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Abstract
Based on a theorem of Bergman [6, Theorem 4.5.3] we show that multivariate noncommutative
polynomial factorization is deterministic polynomial-time reducible to the factorization of bivariate
noncommutative polynomials. More precisely, we show the following:
1. In the white-box setting, given an n-variate noncommutative polynomial f ∈ F⟨X⟩ over a field F

(either a finite field or the rationals) as an arithmetic circuit (or algebraic branching program),
computing a complete factorization of f into irreducible factors is deterministic polynomial-time
reducible to white-box factorization of a noncommutative bivariate polynomial g ∈ F⟨x, y⟩; the
reduction transforms f into a circuit for g (resp. ABP for g), and given a complete factorization
of g (namely, arithmetic circuits (resp. ABPs) for irreducible factors of g) the reduction recovers
a complete factorization of f in polynomial time.
We also obtain a similar deterministic polynomial-time reduction in the black-box setting.

2. Additionally, we show over the field of rationals that bivariate linear matrix factorization of
4 × 4 matrices is at least as hard as factoring square-free integers. This indicates that reducing
noncommutative polynomial factorization to linear matrix factorization (as done in [1]) is unlikely
to succeed over the field of rationals even in the bivariate case. In contrast, multivariate linear
matrix factorization for 3 × 3 matrices over rationals is in polynomial time.
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1 Introduction

The main aim of this paper is to show that multivariate polynomial factorization in the free
noncommutative ring F⟨x1, x2, . . . , xn⟩ is polynomial-time reducible to bivariate noncommut-
ative polynomial factorization in the bivariate ring F⟨x, y⟩. Such a result for commutative
polynomial factorization is well-known due to Kaltofen’s seminal work [9, 10] on multivariate
polynomial factorization in the commutative polynomial ring F[y1, y2, . . . , yn]. However, this
problem was open for noncommutative polynomials. Recently, a randomized polynomial-time
algorithm was obtained for the factorization of noncommutative polynomials over finite fields,
where the input polynomial is given by a noncommutative formula [1].1 Broadly speaking,
the algorithm of [1] works via Higman linearization ([8] [6] [7]) and reduces the problem to
linear matrix factorization which turns out to have a randomized polynomial-time algorithm
over finite fields.

1 Factorization of homogeneous noncommutative polynomials is easier as it can be reduced to factorization
of a special case of commutative polynomials. See [4] for details.
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14:2 Multivariate to Bivariate Reduction for Noncommutative Polynomial Factorization

▶ Problem 1 (Linear Matrix Factorization Problem). The linear matrix factorization problem
over a field F takes as input a linear matrix: L = A0 +

∑n
i=1 Aixi, where the Ai are d× d

scalar matrices (over F), the xi, 1 ≤ i ≤ n are noncommuting variables, and A0 is assumed
invertible for technical reasons. The problem is to compute a factorization of L as a product
of irreducible linear matrices.

The study of matrix factorization (linear matrix factorization, in particular) is an import-
ant part of Cohn’s factorization theory over general free ideal rings. [6, 5].

Coming back to the polynomial factorization algorithm described in [1], the algorithm
reduces polynomial factorization to linear matrix factorization which is, in turn, reducible
to the problem of computing a common invariant subspace for a collection of n matrices.
The common invariant subspace problem over finite fields can be efficiently solved using
Ronyai’s algorithm [12] which is based on the Artin-Wedderburn theorem for decomposition of
algebras. This approach, however, runs into serious difficulties over rationals. Given a simple
matrix algebra2 A over rationals, we do not know an efficient algorithm for checking if A is a
division algebra or whether it has zero divisors. This is one of our motivations for obtaining
a reduction from multivariate polynomial factorization to bivariate factorization. Because
Higman Linearization of a bivariate noncommutative polynomial given by a formula will
yield a bivariate linear matrix. One could hope that factorization of a bivariate linear matrix
is computationally easier than factorization of an n-variate linear matrix. Unfortunately, this
is not the case. As we will see, even for 4-dimensional bivariate linear matrices the problem
of factorization is at least as hard as factoring square-free integers.

Multivariate to Bivariate

We start with some formal preliminaries. Let F be any field and X = {x1, x2, . . . , xn} be a
set of n free noncommuting variables. Let X∗ denote the set of all free words (which are
monomials) over the alphabet X with concatenation of words as the monoid operation and
the empty word ϵ as identity element.

The free noncommutative ring F⟨X⟩ consists of all finite F-linear combinations of monomi-
als in X∗, where the ring addition + is coefficient-wise addition and the ring multiplication
∗ is the usual convolution product. More precisely, let f, g ∈ F⟨X⟩ and let f(m) ∈ F
denote the coefficient of monomial m in polynomial f . Then we can write f =

∑
m f(m)m

and g =
∑

m g(m)m, and in the product polynomial fg for each monomial m we have
fg(m) =

∑
m1m2=m f(m1)g(m2). The degree of a monomial m ∈ X∗ is the length of the

monomial m, and the degree deg f of a polynomial f ∈ F⟨X⟩ is the degree of a largest
degree monomial in f with nonzero coefficient. For polynomials f, g ∈ F⟨X⟩ we clearly have
deg(fg) = deg f + deg g.

A nontrivial factorization of a polynomial f ∈ F⟨X⟩ is an expression of f as a product
f = gh of polynomials g, h ∈ F⟨X⟩ such that deg g > 0 and deg h > 0. A polynomial
f ∈ F⟨X⟩ is irreducible if it has no nontrivial factorization and is reducible otherwise. For
instance, all degree 1 polynomials in F⟨X⟩ are irreducible. Clearly, by repeated factorization
every polynomial in F⟨X⟩ can be expressed as a product of irreducibles.

The problem of noncommutative polynomial identity testing (PIT) for multivariate poly-
nomials is known to easily reduce to noncommutative PIT for bivariate polynomials: the
reduction is given by the xi → xyi, 1 ≤ i ≤ n, which transforms a given arithmetic circuit
(or formula or algebraic branching program) computing a polynomial f(x1, x2, . . . , xn) to the

2 i.e. the algebra has no nontrivial two-sided ideals.
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bivariate polynomial g(x, y) = f(xy, xy2, . . . , xyn). As this substitution map ensures that
every monomial of f is mapped to a distinct monomial of g(x, y), f is the zero polynomial if and
only if g(x, y) is the zero polynomial. Indeed, this map even gives an injective homomorphism
from the ring F⟨x1, x2, . . . , xn⟩ to F⟨x, y⟩ [6, Problem 14, Exercises 2.5]. However, it does not
preserve factorizations. For example, the polynomial f = x3x1 + x4x2 + x4x1 + x5x2 ∈ F⟨X⟩
is clearly irreducible. But the image of f under this map has the nontrivial factorization
(xy2 +xy3)(yxy+y2xy2). Thus, it cannot be used to obtain a reduction from noncommutative
multivariate polynomial factorization to bivariate polynomial factorization.

Bergman’s 1-inert embedding

However, based on a theorem of Bergman [6, Theorem 4.5.3], we can obtain a polynomial-time
reduction from factorization of multivariate noncommutative polynomials in F⟨x1, x2, . . . , xn⟩
given by arithmetic circuits (resp. noncommutative algebraic branching programs(ABP)) to
factorization of bivariate noncommutative polynomials in F⟨x, y⟩, again given by arithmetic
circuit (resp. an ABP). This reduction is polynomial-time bounded for both finite fields
and rationals. In the case of rationals we need to ensure that the bit complexities of all
numbers involved are polynomially bounded. Furthermore, we show that essentially the same
reduction works in the black-box setting as well.

The notion of 1-inert embeddings is defined below for free noncommutative polynomials.

▶ Definition 2 (1-inert embedding). [5] Let X∞ = {x1, x2, . . .} be a countably infinite set
of free noncommuting variables and {x, y} be two free noncommuting variables. A 1-inert
embedding of F⟨X∞⟩ into F⟨x, y⟩ is an injective homomorphism φ : F⟨X⟩ → F⟨x, y⟩ such
that for each polynomial f ∈ F⟨X⟩, if its image φ(f) factorizes nontrivially in F⟨x, y⟩ as
φ(f) = g1·g2 then their preimages φ−1(g1) and φ−1(g2) exist and, since φ is a homomorphism,
it gives a nontrivial factorization f = φ−1(g1)φ−1(g2) of f in F⟨X⟩.

▶ Remark 3. The above definition implies that for all factorizations φ(f) = g1g2, the
polynomials g1 and g2 are in the range of φ. Cohn [6, 5] treats 1-inert embeddings φ : R1 → R2
for general noncommutative integral domains R1 and R2, which we do not require for our
results.

▶ Definition 4. A complete factorization of noncommutative polynomial f ∈ F⟨X⟩ is a
factorization f = f1 · f2 · · · fr into a product of irreducible polynomials fi ∈ F⟨X⟩.

Given an algebraic branching program (resp. Arithmetic Circuit) for f , we can efficiently
obtain an algebraic branching program (resp. Arithmetic Circuit) for φ(f) and then we
use idea of running a substitution automata on ABPs or circuits (see e.g. [4], [2], [3]) to
construct a complete factorization of f given a complete factorization of φ(f). In the next
section we will elaborate and expand upon Bergman’s embedding theorem [5] and show how
to get an effective algorithmic version which is useful for our purpose of reconstruction of
factors of f from factors of φ(f).

The rest of the paper is organized as follows: In Section 2 we give necessary details of
Bergman’s result. In Section 3 we present the reductions. Motivated by the connection
between noncommutative polynomial factorization and linear matrix factorization, in Section 4
we show a hardness result for bivariate linear matrix factorization for 4× 4 linear matrices
over rationals. In contrast we obtain an efficient linear matrix factorization algorithm for
3× 3 linear matrices over rationals.
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2 Bergman’s embedding

We recall the graded lexicographic ordering ≺ on monomials in {x, y}∗, which is a total
ordering on {x, y}∗ defined as follows:

For monomials m1, m2 ∈ {x, y}∗, m1 ̸= m2, we say m1 ≺ m2 if either deg(m1) < deg(m2)
or deg(m1) = deg(m2) and in the leftmost position i where they differ we have m1[i] = y

and m2[i] = x.
For any polynomial g, let supp(g) denote the set of all monomials of g with non-zero

coefficient. When m1 ≺ m2 we say that monomial m1 is smaller than monomial m2.
Equivalently, we say m2 is larger than m1. The leading monomial of a polynomial g ∈ F⟨x, y⟩
is the monomial m ∈ supp(g) (denoted by lm(g)) such that w ≺ m for all w ∈ supp(g). That
is, the leading monomial of g is the largest monomial in supp(g).

For a monomial m ∈ {x, y}∗ let dx(m) (resp. dy(m)) denote the number of occurrences
of x (resp. y) in m. The imbalance i(m) of the monomial m is defined as

i(m) = dx(m)− dy(m).

Let B ⊂ F⟨x, y⟩ be the set of all polynomials f such that every monomial m ∈ supp(f)
has imbalance zero, i.e. i(m) = 0 for all m ∈ supp(f). Clearly, B is a subalgebra of F⟨x, y⟩.
Let T be the set of all minimally balanced monomials. That is, for m ∈ T either m = ϵ or
i(m) = 0 and for any proper prefix m′ of m such that m′ ̸= ϵ, i(m′) > 0. Notice that for all
monomials m ∈ T \ {ϵ} its leftmost symbol m[1] is x. We arrange the nontrivial monomials
in T in increasing ≺-ordering. Let ui denote the ith monomial in this ordering. Let ui be
the monomial obtained from ui by replacing every occurrence of x by y and y by x. Let
T = {ui | i ≥ 1}. It is easy to see that the monomials in T ∪ T generate the algebra B.
In fact, every monomial m ∈ B is uniquely expressible as a product g1g2 . . . gℓ, where each
gj ∈ T ∪ T . If gj ∈ T it is a T -factor of m and if gj ∈ T it is T -factor of m. Let C be the
subalgebra of B generated by {ui + ui | i ≥ 1}.

▶ Lemma 5. Let B and C be the subalgebras of F⟨x, y⟩ as defined above.
The leading monomial m of any polynomial in C has the form m = ui1ui2 · · ·uiℓ

, where
each uij

is a T -factor. That is, m does not have any T -factor.
Every polynomial f ∈ B \C can be written as f = g + h for some g ∈ C and h ∈ B, such
that the leading monomial of h has a T -factor.

Proof. By definition, each g ∈ C is an linear combination of products of the form
∏ℓ

k=1(uik
+

uik
). Hence, if supp(g) contains the monomial v1v2 . . . vℓ, where vk ∈ {ujk

, ujk
} for k ∈ [ℓ],

then supp(g) also contains the degree-d monomial uj1uj2 . . . ujℓ
(in fact, with the same

coefficient as v1v2 . . . vℓ). If uj1uj2 . . . ujℓ
̸= v1v2 . . . vℓ then, by definition of ≺, the monomial

uj1uj2 . . . ujℓ
is larger than v1v2 . . . vℓ. Therefore, the leading monomial of any polynomial

g ∈ C has the form claimed.
Next, let f ∈ B \ C. We will show the second part of the lemma by induction on the

leading monomial of f w.r.t. the ≺-ordering (which is a well ordering on monomials).
The base case of the induction is when the leading monomial of f has a T -factor then the

claim follows as f = 0+f and 0 ∈ C. Suppose the leading monomial of f is m = uj1uj2 · · ·ujℓ
.

If the coefficient of m in f is α ̸= 0, let

f1 = f − α(uj1 + uj1)(uj2 + uj2) . . . (ujℓ
+ ujℓ

). (1)

If m1 is the leading monomial of f1 then clearly m1 ≺ m. Furthermore, f1 ∈ B \ C as
f − f1 ∈ C. By induction hypothesis, we have f1 = g′ + h such that g′ ∈ C and the leading
monomial of h has a T -factor. Since f = (f − f1) + g′ + h and g = (f − f1) + g′ ∈ C, this
completes the induction and the proof. ◀
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Let X∞ = {x1, x2, . . .} be a countably infinite set of free noncommuting indeterminates.
Consider the mapping φ : F⟨X∞⟩ 7→ F⟨x, y⟩ defined as follows:

Let φ(xi) = ui + ui for all xi ∈ X∞.
Extend φ to all monomials by multiplication. That is, φ(xi1xi2 . . . xik

) =
∏k

j=1 φ(xij ).
Further, extend φ to the ring F⟨X∞⟩ by linearity: φ(

∑t
i=1 αimi) =

∑t
i=1 αiφ(mi), for

monomials mi ∈ X∗
∞ and scalars αi ∈ F for i = 1 to t.

▶ Lemma 6. The map φ defined above is an injective homomorphism (i.e. a homomorphic
embedding) from the ring F⟨X∞⟩ to F⟨x, y⟩.

Proof. To see that φ is a homomorphism, we first note that, by linearity, we have φ(f + g) =
φ(f) + φ(g) for f, g ∈ F⟨X∞⟩. To verify that φ(fg) = φ(f)φ(g), let f =

∑
m fmm and

g =
∑

m gmm where fm, gm ∈ F are the coefficients of monomial m in f and g, respectively.
Then φ(fg) = φ ((

∑
m fmm)(

∑
w gww)) = φ

(∑
m,w fmgwmw

)
. Which, by linearity of φ,

equals
∑

m,w fmgwφ(m)φ(w) = φ(f)φ(g).
In order to show φ is injective, it suffices to show φ(f) ̸= 0 for f ̸= 0. Suppose

m ∈ supp(f). Then φ(m) ̸= 0, by the definition of φ. Hence, if m is the only monomial in
supp(f) it follows that φ(f) ̸= 0.

Otherwise, suppose m′ ∈ supp(f) and m′ ̸= m. Let u be largest common prefix of
m and m′. Then m = uxiv and m′ = uxjw, for monomials u, v, w ∈ X∗

∞ and xi ̸= xj .
Noting that φ(xi) = ui + ui and φ(xj) = uj + uj we have φ(m) = φ(u)(ui + ui)φ(v)
and φ(m′) = φ(u)(uj + uj)φ(w). From the definition of φ, clearly φ(u) is a homogeneous
polynomial in F⟨x, y⟩. Let deg(φ(u)) = D. Suppose ℓ = |ui| = |ui| and ℓ′ = |uj | = |uj |.
Without loss of generality suppose that ui ≺ uj . Hence ℓ ≤ ℓ′. As ui and uj are minimally
balanced, ui cannot be a prefix of uj . Also, as ui[1] = x and uj [1] = y, ui cannot be
a prefix of uj . Therefore, for any monomials w1 ∈ supp(φ(m)) and w2 ∈ supp(φ(m′)),
w1 and w2 will differ in the length ℓ subword starting at location D + 1. It follows that
supp(φ(m)) ∩ supp(φ(m′)) = ∅. Hence, φ(f) ̸= 0 implying that φ is injective. ◀

The subalgebra C has the important property that if f ∈ C then all factors of f are in C

as well. In order to keep our presentation self-contained we include a complete proof with
more details than are given in [5].

▶ Theorem 7 (Bergman; [5, Chapter 4, Theorem 5.2]). Let f ∈ C. For any factorization
f = g · h the polynomials g and h are in C.

Proof. First we show that all monomials of g have the same imbalance. Likewise, all
monomials of h have the same imbalance. Suppose amin and amax are the minimum and
the maximum imbalances of monomials of g. Let bmin and bmax be the minimum and the
maximum imbalance of monomials of h. Let mmin be a smallest monomial (with respect to
≺) in supp(g) with imbalance amin, and mmax be a largest monomial (with respect to ≺) in
supp(g) with imbalance amax. Let wmin, wmax be monomials similarly defined for polynomial
h corresponding to bmin and bmax. Now consider the product monomial u = mmaxwmax.
We claim that u is uniquely expressible as a product of a monomial of g and a monomial
of h. To see this, suppose u = m′w′ where m′ ∈ supp(g), w′ ∈ supp(h) and mmax ̸= m′ or
wmax ̸= w′. Now, as i(u) = i(mmax) + i(wmax) = i(m′) + i(w′) and mmax, wmax are the
monomials with highest imbalance of g and h respectively, we must have i(m′) = i(mmax)
and i(w′) = i(wmax). So we get, m′ ≺ mmax and w′ ≺ wmax by the choice of mmax and
wmax. But as u = mmaxwmax = m′w′, clearly either mmax is a strict prefix of m′ or wmax is
a strict prefix of w′. In the former case we have mmax ≺ m′, and in the later case wmax ≺ w′.

MFCS 2023
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These contradict the fact that m′ ≺ mmax and w′ ≺ wmax. Hence, u = mmaxwmax is the
unique expression of u as a product of a monomial of g and a monomial of h. Consequently,
u has non-zero coefficient in f = g.h. Clearly u has imbalance amax + bmax. Similarly,
monomial v = mminwmin is non-zero in f and has imbalance amin + bmin. As f ∈ C, each
monomial of f has imbalance 0. Hence, amax + bmax = 0 and amin + bmin = 0. It follows
that amax = −bmax ≤ −bmin = amin, implying amin = amax = a and bmin = bmax = −a.
Thus, all monomials of g have imbalance a and all monomials of h have imbalance −a.

Let m be the leading monomial of f . Clearly, m is a maximum degree monomial of
f . Moreover, m is largest among the max-degree monomials of f . Let m = m1m2 with
m1 ∈ supp(g) and m2 ∈ supp(h). We have i(m1) = a, i(m2) = −a. As f ∈ C, the monomial
m̄ obtained by replacing every occurrence of x by y, and y by x in m is also in supp(f).
Moreover, m̄ is the smallest monomial among the max-degree monomials of f . This forces
that the monomial m̄1 (obtained by interchanging x, y in m1) is in supp(g). Similarly,
monomial m̄2 (obtained by swapping x, y in m2) is in supp(h). We have i(m̄1) = −a and
i(m̄2) = a. Now, all monomials of g have the same imbalance, and m1, m̄1 ∈ supp(g). This
forces a = −a = 0. Consequently, all monomials in supp(g) ∪ supp(h) have imbalance zero
which implies g, h ∈ B. Now, applying Lemma 5 to g and h we have:
1. g = g1 + g2, h = h1 + h2, g1, h1 ∈ C, such that lm(g2) has a T -factor ū, and lm(h2) has

a T -factor v̄.
2. Consequently, the deg(g2) prefix of lm(g2h1) contains the T -factor ū and the deg(h2)

suffix of lm(g1h2) contains the T -factor v̄.
3. Finally, the deg(g2) prefix and the deg(h2) suffix of lm(g2 · h2) contain, respectively, the

T -factors ū and v̄.

Hence the leading monomials lm(g2 · h1), lm(g1 · h2), and lm(g2 · h2) are all distinct and
cannot mutually cancel. Therefore, the leading monomial of f̂ = g2 · h1 + g1 · h2 + g2 · h2
contains a T -factor unless both g2 = 0 and h2 = 0. Now, f̂ = g2 ·h1+g1 ·h2+g2 ·h2 = f−g1h1.
As f ∈ C and g1, h1 ∈ C it implies f̂ ∈ C. However, by Lemma 5, the leading monomial of
f̂ cannot have a T -factor. It forces g2 = 0 and h2 = 0 which implies g, h ∈ C. ◀

Theorem 7 implies that φ is a 1-inert embedding (Definition 2).

▶ Theorem 8. Let f ∈ F⟨X⟩, where X = {x1, . . . , xn}. Suppose f ′ = φ(f) = g′ · h′ is a
non-trivial factorization of φ(f) in F⟨x, y⟩. Then there is a non-trivial factorization f = g · h
for g, h ∈ F⟨X⟩, such that φ(g) = g′ and φ(h) = h′.

Proof. As F⟨X⟩ ⊂ F⟨X∞⟩, the embedding φ maps f ∈ F⟨X⟩ to some f ′ = φ(f) ∈ C.
Suppose f ′ = g′ · h′ is a nontrivial factorization of f ′ in F⟨x, y⟩. By Theorem 7, as f ′ ∈ C,
its factors g′, h′ ∈ C. Since g′ ∈ C, it is an F-linear combination of products of the form
(ut1 + ut1)(ut2 + ut2) . . . (utℓ

+ utℓ
). By definition of φ,

(ut1 + ut1)(ut2 + ut2) . . . (utℓ
+ utℓ

) = φ(xt1xt2 . . . xtℓ
).

Hence, by linearity, it follows that g′ = φ(g) for some nontrivial polynomial g ∈ F⟨X∞⟩,
similarly there is a nontrivial polynomial h ∈ F⟨X∞⟩ such that h′ = φ(h). Since φ is a
homomorphism, we have

φ(f) = f ′ = g′ · h′ = φ(g) · φ(h) = φ(g · h).

As φ is injective, we have f = g ·h. To complete the proof we need to argue that g, h ∈ F⟨X⟩.
Let Var(g) be the subset of variables that occur in some non-zero monomial of g. We claim
that Var(g) ⊆ X. Suppose Var(g) contains some xi ̸∈ X. Let m ∈ supp(g) be the largest
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monomial (in ≺-ordering) in which xi occurs. Then the monomial m · lm(h) contains the
variable xi and has a non-zero coefficient in f = gh. This is a contradiction as f ∈ F⟨X⟩ and
X does not contain xi. Hence Var(g) ⊆ X. Similarly, Var(h) ⊆ X. ◀

3 Multivariate to Bivariate reduction

We now apply Bergman’s theorem (Theorem 7) to show that multivariate noncommutative
polynomial factorization is reducible to bivariate noncommutative polynomial factorization.
We require some preparatory observations.

Let X = {x1, x2, . . . , xn}, and v1, v2, . . . , vn be any n distinct and minimally balanced
monomials in {x, y}∗. We define φ : F⟨X⟩ → F⟨x, y⟩: φ(xi) = vi + vi for all i, which extends
by multiplication, i.e. φ(xi1xi2 . . . xik

) =
∏k

j=1 φ(xij
), to monomials, and by linearity to

F⟨X⟩. The definition of φ is essentially like in the proof of Bergman’s theorem, except that
X is finite and the vi, 1 ≤ i ≤ n are any n distinct minimally balanced monomials. The
following lemma is on the same lines as Theorem 7 and Theorem 8. The straightforward
proof is by a suitable renaming of the variables x1, . . . , xn before and after application of
Theorem 7 in the proof of Theorem 8.

▶ Lemma 9. Let X = {x1, . . . , xn} and f ∈ F⟨X⟩. Suppose v1, v2, . . . , vn ∈ {x, y}∗ are
distinct minimally balanced monomials. If f ′ = φ(f) = g′ · h′ is a non-trivial factorization
of f ′ in F⟨x, y⟩ then there are polynomials g, h ∈ F⟨X⟩ such that g′ = φ(g), h′ = φ(h) and
f = g · h.

In order to obtain a polynomial-time computable reduction it is convenient to choose
v1, v2, . . . , vn such that each vi has the same length. The next lemma ensures that ℓ = O(log n)
suffices. This follows from the fact that the number of minimally balanced monomials of
length 2ℓ is at least as large as the (ℓ− 2)th Catalan number, and well-known asymptotic
lower bounds on Catalan numbers.

▶ Lemma 10. There are at least n minimally balanced monomials of length 2ℓ in {x, y}∗

for ℓ ≥ max(⌈log 2n⌉, 6). Furthermore, the lexicographically first n minimally balanced
monomials of length 2ℓ can be computed in time polynomial in n.

Proof. Consider monomials v of the form v = x · w · y, where w is a Dyck monomial. 3

That is, w is a balanced monomial such that every prefix of w has at most as many y’s
as x’s. Notice that w ∈ {x, y}2ℓ−2. It follows that any nontrivial prefix of v has strictly
more x than y. So any such monomial is minimally balanced of length 2ℓ. The number
of Dyck monomials of length 2ℓ − 2 is Cℓ−1 (the (ℓ − 1)th Catalan number). A standard
estimate yields Ck ∼ 4k

k3/2√
π

, which implies that Ck is 2Ω(k). Specifically, Ck > 2k for k ≥ 5.
If n < 2ℓ−1 and ℓ ≥ 6 then there are at least n minimally balanced monomials of length
2ℓ, for ℓ = max(⌈log 2n⌉, 6). Clearly, we can compute the vi, 1 ≤ i ≤ n by enumeration in
poly(n) time. ◀

3.1 White-box reduction
We first describe the reduction in the white-box case for input polynomial f ∈ F⟨X⟩ given
by a noncommutative arithmetic circuit.

3 Essentially a balanced parenthesis string with x as left and y as right parenthesis, respectively.
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▶ Lemma 11. Let X = {x1, . . . , xn} and f ∈ F⟨X⟩ be a noncommutative polynomial given
by arithmetic circuit C of size s. Then there is a deterministic polynomial time algorithm that
outputs an arithmetic circuit computing the polynomial φ(f) ∈ F⟨x, y⟩, where the minimally
balanced monomials vi, 1 ≤ i ≤ n defining the map φ are as described by Lemma 10.

Proof. For 1 ≤ i ≤ n, we note that the sum of two monomials vi + vi can be computed by
a noncommutative arithmetic formula Fi of size O(log n). Let C ′ be the arithmetic circuit
obtained from circuit C by replacing input variable xi with the formula Fi. Clearly, C ′

computes φ(f) and its size is polynomially bounded. ◀

▶ Lemma 12. For f ∈ F⟨X⟩ suppose φ(f) = f ′
1 · f ′

2 · · · f ′
r is a complete factorization of

φ(f) in F⟨x, y⟩ into irreducible factors f ′
i ∈ F⟨x, y⟩. Then there are irreducible polynomials

f1, f2, . . . , fr ∈ F⟨X⟩ such that f = f1f2 . . . fr and φ(fi) = f ′
i for each i.

Proof. It follows by repeated application of Lemma 9 that if φ(f) = f ′
1 · f ′

2 · · · f ′
r, is a

factorization into irreducible factors f ′
i ∈ F⟨x, y⟩, then there are polynomials f1, f2, . . . , fr ∈

F⟨X⟩ such that f = f1f2 . . . fr and φ(fi) = f ′
i for each i. We claim each fi is irreducible.

For, if fi = g · h is a nontrivial factorization of fi in F⟨X⟩ then clearly f ′
i = φ(fi) = φ(g)φ(h)

is a nontrivial factorization of f ′
i , which contradicts its irreducibility. ◀

Suppose C ′
i is an arithmetic circuit of size s′

i for f ′
i for i ∈ [r]. We will construct a circuit

of size poly(s′
i, n) for fi efficiently for each i ∈ [r], which is the crucial part of our multivariate

to bivariate reduction. The next lemma describes the algorithm crucial to the white-box
reduction.

▶ Lemma 13. Given as input a noncommutative arithmetic circuit C for the polynomial
φ(g) ∈ F⟨x, y⟩, where g ∈ F⟨X⟩ is a degree d polynomial, X = {x1, x2, . . . , xn}, there is a
deterministic polynomial-time algorithm, running in time poly(d, size(C), n) that computes a
noncommutative arithmetic circuit C ′ for the polynomial g. Furthermore, if φ(g) is given by
an algebraic branching program then the algorithm computes an algebraic branching program
for g.

Proof. The proof is based on the idea of evaluating a noncommutative arithmetic circuit on
an automaton (specifically, a substitution automaton) described in [4] (see e.g., for related
applications [2],[3]).

Let g′ = φ(g). Let g =
∑

m αmm where m ∈ X∗ and αm is the coefficient of m in g. As
noted before, the map φ has the property that supp(φ(m))∩ supp(φ(m′)) = ∅ for monomials
m ̸= m′ in X∗. Moreover if m = xi1xi2 . . . xiℓ

has nonzero coefficient αm in g then g′ has a
monomial m′ = vi1vi2 . . . viℓ

with coefficient αm. Hence, to retrieve an arithmetic circuit for
g from the given circuit C ′ for g′ our aim is to carry out the following transformation of the
polynomial g′ given by the circuit C ′:

Get rid of the monomials of g′ containing of all vj ∈ T for j ∈ [n].
For each remaining monomial m′ of g′ substitute xi wherever the monomial vi occurs as
substring in m′ for i ∈ [n].

We will accomplish this transformation by evaluating the circuit C ′ at suitably chosen
matrix substitutions x ← Mx and y ← My, where Mx and My will be N × N matrices
for polynomially bounded N . The resulting evaluation C ′(Mx, My) will be an N × N

matrix. A designated entry of this matrix will contain the polynomial g. Clearly, if we can
efficiently compute the claimed matrices Mx and My it will yield an arithmetic circuit C

for the polynomial g. These matrices Mx and My will be obtained as transition matrices
of a substitution automaton that will carry out the above transformation steps on the
polynomial g′.
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A finite substitution automaton A is a deterministic finite automata A along with a
substitution map δ : Q × {x, y} → Q × (X ∪ F) where Q is a set of states and X =
{x1, x2, . . . , xn} are noncommuting variables. For i, j ∈ Q, a ∈ {x, y}, u ∈ X ∪ F, if
δ(i, a) = (j, u), it means that when automata A in state i reads a, it replaces a by u and
transitions to state j. For each a ∈ {x, y} we can define a |Q| × |Q| transition matrix Ma

such that Ma(i, j) = u if δ(i, a) = (j, u) and 0 otherwise.
With δ we associate projections δ1 : Q×{x, y} → Q and δ2 : Q×{x, y} → X ∪ F defined

as δ1(i, a) = j and δ2(i, a) = u if δ(i, a) = (j, u). The functions δ1 and δ2 extend naturally
to monomials: For w ∈ {x, y}∗, δ1(i, w) = j means the automaton A goes from state i to
j on reading w. Let w̃ℓ denotes length ℓ prefix of w and wℓ denotes ℓth symbol of w from
left. δ2(i, w) = p means p =

∏|w|−1
ℓ=0 δ2(δ1(i, w̃ℓ), wℓ+1). Note that δ2(i, w) has the form β ·w′

where β ∈ F, w′ ∈ X∗. For α ∈ F define δ2(i, α · w) as α · δ2(i, w).
Let g′(x, y) =

∑
m αmm ∈ F⟨x, y⟩. Then, the (s, t)th entry of the |Q| × |Q| matrix

g′(Mx, My) is a polynomial g ∈ F⟨X⟩ such that g =
∑

m∈Wt
αmδ2(s, m), where Wt is the set

of all monomials that take the automaton A from state s to state t.
Clearly, if g′ has an arithmetic circuit of size s then we can construct an arithmetic circuit

of size poly(s, n, |Q|) for g in deterministic time poly(s, n, |Q|).
Turning back to the reduction, consider the input circuit C for g′ = φ(g) ∈ F⟨x, y⟩. We

will construct a substitution automaton A such that the polynomial g is the (s, t)th entry of
the matrix g′(Mx, My).

Description of the Substitution Automata

As each vi is minimally balanced it must begin with symbol x and end with symbol y. As
|vi| > 2, the second symbol of vi is also x (if it was y, then the balanced monomial xy would
be a strict prefix of a minimally balanced monomial vi, which is a contradiction). So clearly
each vi is of the form xxwiyy, where wi is a Dyck monomial. Let v′

i = xwiy for i ∈ [n].
We can easily design a deterministic finite automaton A′ with O(mn) states such that the
language accepted by A′ is precisely the finite set {v′

1, v′
2, . . . , v′

n}, where m is the length of
vi for i ∈ [n]. Let δ′ denote the transition function and Q′ be the set of states of A′, where
q1 is the initial state and qfi

is the final state associated with acceptance of string v′
i for

i ∈ [n]. A′ has a tree structure with root q1 and leaves qfi
for i ∈ [n], and any root to leaf

path has length exactly 2ℓ− 2. We now define the substitution automaton A. Its state set
is Q = Q′ ∪ {q0, qf , qr}. The transition function δ : Q× {x, y} → Q× (X ∪ F) is defined as
follows:
1. δ(q0, x) = (q1, 1); δ(q0, y) = (qr, 0).
2. for q ∈ Q′ \ {qfi |1 ≤ i ≤ n}. and a ∈ {x, y}, let δ(q, a) = (δ′(q, a), 1).
3. δ(qfi , x) = (qr, 0); δ(qfi , y) = (qf , xi) for each i ∈ [n].
4. δ(qf , x) = (q1, 1) and δ(qf , y) = (qr, 0).
5. δ(qr, a) = (qr, 0) for a ∈ {x, y}.

The final state of A is qf . For a monomial w ∈ {x, y}∗, starting at state q0 the automaton
A substitutes all the variables with 1 as long as it matches with a prefix of vi for i ∈ [n]
(given by transitions in 1,2 above). When the monomial matches with vi for some i (which
will happen while reading symbol y as each string vi ends with y), A substitutes y by xi

and moves to state qf . If it reads x instead of y then A enters a rejecting state qr (given by
transition in 3 above). Hence, if A finds substring vi in w it replaces it with xi. Whenever
A is in state qf , it means the monomial read so far is of the form vi1vi2 . . . vit , and it has
replaced it with xi1xi2 . . . xit

. If in the state qf symbol y is encountered, it means the next
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substring cannot match with a minimally balanced monomial (as these start with x) and the
automaton goes to the rejecting state qr. If in state qf variable x is read the automaton goes
to state q1 and restarts the search for a new substring that matches with some vi (transition
in 4 above).

In conclusion A replaces all the monomials of the form vi1vi2 . . . vit
by xi1xi2 . . . xit

. If
the monomial contains an occurrence of vi, or it is not of the form vi1vi2 . . . vit , then A
zeros out that monomial by suitably setting an occurrence of y to zero or enters the reject
state qr.4

It follows that the (q0, qf )th entry of the |Q| × |Q| matrix g′(Mx, My) is the polynomial
g, where g′ = φ(g), and Mx, My are the transition matrices for the substitution automaton
A. This completes the proof.

Finally, if φ(g) is given by an algebraic branching program P then it is easy to see that
the above construction with the substitution automaton A yields P (Mx, My) which is an
algebraic branching program. ◀

The main theorem of this section, stated below, summarizes the discussion in this section.

▶ Theorem 14. In the white-box setting, factorization of multivariate noncommutative
polynomials into irreducible factors is deterministic polynomial-time reducible to factorization
of bivariate noncommutative polynomials into irreducible factors. More precisely, given as
input f ∈ F⟨X⟩ by an arithmetic circuit (resp. algebraic branching program), the problem of
computing a complete factorization f = f1 · f2 · · · fr where each fi is output as an arithmetic
circuit (resp. algebraic branching program) is deterministic polynomial-time reducible to the
same problem for bivariate polynomials in F⟨x, y⟩.

Proof. We describe the reduction:
1. Input f ∈ F⟨X⟩ (as a circuit or ABP).
2. Transform f to f ′ = φ(f) ∈ F⟨x, y⟩ as a circuit (resp. ABP) by the algorithm of Lemma 10.
3. Compute a complete factorization of f ′ = f ′

1 · f ′
2 · · · f ′

r, where each f ′
i ∈ F⟨x, y⟩ is

irreducible and is computed as a circuit (resp. ABP).
4. Apply the algorithm of Lemma 13 to obtain a complete factorization of f = f1 · f2 · · · fr,

where each fi is irreducible and is output as a circuit (resp. ABP).

The correctness of the reduction and its polynomial time bound follow from Lemmas 9,
10 and 13. ◀

▶ Remark 15. We note that in the case F is the field Q (of rationals), we need to take into
account the bit complexity of the rational numbers involved and argue that the reduction
is still polynomial time computable. The main point to note here is that the reduction
guarantees the size of the factor fi is polynomially bounded in the size of gi, 1 ≤ i ≤ r,
where the size of gi includes the sizes of any rational numbers that might be involved in the
description of the arithmetic circuit (or ABP) for gi.
▶ Remark 16. We note here that the ring F⟨X⟩ is not a unique factorization domain. That is,
a polynomial f ∈ F⟨X⟩ may have, in general, multiple factorizations into irreducibles [6]. A
standard example is the polynomial x+xyx which factorizes as x(1+yx) as well as (1+xy)x,
where x, y, 1 + yx, 1 + xy are irreducible. As the map φ is an injective homomorphism,
there is a 1-1 correspondence between factorizations of φ(f) and factorizations of f . More
specifically, our reduction takes as input any complete factorization φ(f) = f ′

1f ′
2 . . . f ′

r and
computes the corresponding complete factorization f = f1f2 . . . fr of f .

4 We can dispense with the reject state qr, as suitably setting an occurrence of y to 0 would also suffice.
We have transitions to the reject state qr for exposition.
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▶ Remark 17. We note that the embedding φ does not preserve sparsity5 of the polynomial
f . More precisely, if the sparsity of the n-variate degree d polynomial f is s then the sparsity
of the bivariate polynomial φ(f) is O(2ds). Thus, using this embedding map we do not
get a reduction from sparse n-variate degree d polynomial factorization to sparse bivariate
polynomial factorization, where s, d are allowed to be part of the running time. This problem
remains unanswered.

3.2 Black-box reduction

The reduction in the black-box case is essentially identical. The only point to note, which is
easy to see, is that the analogue of Lemma 13 holds in the black-box setting. We state that
below. We recall what a black-box means in the noncommutative setting.

▶ Definition 18. A noncommutative polynomial f ∈ F⟨X⟩ given by black-box essentially
means we can evaluate f at any matrix substitution xi ←Mi, Mi ∈ FN×N , where the cost
of each evaluation is the matrix dimension N .

In the black-box setting, suppose we have an efficient algorithm for bivariate noncommut-
ative polynomial factorization of degree D polynomials g ∈ F⟨x, y⟩, where the algorithm takes
a black-box for g and outputs black-boxes for the irreducible factors of some factorization of
g in time poly(D). Then, given a black-box for a degree D n-variate polynomial f ∈ F⟨X⟩ as
input, we require that the reduction transforms it into a black-box of a bivariate polynomial
g ∈ F⟨x, y⟩, and from the output black-boxes of g’s irreducible factors, the reduction has to
efficiently recover black-boxes for the corresponding irreducible factors of f .

▶ Lemma 19. Given as input a black-box for the polynomial φ(g) ∈ F{x, y}, where g ∈ F⟨X⟩
is a degree d polynomial, X = {x1, x2, . . . , xn}, with matrix substitutions for x and y computed
in deterministic polynomial-time time we can obtain a black-box for the polynomial g ∈ F⟨X⟩.

Proof. The proof of Lemma 13 already implies this because the matrices Mx and My

described there do not require φ(g) to be given in white-box as circuit or ABP. Thus, the
black-box for φ(g) yields a black-box for g by accessing the (q0, qf )th entry of the matrix
output φ(g)(Mx, My). ◀

As a consequence we obtain the claimed reduction from multivariate factorization to
bivariate factorization in the black-box setting as well.

▶ Theorem 20. The problem of computing a complete factorization of f ∈ F⟨X⟩ given by
black-box is deterministic polynomial-time reducible to the problem of black-box computation
of a complete factorization of polynomials in F⟨x, y⟩.

Proof. Given a black-box for f we obtain a black-box for φ(f) applying Lemma 10. Then,
given a complete factorization φ(f) = f ′

1 · f ′
2 · · · f ′

r where each factor f ′
i is output by a

black-box for it, by Lemma 19 we can obtain black-boxes for each fi. This yields a complete
factorization f = f1 · f2 · · · fr of f where the factors are given by black-box. ◀

5 The sparsity of a polynomial f is the number of monomials in supp(f).
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4 Factorizing 4 × 4 linear matrices over Q

We have shown in Section 3 that multivariate noncommutative polynomial factorization is
efficiently reducible to the bivariate case. Suppose f ∈ F⟨x, y⟩ is a bivariate polynomial given
by a formula of size s. Applying Higman linearization [6], as done in [1], we can transform
the problem to the factorization of bivariate linear matrices A0 + A1x + A2y, where the
matrices have size bounded by 2s. In [1] the problem of factorizing an n-variate polynomial
f ∈ F⟨X⟩ given by a formula was solved in two steps when F is a finite field: (i) Transform
f to a linear matrix L and factorize L into irreducible factors by reducing it to the common
invariant subspace problem, and (ii) extract the factors of f from the factors of L. This
approach fails for F = Q because the common invariant subspace problem for matrices over
Q is at least as hard as factoring square-free integers [12]. In this section, we show that linear
matrix factorization over Q, even for 4× 4 bivariate linear matrices, remains at least as hard
as factoring square-free integers. Thus, efficient polynomial factorization over Q remains
elusive even for bivariate polynomials. Our proof is based on ideas from Ronyai’s work [12].

Let α, β ∈ Q be nonzero rationals. The generalized quaternion algebra H(α, β) is the 4-
dimensional algebra over Q generated by elements 1, u, v, uv where the rules for multiplication
in H(α, β) are given by u2 = α, v2 = β, and uv = −vu. A simple algebra A over a field F is
an algebra that has no nontrivial two-sided ideal. The center C of algebra A is the subalgebra
consisting of all elements of A that commute with every element of A. Furthermore, it
follows from some general theory [11, Chapter 1.6] that:

▶ Fact 21. For any nonzero α, β ∈ Q, the algebra H(α, β) is a simple algebra with center Q.
The algebra H(α, β) is either a division algebra (which means no zero divisors in it) or is
isomorphic to the algebra of 2× 2 matrices over Q (which means it has zero divisors).

The 4-dimensional algebra H(α, β) can be represented as an algebra of 4× 4 matrices
over Q, which is the regular representation. The matrix corresponding to 1 is I4, and the

matrices corresponding to u and v are Mu =


0 1 0 0
α 0 0 0
0 0 0 1
0 0 α 0

 and Mv =


0 0 1 0
0 0 0 −1
β 0 0 0
0 −β 0 0

.

We next show that factorizing 4× 4 bivariate linear matrices is at least as hard as finding
zero divisors in generalized quaternion algebras.

▶ Theorem 22. Finding zero divisors in an input quaternion algebra H(α, β) is polynomial-
time reducible to factorizing 4 × 4 bivariate linear matrices A0 + A1x + A2y, where each
scalar matrix Ai is in M4(Q).

Proof. Let H(α, β) be the given generalized quaternion algebra. Then H(α, β) = {ao +
a1u + a2v + a3uv | ai ∈ Q}, where u2 = α, v2 = β, and uv = −vu defines the algebra
multiplication.

We now consider factorizations of the 4× 4 linear matrix I4 + Mux + Mvy.

▷ Claim 23. The linear matrix I4 + Mux + Mvy is irreducible if and only if the quaternion
algebra H(α, β) is a division algebra.

Proof of Claim. Suppose the linear matrix L = I4 +Mux+Mvy has a nontrivial factorization
L = I4 + Mux + Mvy = FG. That means neither F nor G is a scalar matrix. By a theorem
of Cohn [6, Theorem 5.8.8], there are invertible scalar matrices P and Q inM4(Q) such that

PLQ =
[

A 0
D B

]
.
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▶ Remark 24. To apply Cohn’s theorem the matrix L needs to be monic. That is, the matrix
[Mu | Mv] must have full row rank and [MT

u | MT
v ]T must have full column rank. This is

ensured as matrices Mu and Mv are full rank.

Putting x = y = 0 we observe that PQ =
[

A0 0
D0 B0

]
, where A0, B0 and D0 are scalar

matrices. As P and Q are invertible, both A0 and B0 are invertible. Hence PLP −1 =[
A 0
D B

]
·
[

A0 0
D0 B0

]−1

=
[

A′ 0
D′ B′

]
, where A′, B′ and D′ are also linear matrices. Recall

that I4, Mu and Mv are the matrix representations of the elements 1, u, and v in the basis
{1, u, v, uv} of H(α, β). Treating P as a basis change matrix, the above equation yields a
new basis {w1, w2, w3, w4} of H(α, β). Let dim(A′) = k. Then 1 ≤ dim(A′) ≤ 3 and the
vectors w1, . . . , wk spans a k-dimensional subspace W ⊂ H(α, β) that is a common invariant
subspace for the matrices I4, Mu, Mv and Muv. In other words, the subspace W is preserved
under left multiplication by u and v. We can assume, without loss of generality, that w1 ̸= 1:
if k > 1 then clearly we can assume this. If k = 1 notice that w1 = 1 is impossible because
the subspace W is not preserved under left multiplication by u or v. Then the four elements
w1, uw1, vw1, uvw1 are all in W and hence linearly dependent. Thus, some nontrivial linear
combination γ0w1+γ1uw1+γ2vw1+γ3uvw1 is 0. which means (γ0+γ1u+γ2v+γ3uv)×w1 = 0.
Hence w1 is a zero divisor in H(α, β). Conversely, if z ∈ H(α, β) is a zero divisor then the
left ideal J = {xz | x ∈ H(α, β)} is a proper subspace of H(α, β) that is invariant under Mu

and Mv. Applying Cohn’s theorem [6, Theorem 5.8.8], we obtain invertible scalar matrices

P and Q such that PLQ =
[

A 0
D B

]
=

[
A 0
0 I

]
·
[

I 0
D I

]
·
[
I 0
0 B

]
. ◁

To complete the reduction, notice that if I4 + Mux + Mvy is irreducible then H(α, β) is a
division algebra. On the other hand, if we are given a nontrivial factorization I4+Mux+Mvy =
FG then, analyzing the proof of Cohn’s theorem [6, Theorem 5.8.8] (also see [1] for details),
by suitable row and column operations we can compute in polynomial time the invertible
scalar matrices P and Q from the factors F and G. Hence, by the proof of the above claim,
we can efficiently compute a zero divisor w1 in H(α, β). ◀

As finding zero-divisors in the quaternion algebra H(α, β) is known to be at least as hard as
square-free integer factorization [12] we have the following.

▶ Corollary 25. Factorizing 4 × 4 bivariate linear matrices over Q is at least as hard as
factorizing square-free integers.

5 Factorizing 3 × 3 linear matrices over Q

In this section we present a deterministic polynomial-time algorithm for factorization of 3× 3
multivariate linear matrices over Q. We start with a simple observation about linear matrix
factorization in general.

▶ Lemma 26. Suppose L = Id +
∑n

i=1 Aixi is a linear matrix where each Ai, 0 ≤ i ≤ d is a
d×d matrix over Q. Then L is irreducible if the characteristic polynomial of Ai is irreducible
over Q for any i.

Proof. For if L is reducible then there is an invertible scalar matrix P such that PLP −1 =[
A 0
D B

]
, which implies that PAiP

−1 =
[

A′
i 0

D′
i B′

i

]
, for scalar matrices A′

i, B′
i, and D′

i. Thus,

the characteristic polynomial of Ai is the product of the characteristic polynomials of A′
i

and B′
i which is a nontrivial factorization. ◀
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The proof of the following theorem is based on linear algebra and Cohn’s theorem [6,
Theorem 5.8.8].

▶ Theorem 27. There is a deterministic polynomial-time algorithm for factorization of 3× 3
multivariate linear matrices over Q.

Proof. We will first consider linear matrices of the form L = I3 +
∑n

i=1 Aixi, where each
Ai ∈M3(Q) and the xi are noncommuting variables. The algorithm computes a complete
factorization of L into (at most three) irreducible linear matrix factors. By Cohn’s theorem
[6, Theorem 5.8.8], either L is irreducible or there is an invertible scalar matrix P such that

PLP −1 =
[

A 0
D B

]
. Either A or B is a 1×1 matrix. If A is a 1×1 matrix then corresponding

to it there is a 1-dimensional common invariant subspace spanned by a vector, say v, for the
matrices Ai, 1 ≤ i ≤ n. More precisely, the row vector vT is an eigenvector for each matrix
Ai, and vT Ai = λiv

T where λi ∈ Q is the corresponding eigenvalue of matrix Ai for each i.
Likewise, if B is a 1×1 matrix then there is a corresponding 1-dimensional common invariant
subspace spanned by a (column) vector u such that Aiu = µiu for eigenvalues µi of Ai. In
either case, the common eigenspace is easy to compute from the characteristic polynomial
of say A1 and then verifying that it is an eigenspace for the remaining Ai as well. This

will yield the factorization PLP −1 =
[
A 0
0 I

]
·
[

I 0
D I

]
·
[
I 0
0 B

]
, where B is a 2× 2 linear

matrix. The problem now reduces to factorizing the linear matrix B = I2 +
∑n

i=1 Bixi, where
Bi ∈M2(Q). A simple case analysis described below yields a polynomial-time algorithm for
factorization of B.

1. If the characteristic polynomial of any Bi is irreducible over Q then the linear matrix B

is clearly irreducible.
2. If some Bi has two distinct eigenvalues λ ̸= λ′ ∈ Q then the corresponding eigenspaces

are 1-dimensional, spanned by their eigenvectors u ̸= u′. Then either u or u′ has to be an
eigenvector for every Bj (otherwise B is irreducible), in which case we have a factorization
of B.

3. Suppose each Bi has only one eigenvalue λi. Then, by linear algebra, after a basis change

Bi is either of the form
[
λi 1
0 λi

]
in which case the eigenspace is 1-dimensional with

eigenvector (10)T . We can check if this eigenspace is invariant for each Bj or not as

before. Otherwise, after basis change each Bi =
[
λi 0
0 λi

]
= λiI2 and the factorization is

B =
[
1 +

∑n
i=1 λixi 0
0 1

]
·
[
1 0
0 1 +

∑n
i=1 λixi

]
. ◀
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