1 \leq i \leq n\) by enumeration in \(\text{poly}(n)\) time. \hfill\(\blacksquare\)

\subsection{White-box reduction}

We first describe the reduction in the white-box case for input polynomial \(f \in \mathbb{F}(X)\) given by a noncommutative arithmetic circuit.

3 Essentially a balanced parenthesis string with \(x\) as left and \(y\) as right parenthesis, respectively.
Lemma 11. Let $X = \{x_1, \ldots, x_n\}$ and $f \in \mathbb{F}(X)$ be a noncommutative polynomial given by arithmetic circuit C of size s. Then there is a deterministic polynomial time algorithm that outputs an arithmetic circuit computing the polynomial $\varphi(f) \in \mathbb{F}(x, y)$, where the minimally balanced monomials $v_i, 1 \leq i \leq n$ defining the map φ are as described by Lemma 10.

Proof. For $1 \leq i \leq n$, we note that the sum of two monomials $v_i + \overline{v_i}$ can be computed by a noncommutative arithmetic formula F_i of size $O(\log n)$. Let C' be the arithmetic circuit obtained from circuit C by replacing input variable x_i with the formula F_i. Clearly, C' computes $\varphi(f)$ and its size is polynomially bounded.

Lemma 12. For $f \in \mathbb{F}(X)$ suppose $\varphi(f) = f'_1 \cdot f'_2 \cdots f'_r$ is a complete factorization of $\varphi(f)$ in $\mathbb{F}(x, y)$ into irreducible factors $f'_i \in \mathbb{F}(x, y)$. Then there are irreducible polynomials $f_1, f_2, \ldots, f_r \in \mathbb{F}(X)$ such that $f = f_1 f_2 \cdots f_r$ and $\varphi(f_i) = f'_i$ for each i.

Proof. It follows by repeated application of Lemma 9 that if $\varphi(f) = f'_1 \cdot f'_2 \cdots f'_r$, is a factorization into irreducible factors $f'_i \in \mathbb{F}(x, y)$, then there are polynomials $f_1, f_2, \ldots, f_r \in \mathbb{F}(X)$ such that $f = f_1 f_2 \cdots f_r$ and $\varphi(f_i) = f'_i$ for each i. We claim each f_i is irreducible. For, if $f_i = g \cdot h$ is a nontrivial factorization of f_i in $\mathbb{F}(X)$ then clearly $f'_i = \varphi(f_i) = \varphi(g)\varphi(h)$ is a nontrivial factorization of f'_i, which contradicts its irreducibility.

Suppose C'_i is an arithmetic circuit of size s'_i for f'_i for $i \in [r]$. We will construct a circuit of size $\text{poly}(s'_i, n)$ for f_i efficiently for each $i \in [r]$, which is the crucial part of our multivariate to bivariate reduction. The next lemma describes the algorithm crucial to the white-box reduction.

Lemma 13. Given as input a noncommutative arithmetic circuit C for the polynomial $\varphi(g) \in \mathbb{F}(x, y)$, where $g \in \mathbb{F}(X)$ is a degree d polynomial, $X = \{x_1, x_2, \ldots, x_n\}$, there is a deterministic polynomial-time algorithm, running in time $\text{poly}(d, \text{size}(C), n)$ that computes a noncommutative arithmetic circuit C'' for the polynomial g. Furthermore, if $\varphi(g)$ is given by an algebraic branching program then the algorithm computes an algebraic branching program for g.

Proof. The proof is based on the idea of evaluating a noncommutative arithmetic circuit on an automaton (specifically, a substitution automaton) described in [4] (see e.g., for related applications [2],[3]).

Let $g' = \varphi(g)$. Let $g = \sum m = \alpha_m m$ where $m \in X^*$ and α_m is the coefficient of m in g. As noted before, the map φ has the property that $\text{supp}(\varphi(m)) \cap \text{supp}(\varphi(m')) = \emptyset$ for monomials $m \neq m'$ in X^*. Moreover if $m = x_{i_1} x_{i_2} \cdots x_{i_k}$ has nonzero coefficient α_m in g then g' has a monomial $m'' = v_{i_1} v_{i_2} \cdots v_{i_k}$ with coefficient α_m. Hence, to retrieve an arithmetic circuit for g from the given circuit C'' for g' our aim is to carry out the following transformation of the polynomial g' given by the circuit C'':

1. Get rid of the monomials of g' containing of all $\overline{v_j} \in T$ for $j \in [n]$.
2. For each remaining monomial m' of g' substitute x_i wherever the monomial v_i occurs as substring in m' for $i \in [n]$.

We will accomplish this transformation by evaluating the circuit C'' at suitably chosen matrix substitutions $x \leftarrow M_x$ and $y \leftarrow M_y$, where M_x and M_y will be $N \times N$ matrices for polynomially bounded N. The resulting evaluation $C''(M_x, M_y)$ will be an $N \times N$ matrix. A designated entry of this matrix will contain the polynomial g. Clearly, if we can efficiently compute the claimed matrices M_x and M_y it will yield an arithmetic circuit C for the polynomial g. These matrices M_x and M_y will be obtained as transition matrices of a substitution automaton that will carry out the above transformation steps on the polynomial g'.
A finite substitution automaton A is a deterministic finite automata A along with a substitution map $\delta : Q \times \{x, y\} \rightarrow Q \times (X \cup \mathbb{F})$ where Q is a set of states and $X = \{x_1, x_2, \ldots, x_n\}$ are noncommuting variables. For $i, j \in Q$, $a \in \{x, y\}$, $u \in X \cup \mathbb{F}$, if $\delta(i, a) = (j, u)$, it means that when automata A in state i reads a, it replaces a by u and transitions to state j. For each $a \in \{x, y\}$ we can define a $|Q| \times |Q|$ transition matrix M_a such that $M_a(i, j) = u$ if $\delta(i, a) = (j, u)$ and 0 otherwise.

With δ we associate projections $\delta_1 : Q \times \{x, y\} \rightarrow Q$ and $\delta_2 : Q \times \{x, y\} \rightarrow X \cup \mathbb{F}$ defined as $\delta_1(i, a) = j$ and $\delta_2(i, a) = u$ if $\delta(i, a) = (j, u)$. The functions δ_1 and δ_2 extend naturally to monomials: For $w \in \{x, y\}^*$, $\delta_1(i, w) = j$ means the automaton A goes from state i to j on reading w. Let \tilde{w}_t denotes length ℓ prefix of w and w_t denotes ℓth symbol of w from left. $\delta_2(i, w) = p$ means $p = \prod_{k=0}^{\lfloor \log p \rfloor + 1} \delta_2(i, \tilde{w}_k), w_{t+1}$). Note that $\delta_2(i, w)$ has the form $\beta \cdot w'$ where $\beta \in \mathbb{F}, w' \in X^*$. For $\alpha \in \mathbb{F}$ define $\delta_2(i, \alpha \cdot w)$ as $\alpha \cdot \delta_2(i, w)$.

Let $g'(x, y) = \sum_m \alpha_m m \in \mathbb{F}(x, y)$. Then, the $(s, t)^{th}$ entry of the $|Q| \times |Q|$ matrix $g'(M_x, M_y)$ is a polynomial $g \in \mathbb{F}(X)$ such that $g = \sum_{m \in W_t} \alpha_m \delta_2(s, m)$, where W_t is the set of all monomials that take the automaton A from state s to state t.

Clearly, if g' has an arithmetic circuit of size s then we can construct an arithmetic circuit of size $\text{poly}(s, n, |Q|)$ for g in deterministic time $\text{poly}(s, n, |Q|)$.

Turning back to the reduction, consider the input circuit C for $g' = \varphi(g) \in \mathbb{F}(x, y)$. We will construct a substitution automaton A such that the polynomial g is the $(s, t)^{th}$ entry of the matrix $g'(M_x, M_y)$.

Description of the Substitution Automata

As each v_i is minimally balanced it must begin with symbol x and end with symbol y. As $|v_i| > 2$, the second symbol of v_i is also x (if it was y, then the balanced monomial xy would be a strict prefix of a minimally balanced monomial v_i, which is a contradiction). So clearly each v_i is of the form xw_iy, where w_i is a Dyck monomial. Let $v'_i = xw_iy$ for $i \in [n]$. We can easily design a deterministic finite automaton A' with $O(mn)$ states such that the language accepted by A' is precisely the finite set $\{v'_1, v'_2, \ldots, v'_n\}$, where m is the length of v_i for $i \in [n]$. Let δ' denote the transition function and Q' be the set of states of A', where q_1 is the initial state and q_f is the final state associated with acceptance of string v'_i for $i \in [n]$. A' has a tree structure with root q_1 and leaves q_f, for $i \in [n]$, and any root to leaf path has length exactly $2\ell - 2$. We now define the substitution automaton A. Its state set is $Q = Q' \cup \{q_0, q_f, q_r\}$. The transition function $\delta : Q \times \{x, y\} \rightarrow Q \times (X \cup \mathbb{F})$ is defined as follows:

1. $\delta(q_0, x) = (q_1, 1); \delta(q_0, y) = (q_r, 0)$.
2. For $q \in Q' \setminus \{q_f, 1 \leq i \leq n\}$ and $a \in \{x, y\}$, let $\delta(q, a) = (\delta'(q, a), 1)$.
3. $\delta(q_f, x) = (q_r, 0); \delta(q_f, y) = (q_f, x_i)$ for each $i \in [n]$.
4. $\delta(q, y) = (q_1, 1)$ and $\delta(q, y) = (q_r, 0)$.
5. $\delta(q_r, a) = (q_r, 0)$ for $a \in \{x, y\}$.

The final state of A is q_f. For a monomial $w \in \{x, y\}^*$, starting at state q_0 the automaton A substitutes all the variables with 1 as long as it matches with a prefix of v_i for $i \in [n]$ (given by transitions in 1,2 above). When the monomial matches with v_i for some i (which will happen while reading symbol y as each string v_i ends with y), A substitutes y by x_i and moves to state q_f. If it reads x instead of y then A enters a rejecting state q_r (given by transition in 3 above). Hence, if A finds substring v_i in w it replaces it with x_i. Whenever A is in state q_f, it means the monomial read so far is of the form $v_1 v_2 \ldots v_n$, and it has replaced it with $x_1 x_2 \ldots x_n$. If in the state q_f symbol y is encountered, it means the next
substring cannot match with a minimally balanced monomial (as these start with \(x\)) and the automaton goes to the rejecting state \(q_r\). If in state \(q_f\) variable \(x\) is read the automaton goes to state \(q_1\) and restarts the search for a new substring that matches with some \(v_i\) (transition in 4 above).

In conclusion \(A\) replaces all the monomials of the form \(v_1 v_2 \ldots v_i\) by \(x_1 x_2 \ldots x_i\). If the monomial contains an occurrence of \(\pi_i\), or it is not of the form \(v_1 v_2 \ldots v_i\), then \(A\) zeros out that monomial by suitably setting an occurrence of \(y\) to zero or enters the reject state \(q_r\).

It follows that the \((q_0, q_f)\)'th entry of the \(|Q| \times |Q|\) matrix \(g' (M_x, M_y)\) is the polynomial \(g\), where \(g' = \varphi(g)\), and \(M_x, M_y\) are the transition matrices for the substitution automaton \(A\). This completes the proof.

Finally, if \(\varphi(g)\) is given by an algebraic branching program \(P\) then it is easy to see that the above construction with the substitution automaton \(A\) yields \(P(M_x, M_y)\) which is an algebraic branching program.

The main theorem of this section, stated below, summarizes the discussion in this section.

\[\textbf{Theorem 14.}\] In the white-box setting, factorization of multivariate noncommutative polynomials into irreducible factors is deterministic polynomial-time reducible to factorization of bivariate noncommutative polynomials into irreducible factors. More precisely, given as input \(f \in \mathbb{F}(X)\) by an arithmetic circuit (resp. algebraic branching program), the problem of computing a complete factorization \(f = f_1 \cdot f_2 \ldots f_r\), where each \(f_i\) is output as an arithmetic circuit (resp. algebraic branching program) is deterministic polynomial-time reducible to the same problem for bivariate polynomials in \(\mathbb{F}(x, y)\).

\[\textbf{Proof.}\] We describe the reduction:

1. Input \(f \in \mathbb{F}(X)\) (as a circuit or ABP).
2. Transform \(f\) to \(f' = \varphi(f) \in \mathbb{F}(x, y)\) as a circuit (resp. ABP) by the algorithm of Lemma 10.
3. Compute a complete factorization of \(f' = f'_1 \cdot f'_2 \ldots f'_r\), where each \(f'_i \in \mathbb{F}(x, y)\) is irreducible and is computed as a circuit (resp. ABP).
4. Apply the algorithm of Lemma 13 to obtain a complete factorization of \(f = f_1 \cdot f_2 \ldots f_r\), where each \(f_i\) is irreducible and is output as a circuit (resp. ABP).

The correctness of the reduction and its polynomial time bound follow from Lemmas 9, 10 and 13.

\[\textbf{Remark 15.}\] We note that in the case \(\mathbb{F}\) is the field \(\mathbb{Q}\) (of rationals), we need to take into account the bit complexity of the rational numbers involved and argue that the reduction is still polynomial time computable. The main point to note here is that the reduction guarantees the size of the factor \(f_i\) is polynomially bounded in the size of \(g_i, 1 \leq i \leq r\), where the size of \(g_i\) includes the sizes of any rational numbers that might be involved in the description of the arithmetic circuit (or ABP) for \(g_i\).

\[\textbf{Remark 16.}\] We note here that the ring \(\mathbb{F}(X)\) is not a unique factorization domain. That is, a polynomial \(f \in \mathbb{F}(X)\) may have, in general, multiple factorizations into irreducibles [6]. A standard example is the polynomial \(x + yxy\) which factorizes as \((x(1 + xy))\) as well as \((1 + xy)x\), where \(x, y, 1 + yx, 1 + xy\) are irreducible. As the map \(\varphi\) is an injective homomorphism, there is a 1-1 correspondence between factorizations of \(\varphi(f)\) and factorizations of \(f\). More specifically, our reduction takes as input any complete factorization \(\varphi(f) = f'_1 f'_2 \ldots f'_r\) and computes the corresponding complete factorization \(f = f_1 f_2 \ldots f_r\) of \(f\).

\[\footnote{We can dispense with the reject state \(q_r\), as suitably setting an occurrence of \(y\) to 0 would also suffice. We have transitions to the reject state \(q_r\) for exposition.}\]
Remark 17. We note that the embedding φ does not preserve sparsity of the polynomial f. More precisely, if the sparsity of the n-variate degree d polynomial f is s then the sparsity of the bivariate polynomial $\varphi(f)$ is $O(2^d s)$. Thus, using this embedding map we do not get a reduction from sparse n-variate degree d polynomial factorization to sparse bivariate polynomial factorization, where s, d are allowed to be part of the running time. This problem remains unanswered.

3.2 Black-box reduction

The reduction in the black-box case is essentially identical. The only point to note, which is easy to see, is that the analogue of Lemma 13 holds in the black-box setting. We state that below. We recall what a black-box means in the noncommutative setting.

Definition 18. A noncommutative polynomial $f \in \mathbb{F}(X)$ given by black-box essentially means we can evaluate f at any matrix substitution $x_i \leftarrow M_i, M_i \in \mathbb{F}^{N \times N}$, where the cost of each evaluation is the matrix dimension N.

In the black-box setting, suppose we have an efficient algorithm for bivariate noncommutative polynomial factorization of degree D polynomials $g \in \mathbb{F}(x, y)$, where the algorithm takes a black-box for g and outputs black-boxes for the irreducible factors of some factorization of g in time $\text{poly}(D)$. Then, given a black-box for a degree D n-variate polynomial $f \in \mathbb{F}(X)$ as input, we require that the reduction transforms it into a black-box of a bivariate polynomial $g \in \mathbb{F}(x, y)$, and from the output black-boxes of g’s irreducible factors, the reduction has to efficiently recover black-boxes for the corresponding irreducible factors of f.

Lemma 19. Given as input a black-box for the polynomial $\varphi(g) \in \mathbb{F}(x, y)$, where $g \in \mathbb{F}(X)$ is a degree d polynomial, $X = \{x_1, x_2, \ldots, x_n\}$, with matrix substitutions for x and y computed in deterministic polynomial-time we can obtain a black-box for the polynomial $g \in \mathbb{F}(X)$.

Proof. The proof of Lemma 13 already implies this because the matrices M_x and M_y described there do not require $\varphi(g)$ to be given in white-box as circuit or ABP. Thus, the black-box for $\varphi(g)$ yields a black-box for g by accessing the $(q_0, q_f)^{th}$ entry of the matrix output $\varphi(g)(M_x, M_y)$.

As a consequence we obtain the claimed reduction from multivariate factorization to bivariate factorization in the black-box setting as well.

Theorem 20. The problem of computing a complete factorization of $f \in \mathbb{F}(X)$ given by black-box is deterministic polynomial-time reducible to the problem of black-box computation of a complete factorization of polynomials in $\mathbb{F}(x, y)$.

Proof. Given a black-box for f we obtain a black-box for $\varphi(f)$ applying Lemma 10. Then, given a complete factorization $\varphi(f) = f'_1 \cdot f'_2 \cdots f'_r$ where each factor f'_i is output by a black-box for it, by Lemma 19 we can obtain black-boxes for each f'_i. This yields a complete factorization $f = f_1 \cdot f_2 \cdots f_r$ of f where the factors are given by black-box.

5 The sparsity of a polynomial f is the number of monomials in $\text{supp}(f)$.
We have shown in Section 3 that multivariate noncommutative polynomial factorization is efficiently reducible to the bivariate case. Suppose \(f \in \mathbb{F}(x, y) \) is a bivariate polynomial given by a formula of size \(s \). Applying Higman linearization [6], as done in [1], we can transform the problem to the factorization of bivariate linear matrices \(A_0 + A_1 x + A_2 y \), where the matrices have size bounded by \(2s \). In [1] the problem of factorizing an \(n \)-variate polynomial \(f \in \mathbb{F}(X) \) given by a formula was solved in two steps when \(\mathbb{F} \) is a finite field: (i) Transform \(f \) to a linear matrix \(L \) and factorize \(L \) into irreducible factors by reducing it to the common invariant subspace problem, and (ii) extract the factors of \(f \) from the factors of \(L \). This approach fails for \(\mathbb{F} = \mathbb{Q} \) because the common invariant subspace problem for matrices over \(\mathbb{Q} \) is at least as hard as factoring square-free integers [12]. In this section, we show that linear matrix factorization over \(\mathbb{Q} \), even for \(4 \times 4 \) bivariate linear matrices, remains at least as hard as factoring square-free integers. Thus, efficient polynomial factorization over \(\mathbb{Q} \) remains elusive even for bivariate polynomials. Our proof is based on ideas from Ronyai’s work [12].

Let \(\alpha, \beta \in \mathbb{Q} \) be nonzero rationals. The generalized quaternion algebra \(H(\alpha, \beta) \) is the 4-dimensional algebra over \(\mathbb{Q} \) generated by elements \(1, u, v, uv \) where the rules for multiplication in \(H(\alpha, \beta) \) are given by \(u^2 = \alpha, v^2 = \beta, \) and \(uv = -vu \). A simple algebra \(A \) over a field \(\mathbb{F} \) is an algebra that has no nontrivial two-sided ideal. The center \(C \) of algebra \(A \) is the subalgebra consisting of all elements of \(A \) that commute with every element of \(A \). Furthermore, it follows from some general theory [11, Chapter 1.6] that:

\[\textbf{Fact 21.} \text{ For any nonzero } \alpha, \beta \in \mathbb{Q}, \text{ the algebra } H(\alpha, \beta) \text{ is a simple algebra with center } \mathbb{Q}. \text{ The algebra } H(\alpha, \beta) \text{ is either a division algebra (which means no zero divisors in it) or is isomorphic to the algebra of } 2 \times 2 \text{ matrices over } \mathbb{Q} \text{ (which means it has zero divisors).} \]

The 4-dimensional algebra \(H(\alpha, \beta) \) can be represented as an algebra of \(4 \times 4 \) matrices over \(\mathbb{Q} \), which is the regular representation. The matrix corresponding to 1 is \(I_4 \), and the matrices corresponding to \(u \) and \(v \) are \(M_u = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \alpha & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \alpha & 0 \end{bmatrix} \) and \(M_v = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ \beta & 0 & 0 & 0 \\ 0 & -\beta & 0 & 0 \end{bmatrix} \).

We next show that factorizing \(4 \times 4 \) bivariate linear matrices is at least as hard as finding zero divisors in generalized quaternion algebras.

\[\textbf{Theorem 22.} \text{ Finding zero divisors in an input quaternion algebra } H(\alpha, \beta) \text{ is polynomial-time reducible to factorizing } 4 \times 4 \text{ bivariate linear matrices } A_0 + A_1 x + A_2 y, \text{ where each scalar matrix } A_i \text{ is in } M_4(\mathbb{Q}). \]

\[\textbf{Proof.} \text{ Let } H(\alpha, \beta) \text{ be the given generalized quaternion algebra. Then } H(\alpha, \beta) = \{a_0 + a_1 u + a_2 v + a_3 uv \mid a_i \in \mathbb{Q} \}, \text{ where } u^2 = \alpha, v^2 = \beta, \text{ and } uv = -vu \text{ defines the algebra multiplication.} \]

We now consider factorizations of the \(4 \times 4 \) linear matrix \(I_4 + M_u x + M_v y \).

\[\textbf{Claim 23.} \text{ The linear matrix } I_4 + M_u x + M_v y \text{ is irreducible if and only if the quaternion algebra } H(\alpha, \beta) \text{ is a division algebra.} \]

\[\textbf{Proof of Claim.} \text{ Suppose the linear matrix } L = I_4 + M_u x + M_v y \text{ has a nontrivial factorization } L = I_4 + M_u x + M_v y = FG. \text{ That means neither } F \text{ nor } G \text{ is a scalar matrix. By a theorem of Cohn [6, Theorem 5.8.8], there are invertible scalar matrices } P \text{ and } Q \text{ in } M_4(\mathbb{Q}) \text{ such that } \]

\[PLQ = \begin{bmatrix} A & 0 \\ D & B \end{bmatrix}. \]
As finding zero-divisors in the quaternion algebra we can efficiently compute a zero divisor.

To complete the reduction, notice that if \(I_4, M_u \text{ and } M_v \) are the matrix representations of the elements \(1, u, \text{ and } v \) in the basis \(\{1, u, v, uv\} \) of \(H(\alpha, \beta) \). Treating \(P \) as a basis change matrix, the above equation yields a new basis \(\{w_1, w_2, w_3, w_4\} \) of \(H(\alpha, \beta) \). Let \(\dim(A') = k \). Then \(1 \leq \dim(A') \leq 3 \) and the vectors \(w_1, \ldots, w_k \) spans a \(k \)-dimensional subspace \(W \subset H(\alpha, \beta) \) that is a common invariant subspace for the matrices \(I_4, M_u, M_v \) and \(M_{uv} \). In other words, the subspace \(W \) is preserved under left multiplication by \(u \) and \(v \). We can assume, without loss of generality, that \(w_1 \neq 1 \): if \(k > 1 \) then clearly we can assume this. If \(k = 1 \) notice that \(w_1 = 1 \) is impossible because the subspace \(W \) is not preserved under left multiplication by \(u \) or \(v \). Then the four elements \(w_1, uw_1, vw_1, wuv_1 \) are all in \(W \) and hence linearly dependent. Thus, some nontrivial linear combination \(\gamma_0 w_1 + \gamma_1 uw_1 + \gamma_3 vw_1 + \gamma_4 wuv_1 \) is 0. which means \((\gamma_0 + \gamma_1 u + \gamma_3 v + \gamma_4 uv)xw_1 = 0 \). Hence \(w_1 \) is a zero divisor in \(H(\alpha, \beta) \). Conversely, if \(z \in H(\alpha, \beta) \) is a zero divisor then the left ideal \(J = \{xz \mid x \in H(\alpha, \beta)\} \) is a proper subspace of \(H(\alpha, \beta) \) that is invariant under \(M_u \text{ and } M_v \). Applying Cohn’s theorem [6, Theorem 5.8.8], we obtain invertible scalar matrices \(P \) and \(Q \) such that \(PLQ = [A 0] = [A 0] [I 0] [I 0] = [D B] \). ▶

To complete the reduction, notice that if \(I_4 + M_u x + M_v y \) is irreducible then \(H(\alpha, \beta) \) is a division algebra. On the other hand, if we are given a nontrivial factorization \(I_4 + M_u x + M_v y = FG \) then, analyzing the proof of Cohn’s theorem [6, Theorem 5.8.8] (also see [1] for details), by suitable row and column operations we can compute in polynomial time the invertible scalar matrices \(P \) and \(Q \) from the factors \(F \) and \(G \). Hence, by the proof of the above claim, we can efficiently compute a zero divisor \(w_1 \) in \(H(\alpha, \beta) \). ▶

As finding zero-divisors in the quaternion algebra \(H(\alpha, \beta) \) is known to be at least as hard as square-free integer factorization [12] we have the following.

Corollary 25. Factorizing \(4 \times 4 \) bivariate linear matrices over \(\mathbb{Q} \) is at least as hard as factorizing square-free integers.

5 Factorizing \(3 \times 3 \) linear matrices over \(\mathbb{Q} \)

In this section we present a deterministic polynomial-time algorithm for factorization of \(3 \times 3 \) multivariate linear matrices over \(\mathbb{Q} \). We start with a simple observation about linear matrix factorization in general.

Lemma 26. Suppose \(L = I_d + \sum_{i=1}^{n} A_i x_i \) is a linear matrix where each \(A_i, 0 \leq i \leq d \) is a \(d \times d \) matrix over \(\mathbb{Q} \). Then \(L \) is irreducible if the characteristic polynomial of \(A_i \) is irreducible over \(\mathbb{Q} \) for any \(i \).

Proof. For if \(L \) is reducible then there is an invertible scalar matrix \(P \) such that \(PLP^{-1} = [A 0] \), which implies that \(PA_i P^{-1} = [A_i' 0] \) for scalar matrices \(A_i', B_i' \), and \(D_i' \). Thus, the characteristic polynomial of \(A_i \) is the product of the characteristic polynomials of \(A_i', B_i' \), which is a nontrivial factorization. ▶
The proof of the following theorem is based on linear algebra and Cohn’s theorem [6, Theorem 5.8.8].

Theorem 27. There is a deterministic polynomial-time algorithm for factorization of 3×3 multivariate linear matrices over \mathbb{Q}.

Proof. We will first consider linear matrices of the form $L = I_n + \sum_{i=1}^{n} A_i x_i$, where each $A_i \in M_3(\mathbb{Q})$ and the x_i are noncommuting variables. The algorithm computes a complete factorization of L into (at most three) irreducible linear matrix factors. By Cohn’s theorem [6, Theorem 5.8.8], either L is irreducible or there is an invertible scalar matrix P such that $PLP^{-1} = \begin{bmatrix} A & 0 \\ D & B \end{bmatrix}$. Either A or B is a 1×1 matrix. If A is a 1×1 matrix then corresponding to it there is a 1-dimensional common invariant subspace spanned by a vector, say v, for the matrices $A_i, 1 \leq i \leq n$. More precisely, the row vector v^T is an eigenvector for each matrix A_i, and $v^T A_i = \lambda_i v^T$ where $\lambda_i \in \mathbb{Q}$ is the corresponding eigenvalue of matrix A_i for each i. Likewise, if B is a 1×1 matrix then there is a corresponding 1-dimensional common invariant subspace spanned by a (column) vector u such that $A_i u = \mu_i u$ for eigenvalues μ_i of A_i. In either case, the common eigenspace is easy to compute from the characteristic polynomial of say A_1 and then verifying that it is an eigenspace for the remaining A_i as well. This will yield the factorization $PLP^{-1} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} I & 0 \\ D & I \end{bmatrix} \cdot \begin{bmatrix} I & 0 \\ 0 & B \end{bmatrix}$, where B is a 2×2 linear matrix. The problem now reduces to factorizing the linear matrix $B = I_2 + \sum_{i=1}^{n} B_i x_i$, where $B_i \in M_2(\mathbb{Q})$. A simple case analysis described below yields a polynomial-time algorithm for factorization of B.

1. If the characteristic polynomial of any B_i is irreducible over \mathbb{Q} then the linear matrix B is clearly irreducible.
2. If some B_i has two distinct eigenvalues $\lambda \neq \lambda' \in \mathbb{Q}$ then the corresponding eigenspaces are 1-dimensional, spanned by their eigenvectors $u \neq u'$. Then either u or u' has to be an eigenvector for every B_j (otherwise B is irreducible), in which case we have a factorization of B.
3. Suppose each B_i has only one eigenvalue λ_i. Then, by linear algebra, after a basis change B_i is either of the form $\begin{bmatrix} \lambda_i & 1 \\ 0 & \lambda_i \end{bmatrix}$ in which case the eigenspace is 1-dimensional with eigenvector $(10)^T$. We can check if this eigenspace is invariant for each B_j or not as before. Otherwise, after basis change each $B_i = \begin{bmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{bmatrix} = \lambda_i I_2$ and the factorization is $B = \begin{bmatrix} 1 + \sum_{i=1}^{n} \lambda_i x_i & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 + \sum_{i=1}^{n} \lambda_i x_i \end{bmatrix}$. ☐

References

