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Abstract
Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential
re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic
games with the total reward objective. This gives rise to an objective function that demands the
control of systems in a risk-averse manner. We show that the resulting games are determined and,
in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures
that previously have been considered in the special case of Markov decision processes and that
require randomization and/or memory. We provide several results on the decidability and the
computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds
a given threshold. In the most general case, the problem is decidable subject to Shanuel’s conjecture.
If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers,
leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further
restrictions on the encoding of the input allow the solution of the threshold problem in NP ∩ coNP.
Finally, an approximation algorithm for the optimal value of ERisk is provided.
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1 Introduction

Stochastic Models. Formal analysis of stochastic models is ubiquitous across disciplines
of science, such as computer science [4], biology [43], epidemiology [29], and chemistry [28],
to name a few. In computer science, a fundamental stochastic model are Markov decision
processes (MDPs) [46], which extend purely stochastic Markov chains (MCs) with non-
determinism to represent an agent interacting with a stochastic environment. Stochastic
games (SGs) [49, 18, 19] in turn generalize MDPs by introducing an adversary, modelling
the case where two agents engage in adversarial interaction in the presence of a stochastic
environment. Notably, SGs can also be used to conservatively model MDPs where transition
probabilities are not known precisely [15, 53]. See also [46] and [14, 21] for further applications
of MDPs and SGs.
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Figure 1 Illustration of the entropic risk measure. The random variable X takes values x1 to
x4 uniformly with probability 1

4 each. Expectation considers the average of xi, while entropic risk
yields the (normalized logarithm of the) average of yi = e−γxi .

Strategies and Objectives. In MDPs and SGs, the recipes to resolve choices are called
strategies. The objective of the agent is to optimize a payoff function against all possible
strategies of the adversary. One of the most fundamental problems studied in the context
of MDPs and SGs is the optimization of total reward (and the related stochastic shortest
path problem [7]). Here, every state (or, equivalently, transition) of the stochastic model is
assigned a cost or reward and the payoff of a trajectory is the total sum of rewards appearing
along the path. MDPs and SGs with total reward objectives provide an appropriate model to
study a wide range of applications, such as traffic optimization [27], verification of stochastic
systems [26, 47], or navigation / probabilistic planning [50].

Risk-Ignorance of Expectation. Typically, the expectation of the obtained total reward
is optimized. However, the expectation measure is ignorant towards aspects of risk; an
expectation maximizing agent accepts a one-in-a-million chance of extremely high rewards
over a slightly worse, but guaranteed outcome. Such a behaviour might be undesirable in
a lot of situations: Consider a one-shot lottery where with a chance of 10−6 we win 2 · 106

times our stake and otherwise lose everything – a two-times increase in expectation. The
optimal strategy w.r.t. expectation would bet all available assets, ending up broke in nearly
all outcomes.

Risk-Aware Alternatives. To address this issue, risk-aware objectives create incentives to
prefer slightly smaller performance in terms of expectation in exchange for a more “stable”
behaviour. To this end, several variants have been studied in the verification literature,
such as (a) variance-penalized expected payoff [45, 22] that combines the expected value
with a penalty for the variance of the resulting probability distribution; (b) trade-off of the
expectation and variance for various notions of variance [40, 11]; (c) quantiles and conditional
value-at-risk (CVaR) [47, 42, 35]; to name a few.

Drawbacks. The current approaches suffer from the following three drawbacks:
1. The above studies focus on the second moment (variance) along with the first moment

(mean), but do not incorporate other moments of the payoff distribution.
2. All approaches are studied only for MDPs; none of them have been extended to SGs.
3. Even in MDPs, the above problems require complicated strategies. For example, trade-offs

between expectation and variance require memory and randomization [11, 40], while
optimizing variance-penalized expected payoffs, quantiles, or the CVaR of the total reward
require exponential memory [45, 30, 44, 42].
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Entropic Risk. The notion of entropic risk [24] has been widely studied in finance and
operation research, see e.g. [23, 10]. Informally, instead of weighing each outcome uniformly
and then aggregating it (as in the case for regular expectation), entropic risk re-weighs
outcomes by an exponential function, then computes the expectation, and finally re-normalizes
the value. We illustrate this in Figure 1. The exact definition of entropic risk is introduced
later on.

Advantages. Aside from satisfying many desirable properties of risk measures established in
finance, entropic risk brings several crucial advantages in our specific setting, of which we list
a few: Compared to expectation, “bad” outcomes are penalized more than “good” outcomes
add value. Thus, an agent optimizing entropic risk seeks to reduce the chances of particularly
bad outcomes while also being interested in a good overall performance. In contrast to
variance minimization, it is beneficial to increase the probability of extremely good outcomes
(which would increase variance). Moreover, the entropic risk incorporates all moments of
the distribution. In particular, even if the expectation is infinite, entropic risk still provides
meaningful values (opposed to both expectation and variance). Note that the expected total
reward objective is often addressed under additional assumptions excluding this case [8, 26].
Additionally, entropic risk is a time-consistent risk measure. In our situation, this means
that the risk evaluation at a state is the same for any history. This is in stark contrast to,
e.g., quantile and CVaR optimal strategies, which after a series of unfortunate events start
behaving recklessly (e.g. expectation optimal). Due to these advantages, ERisk has already
been studied in the context of MDPs [33, 5]. However, to the best of our knowledge, neither
the arising computational problems nor the more general setting of SGs have been addressed.

1.1 Our results
In this work we consider the notion of entropic risk in the context of SGs as well as the
special cases of MCs and MDPs. For an overview of our complexity results, see Table 1.
1. Determinacy and Strategy Complexity. We establish several basic results, in particular

that SGs with the entropic risk objective are determined and that pure memoryless
optimal strategies exist for both players. This stands in contrast to other notions of risk,
where even in MDPs strategies require memory and/or randomization.

2. Exact Computation. When allowing Euler’s number e as the basis of exponentiation, the
threshold problem whether the optimal entropic risk lies above a given bound is decidable
subject to Shanuel’s conjecture. If the basis of exponentiation and all other numbers in
the input are rational, then all numbers resulting from the involved exponentiation are
shown to be algebraic. We obtain a reduction to the existential theory of the reals and
thus a PSPACE upper bound in this case.
Furthermore, we identify a notion of small algebraic instance in which all occurring
numbers are not only algebraic, but have a small representation and are contained in
an algebraic extensions of Q of low degree. The threshold problem for small algebraic
instances of MCs and MDPs can efficiently be solved by explicit computations in an
algebraic extension of Q. We obtain polynomial-time algorithms for MCs and MDPs, and
conclude that the threshold problem lies in NP ∩ co-NP for SGs in this case. For small
algebraic instances, we furthermore show that an explicit closed form of the optimal value
can be computed (a) in polynomial time for MCs; and consequently (b) in polynomial
space for SGs.

3. Approximate Computation. We provide an effective way to compute an approximation, i.e.
determine the optimal entropic risk up to a given precision of ε > 0. To this end, we show
that in the general case, by considering enough bits of arising irrational numbers, we can

MFCS 2023
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Table 1 Overview of the decidability and complexity results for SGs, MDPs and MCs.

threshold problem optimal value

general algebraic small algebraic computation for approximation with small
instances instances instances small algebraic rewards and risk

(Thm. 14) (Thm. 16) (Thm. 19) instances (Thm. 20) aversion factor (Thm. 21)

SGs decidable
subject to
Shanuel’s
conjecture

in PSPACE
(in ∃R)

in NP ∩ coNP in polynomial space in polynomial space
MDPs

in PTIME in polynomial timeMCs in polynomial time

bound the incurred error. In MDPs and MCs, the optimal value can be approximated in
time polynomial in the size of the model, in − log(ε), and in the magnitude of the rewards.
For SGs, this implies the existence of a polynomial-space approximation algorithm.

1.2 Related Work
The entropic risk objective has been studied before in MDPs: An early formulation can
be found in [33] under the name risk-sensitive MDPs focusing on the finite-horizon setting.
The paper [34] considers an exponential utility function applied to discounted rewards and
optimal strategies are shown to exist, but not to be memoryless in general. In [20], the
entropic risk objective is considered for MDPs with a general Borel state space and in [5]
a generalization of this objective is studied on such MDPs. To the best of our knowledge,
however, all previous work in the context of MDPs focuses on optimality equations and
general convergence results of value iteration, while the resulting algorithmic problems for
finite-state MDPs have not been investigated. Furthermore, we are not aware of work on the
entropic risk objective in SGs.

For other objectives capturing risk-aversion, algorithmic problems have been analyzed
on finite-state MDPs: Variance-penalized expectation has been studied for finite-horizon
MDPs with terminal rewards in [17] and for infinite-horizon MDPs with discounted rewards
and mean payoffs [22], and total rewards [45]. For total rewards, optimal strategies require
exponential memory and the threshold problem is in NEXPTIME and EXPTIME-hard [45].

In [40], the optimization of expected accumulated rewards under constraints on the
variance are studied for finite-horizon MDPs. Possible tradeoffs between expected value and
variance of mean payoffs and other notions of variability have been studied in [11].

To control the chance of bad outcomes, the problem to maximize or minimize the
probability that the accumulated weight lies below a given bound w has been addressed in
MDPs [30, 31]. Similarly, quantile queries ask for the minimal weight w such that the weight
of a path stays below w with probability at least p for the given value p under some or all
schedulers [51, 48]. Both of these problems have been addressed for MDPs with non-negative
weights and are solvable in exponential time in this setting [51, 30]. Optimal strategies
require exponential memory and the decision version of these problems is PSPACE-hard [30].

The conditional value-at-risk (CVaR), a prominent risk-measure, has been investigated
for mean payoff and weighted reachability in MDPs in [35] as well as for total rewards
in MDPs [44, 42]. The optimal CVaR of the total reward in MDPs with non-negative
weights can be computed in exponential time and optimal strategies require exponential
memory [44, 42]. The threshold problem for optimal CVaR of total reward in MDPs with
integer weights is at least as hard as the Positivity-problem for linear recurrence sequences,
a well-known problem in analytic number theory whose decidability status is, since many
decades, open [44].
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For all these objectives capturing risk-aversion in some sense, we are not aware of any
work addressing the resulting algorithmic problems on SGs.

2 Preliminaries

In this section, we recall the basics of (turn-based) SGs and relevant objectives. For further
details, see, e.g., [46, 4, 26, 21]. We assume familiarity with basic notions of probability
theory (see, e.g., [9]). We write D(X) to denote the set of all probability distributions over a
countable set X, i.e. mappings d : X → [0, 1] such that

∑
x∈X d(x) = 1. The support of a

distribution d is supp(d) := {x ∈ X | d(x) > 0}. For a set S, S⋆ and Sω refer to the set of
finite and infinite sequences of elements of S, respectively.

Markov Chains, MDPs, and Stochastic Games

A Markov chain (MC) (e.g. [4]), is a tuple M = (S, δ), where S is a set of states, and
δ : S → D(S) is a transition function that for each state s yields a probability distribution
over successor states. We write δ(s, s′) instead of δ(s)(s′) for the probability to move from
s to s′ for s, s′ ∈ S. A (infinite) path in an MC is an infinite sequence s0, s1, . . . of states
such that for all i, we have δ(si, si+1) > 0. We denote the set of infinite paths by PathsM.
Together with a state s, an MC M induces a unique probability distribution PrM,s over the
set of all infinite paths PathsM starting in s. For a random variable f : PathsM → R, we write
EM,s(f) for the expected value of f under the probability measure PrM,s.

A turn-based stochastic game (SG) (e.g. [18]) is a tuple (Smax, Smin, A, ∆), where Smax
and Smin are disjoint sets of Maximizer and Minimizer states, inducing the set of states
S = Smax ∪ Smin, A denotes a finite set of actions, furthermore overloading A to also act
as a function assigning to each state s a set of non-empty available actions A(s) ⊆ A, and
∆ : S × A → D(S) is the transition function that for each state s and (available) action
a ∈ A(s) yields a distribution over successor states. For convenience, we write ∆(s, a, s′)
instead of ∆(s, a)(s′). Moreover, opts

a∈A(s) refers to maxa∈A(s) if s ∈ Smax and mina∈A(s)
if s ∈ Smin, i.e. the preference of either player in a state s. We omit the superscript s

where clear from context. Given a function f : S → R assigning values to states, we write
∆(s, a)⟨f⟩ :=

∑
s′∈S ∆(s, a, s′) · f(s′) for the weighted sum over the successors of s under

a ∈ A(s). A Markov decision process (MDP) (e.g. [46]) can be seen as an SG with only one
player, i.e. Smax = ∅ or Smin = ∅.

The semantics of SGs is given in terms of resolving choices by strategies inducing an MC
with the respective probability space over infinite paths. Intuitively, a stochastic game is
played in turns: In every state s, the player to whom it belongs chooses an action a from the
set of available actions A(s) and the play advances to a successor state s′ according to the
probability distribution given by ∆(s, a). Starting in a state s0 and repeating this process
indefinitely yields an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω such that for every i ∈ N0
we have ai ∈ A(si) and ∆(si, ai, si+1) > 0. We refer to such sequences as (infinite) paths or
plays and denote the set of all infinite paths in a given game G by PathsG. Furthermore, we
write ρi to denote the i-th state in the path ρ. Finite paths or histories FPathsG are finite
prefixes of a play, i.e. elements of (S × A)⋆ × S consistent with A and ∆.

The decision-making of the players is captured by the notion of strategies. Strategies are
functions mapping a given history to a distribution over the actions available in the current
state. For this paper, memoryless deterministic strategies (abbreviated MD strategies, also
called positional strategies) are of particular interest. These strategies choose a single action
in each state, irrespective of the history, and can be identified with functions σ : S → A.
Since we show that these strategies are sufficient for the discussed notions, we define the
semantics of games only for these strategies and refer the interested reader to the mentioned

MFCS 2023
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literature for further details. We write ΠG for the set of all strategies and ΠMD
G for memoryless

deterministic ones. We call a pair of strategies a strategy profile, written π = (σ, τ). We
identify a profile with the induced joint strategy π(s) := σ(s) if s ∈ Smax and τ(s) otherwise.

Given a profile π = (σ, τ) of MD strategies for a game G, we write Gπ for the MC obtained
by fixing both strategies. So, Gπ = (S, δ̂), where δ̂(s) := ∆(s, π(s)). Together with a state s,
the MC Gπ induces a unique probability distribution Prπ

G,s over the set of all infinite paths
PathsG. For a random variable over paths f : PathsG → R, we write Eπ

G,s[f ] for the expected
value of f under the probability measure Prπ

G,s.

Objectives

Usually, we are interested in finding strategies that optimize the value obtained for a particular
objective. We introduce some objectives of interest.

Reachability. A reachability objective is specified by a set of target states T ⊆ S. We define
♢T = {ρ | ∃i.ρi ∈ T} the set of all paths eventually reaching a target state. Given a strategy
profile π and a state s, the probability for this event is given by Prπ

G,s[♢T ]. On games,
we are interested in determining the value ValG,♢T (s) := maxσ∈ΠMD

G
minτ∈ΠMD

G
Prσ,τ

G,s[♢T ] of a
state s, which intuitively is the best probability we can ensure against an optimal opponent.
Generally, one would consider supremum and infimum over strategies instead maximum and
minimum over MD strategies. However, for reachability we know that these value coincide
and the game is determined, i.e. the order of max and min does not matter [19]. Finally, we
know that the value ValG,♢T is a solution of the following set of equations

v(s) = 0 for s ∈ S0, v(s) = 1 for s ∈ T , and v(s) = opta∈A(s) ∆(s, a)⟨v⟩ otherwise, (1)

where S0 is the set of states that cannot reach T against an optimal Minimizer strategy [13].

Total Reward. The total reward objective is specified by a reward function r : S → R≥0,
assigning non-negative rewards to every state. The total reward obtained by a particular path
is defined as the sum of all rewards seen along this path, TR(ρ) :=

∑∞
i=1 r(ρi). Note that

since we assume r(s) ≥ 0, this sum is always well-defined. Classically, we want to optimize
the expected total reward, i.e. determine ValG,E TR(s) := maxσ∈ΠMD

G
minτ∈ΠMD

G
Eσ,τ

G,s[TR]. This
game is determined and MD strategies suffice [16]. (To be precise, that work considers a
more general formulation of total reward, our case is equivalent to the case ⋆ = c and T = ∅
(Def. 3) and the quantitative rPATL formula ⟨⟨{1}⟩⟩Rr

max=?[Fcff].)

3 Entropic Risk

As hinted in the introduction, for classical total reward we optimize the expectation and
disregard other properties of the actual distribution of obtained rewards. This means that
an optimal strategy may accept arbitrary risks if they yield minimal improvements in terms
of expectation. To overcome this downside, we consider the entropic risk:

▶ Definition 1. Let b > 1 a basis, X a random variable, and γ > 0 a risk aversion factor.
The entropic risk (of X with base b and factor γ) (see, e.g., [25]) is defined as

ERiskγ(X) := − 1
γ logb(E[b−γX ]).

One often chooses b = e. Nevertheless, we also consider rational values for b, which allows us
to apply techniques from algebraic number theory to arising computational problems.
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▶ Example 2. Consider a random variable X that takes values x1 = 1, x2 = 2, x3 = 4, and
x4 = 5 with probability 1/4 each. Figure 1 illustrates how the entropic risk measure of X

with base e is obtained for some risk aversion factor γ: The values xi are depicted on the
x-axis. We now map the values xi to values yi = e−γxi on the y-axis. Then, the expected
value of e−γX can be obtained as the arithmetic mean of the values yi. The result is mapped
back to the x-axis via y 7→ − 1

γ log(y), the inverse of x 7→ e−γx, and we obtain ERiskγ(X).

The example shows that deviations to lower values are penalized, i.e. taken into consideration
more strongly, by this risk measure. For a different perspective, we can also consider the
Taylor expansion of ERisk w.r.t. γ, which is ERiskγ(X) = E[X] − γ

2 · Var[X] + O(γ2) (see,
e.g., [2]). The terms hidden in O(γ2) comprise all moments of X and exhibit an asymmetry
such that ERisk is roughly the expected value minus a penalty for deviations to lower values.

3.1 Entropic Risk in SGs
We are interested in the case X = TR, i.e. optimizing the risk for total rewards. We write

ERiskγ
G,ŝ(π) := − 1

γ logb(Eπ
G,ŝ[b−γX ])

to denote the entropic risk of the total reward achieved by the strategy profile π when
starting in state ŝ, omitting sub- and superscripts where clear from context. Clearly, this
is well defined for any profile: We have that b−γ TR(ρ) = b−γ

∑∞
i=1

r(ρi) =
∏∞

i=1 b−γr(ρi) and
each factor lies between 0 and 1, thus the product converges (possibly with limit 0).

We also give an insightful characterization for integer rewards. If r(s) ∈ N, we have

ERiskγ
G,ŝ(π) = − 1

γ logb

(∑∞

n=0
Prπ

G,ŝ[TR = n] · b−γn
)

. (2)

Naturally, our goal is to optimize the entropic risk. In this work, we mainly consider the
corresponding decision variant, which we call the entropic risk threshold problem:

Entropic risk threshold problem: Given an SG G, state ŝ, reward function r, risk
parameter γ, risk basis b, and threshold t, decide whether there exists a Maximizer
strategy σ such that for all Minimizer strategies τ we have ERiskγ

G,ŝ((σ, τ)) ≥ t.

Note that (for now) we do not assume any particular encoding of the input. For example,
the reward function r could be given symbolically, describing irrational numbers. A second
variant of the threshold problem asks whether the optimal value

ERiskγ∗
G,s := supσ∈ΠG

infτ∈ΠG ERiskγ
G,s((σ, τ)) (3)

is at least t for a given threshold t. We will see that SGs with the entropic risk as objective
function are determined and hence the two variants are equivalent. Before proceeding with
our solution approaches, we provide an illustrative example.

▶ Example 3. Consider the MDP of Figure 2. The optimal total reward is obtained by
choosing action risk in state s1: Then, we actually obtain an infinite total reward through
state s2. In comparison, choosing action safe would yield a reward of 6 in total. Now,
consider the entropic risk. When choosing action risk, we obtain a total reward of 2 and ∞
with probability 1

2 each, while action safe yields 6 with probability 1. Let b = 2 and γ = 1
for simplicity. Then, we obtain an entropic risk of − log2( 1

22−2 + 1
22−∞) = 3 under action

risk and − log2(2−6) = 6 for safe. Thus, action safe is preferable.

MFCS 2023
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s1, 2 s2, 2

s3, 0s4, 4
safe

0.5

0.5

risk

Figure 2 Our running example to demonstrate several properties of entropic risk. For ease of
presentation, the system actually is an MDP, where all states belong to Maximizer. States are
denoted by boxes and their reward is written next to the state name. Transition probabilities are
written next to the corresponding edges, omitting probability 1.

▶ Remark 4. As hinted above, entropic risk is finite whenever a finite reward is obtained with
non-zero probability, i.e. for any strategy profile π, ERiskγ

G,ŝ(π) = ∞ iff Prπ
G,ŝ[TR = ∞] = 1.

In contrast, expectation is infinite whenever there is a non-zero chance of infinite reward, i.e.
Eπ

G,ŝ[TR] = ∞ iff Prπ
G,ŝ[TR = ∞] > 0. So, entropic risk allows us to meaningfully compare

strategies which yield infinite total reward with some positive probability.

3.2 Exponential Utility
Observe that the essential part of the entropic risk is the inner expectation. Thus, we consider
the negative exponential utility

NegUtilγG,ŝ(π) := Eπ
G,ŝ[b−γ TR].

We have ERiskγ
G,ŝ(π) = − 1

γ logb(NegUtilγG,ŝ(π)). Observe that in our case 0 ≤
NegUtilγG,ŝ(π) ≤ 1 for any π, as 0 ≤ TR ≤ ∞. Moreover, ERiskγ

G,ŝ(π) ≥ t iff
NegUtilγG,ŝ(π) ≤ b−γ·t, thus, a risk-averse agent (in our case Maximizer) wants to mini-
mize NegUtil. The optimal value is

NegUtilγ∗
G,s := infσ∈ΠGsupτ∈ΠG

Eσ,τ
G,s[b−γ TR]. (4)

We again omit sub- and superscripts where clear from context. We show later that games
with NegUtil or ERisk as payoff functions are determined. Thus, the order of sup and
inf in the above definition does not matter. We call a Maximizer-strategy σ optimal if
ERiskγ∗

G,s = infτ∈ΠG ERiskγ
G,s((σ, τ)) and analogously for Minimizer-strategies.

4 Basic Properties and Decidability

In this section, we establish several results for SGs with entropic risk as objective functions
concerning determinacy, strategy complexity, and decidability in the general case. We mainly
work on games with NegUtil as payoff function. As ERisk can be obtained from NegUtil via
the monotone function − 1

γ log(·), most results, such as determinacy or strategy complexity,
will transfer directly to games with ERisk as objective function.

First, we show that the games are determined, i.e. the order of sup and inf in Equation (3)
and Equation (4) can be switched. Then, we show that games with NegUtil as payoff
function can be seen as reachability games via a reduction that introduces irrational transition
probabilities in general. We conclude that considering only MD strategies is sufficient to
obtain the optimal value, i.e. sup and inf can be replaced with a max and min over MD
strategies. From this, we derive a system of inequalities that has a solution if and only if
the optimal value satisfies ERisk∗ ≥ t for a given threshold t. We conclude this section by
observing that the satisfiability of this system of inequalities can be expressed as a sentence
in the language of the reals with exponentiation. In this way, we obtain the conditional
decidability of the entropic risk threshold problem in SGs subject to Shanuel’s conjecture.
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Throughout this section, fix a game G, reward function r, state ŝ, risk parameter γ, and
risk basis b. Omitted proofs can be found in the extended version [3].

4.1 Determinacy and Optimality Equation
▶ Lemma 5. Stochastic games with NegUtil as payoff function are determined, i.e.

infσ∈ΠGsupτ∈ΠG
Eσ,τ

G,s[b−γ TR] = supτ∈ΠG
infσ∈ΠGE

σ,τ
G,s[b−γ TR].

Proof. This follows from the classical result on determinacy of Borel games [41], see [39] for
a concrete formulation for stochastic games. In particular, the game is zero-sum and NegUtil
is a bounded, Borel-measurable function. ◀

As ERisk is obtained from NegUtil via a monotone function, also games with ERisk as payoff
function are determined. While ERisk∗ is difficult to tackle directly due to its non-linearity,
we can derive the following optimality equation for NegUtil∗:

▶ Lemma 6. The optimal utility NegUtil∗ is a solution of the following system of constraints:

v(s) = b−γr(s) · opts
a∈A(s) ·

∑
s′∈S

∆(s, a, s′) · v(s′), (5)

where opts is min for a Maximizer state s and max for a Minimizer state.

Unfortunately, NegUtil is not the unique or, at least, the pointwise smallest or largest
fixed point of this equation system. Consider the case where r ≡ 0, i.e. b−γr(s) = 1. Here,
every constant vector is a fixed point, however NegUtil∗ ≡ 1. More generally, as the equations
are purely multiplicative, for any fixed point v, every multiple λ · v is a fixed point, too.

▶ Example 7. Again consider the example of Figure 2 with b = 2 and γ = 1. The (simplified)
equations we get are:

v1 = 2−2 · min{ 1
2 v2 + 1

2 v3, v4} v2 = 2−2 · v2 v3 = v3 v4 = 2−4 · v3,

where vi corresponds to the value of si. First, for v2, we observe that v2 = 0 is the only valid
assignment. Then, we have that v1 = 2−2 · min{ 1

20 + 1
2 v3, 2−4v3} = 2−3 · min{v3, 2−3v3}.

Clearly, this system is underdetermined and we obtain a distinct solution for any value of v3.

To solve these issues, we need to define “anchors” of the equation. We observe the resemblance
of classical fixed point equations for stochastic systems. In particular, for r ≡ 0, Equation (5)
is the same as for reachability, Equation (1).

4.2 Reduction to Reachability
We define S0 = {s | maxσminτ Prσ,τ

G,s[TR > 0] = 0} and S∞ = {s | maxσminτ Prσ,τ
G,s[TR =

∞] = 1} the set of states in which Maximizer cannot obtain a total reward of more than 0
with positive probability against an optimal opponent strategy or ensure infinite reward with
probability 1, respectively. We show later on that these sets are simple to compute and MD
strategies are sufficient. Since r(s) ≥ 0, all states in s ∈ S0 necessarily have r(s) = 0. Observe
that S0 may be empty, but then S = S∞ and so NegUtil∗ = 0, ERisk∗ = ∞. Through these
sets, we can connect optimizing the utility to a reachability objective.
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▶ Lemma 8. For any state s in the game G, the optimal utility NegUtil∗ is equal to the
minimal probability of reaching the set S0 from s in game GR, defined as follows: We
add a designated sink state s (which may belong to either player and only has a self-loop
back to itself) and define ∆R(s, a, s′) = b−γr(s′) · ∆(s, a, s′) for s, s′ ∈ S, a ∈ A(s) and
∆R(s, a, s) = (1 − b−γr(s)). There is a direct correspondence between optimal strategies.

We note that reachability games can also be reduced to our case:

▶ Lemma 9. For any game G and (absorbing) reachability goal T , we have ValG,♢T (s) =
1 − NegUtil∗G(s) with reward r(s) = 1T (s) and γ = 1.

We highlight that this reduction from entropic risk games to reachability games is not
an effective reduction in the computational sense, since GR comprises irrational transition
probabilities even for entirely rational inputs. We discuss how to tackle this in the next
section and first proceed to derive some useful properties from this correspondence.

▶ Lemma 10. The optimal utility NegUtil∗ is the pointwise smallest solution of

v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0, and

v(s) = opts
a∈A(s)b

−γr(s) · ∆(s, a)⟨v⟩ otherwise
(6)

Yet, there might be multiple fixed points to the system of equations. This is to be
expected, since already reachability on MDPs exhibits this problem [32]. We provide a
discussion of these issues together with a sufficient condition for uniqueness in the extended
version [3].

4.3 Strategy Complexity
By Lemma 8, the optimal negative exponential utility is achieved by reachability-optimal
strategies in GR. With the known results on reachability [18], this yields:

▶ Theorem 11. MD strategies are sufficient to optimize the negative exponential utility and
thus also entropic risk. More precisely, for all SGs G, there is an MD strategy σ for the
Maximizer such that ERiskγ∗

G,s = infτ∈ΠG ERiskγ
G,s((σ, τ)) and analogously for the Minimizer.

▶ Remark 12. We highlight that this means that this notion of risk is history independent:
Which actions are optimal does not depend on what has already “gone wrong”, but purely on
the potential future consequences. This is in stark contrast to, e.g., conditional value-at-risk
optimal strategies for total reward, which require exponential memory and switch to a purely
expectation maximizing (i.e. risk-ignorant) behaviour after “enough” went wrong [42].

4.4 System of Inequalities
The problem we want to solve is deciding whether the Maximizer can ensure an entropic risk
of at least t. Unfortunately, the reachability game GR is not directly computable, since even
for rational rewards b−γr(s) may be irrational. As such, we cannot use this transformation
directly to prove decidability or complexity results and need to take a different route.
Analogous to the classical solution to reachability, we first convert the problem to a system of
inequalities. Intuitively, we replace every max with ≥ for all options and dually min with ≤
(again, recalling that Maximizer wants to minimize the value in GR). Formally, we consider
the following:
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v(ŝ) ≤ b−γt, v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0,

v(s) ≤ b−γr(s) · ∆(s, a)⟨v⟩ for s ∈ Smax, a ∈ A(s),

v(s) ≥ b−γr(s) · ∆(s, a)⟨v⟩ for s ∈ Smin, a ∈ A(s), and∨
a∈A(s)

v(s) = b−γr(s) · ∆(s, a)⟨v⟩ for s ∈ S

(7)

Observe that this essentially is the decision variant to the standard quadratic program for
reachability applied to GR [19].

▶ Lemma 13. The system of equations 7 has a solution if and only if ERisk∗ ≥ t.

4.5 Decidability Subject to Shanuel’s Conjecture
From Equation (7), we obtain a conditional decidability result for the general case:

▶ Theorem 14. Let all quantities, i.e. rewards, transition probabilities, the risk-aversion
factor γ, and the basis b be given as formulas in the language of reals with exponentiation
(i.e. with functions +, ·, and exp: x 7→ ex). Then, the entropic risk threshold problem for
SGs is decidable subject to Schanuel’s conjecture.

Proof. In this case, the existence of a solution to Equation (7) can also be expressed as
a sentence in the language of the reals with exponentiation. The corresponding theory is
known to be decidable subject to Shanuel’s conjecture (see e.g. [37]) as shown by [38], and
decidability of this theory is equivalent to the so-called “weak Schanuel’s conjecture”. ◀

In particular, this allows us to treat instances with basis b = e. Yet, even if all rewards,
transition probabilities, and γ are given as rational values, but the basis b equals e, we do
not know how to check the satisfiability of Equation (7) without relying on the theory of
the reals with exponentiation. Note, however, that we do not need the “full power” of the
exponential function: All values appearing in an exponent in Equation (7) are constants. So,
the restricted exponential function that agrees with exp on a closed interval [a1, a2] and is zero
outside of this interval is sufficient. The theory of the reals with restricted exponentiation has
some additional nice properties compared to the theory of the reals with full exponentiation:
For example, it allows for quantifier elimination by [52] and related works. Nevertheless, this
does not allow us to immediately obtain an unconditional decidability result.

5 The Algebraic Case

If all occurring values are rational, then all numbers of the system of inequalities Equation (7)
are algebraic. The results of this section establish that the threshold problem for such
instances is decidable. A detailed exposition of the results can be found in the extended
version [3]; an overview of the complexity results can also be found in Table 1. Formally, we
define:

▶ Definition 15. An algebraic instance of the entropic risk threshold problem is an instance
where all occurring values, i.e. the transition probabilities of the game G, all rewards assigned
by the reward function r, the risk-aversion parameter γ, the basis b, and the threshold t, are
rational and encoded as the fraction of co-prime integers in binary.
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In general, for algebraic instances, there is a reduction of our problem to the existential
theory of the reals, leading to the following result where ∃R denotes the complexity class of
problems that are polynomial-time reducible to the existential theory of the reals:

▶ Theorem 16. For algebraic instances, the entropic risk threshold problem is decidable in
∃R and thus in PSPACE.

Already for Markov chains, it is unclear whether the upper complexity bound can be
improved. For a discussion on this issue, see also the extended version [3].

For Theorem 16, we use the standard decision procedure for the existential theory of the
reals as a “black box” and do not make use of the special form of our problem. To exploit
the specific structure of the system of inequalities, we note that for explicit computations on
algebraic numbers the following two quantities are relevant for the resulting computational
complexity: Firstly, the degree of the field extension of Q in which the computation can
be carried out. Secondly, the bitsize of the coefficients of the minimal polynomials of the
involved algebraic numbers (see, e.g., [1, 6]). Alternatively, the bitsize of the representations
of the algebraic numbers in a fixed basis of the field extension in which the computations can
be carried out can be used. Note that the size of the basis is precisely the degree of that field
extension. Motivated by these observations, we consider small algebraic instances, which
allow us to prove that all occurring algebraic numbers have a sufficiently small representation.

▶ Definition 17. A small algebraic instance of the entropic risk threshold problem consists
of a SG G with rational transition probabilities, an integer reward function r, a rational
risk-aversion parameter γ, a rational basis b, and a rational threshold t. Moreover, the
rewards, γ, and t are encoded in unary, and as the fraction of co-prime integers encoded in
unary, respectively. The remaining rational numbers are encoded as the fraction of co-prime
integers in binary. If G is an MDP or a MC, we call the instance a small algebraic instance
of an MDP or a MC.

▶ Remark 18. For simplicity, we assume for small algebraic instances that all rewards are in
N. If this is not the case, we can multiply all rewards with the least common multiple D

of the denominators of the rewards and use a new risk-aversion parameter γ′ = γ/D. The
resulting negative exponential utility is not affected by this transformation. The change of
the optimal entropic risk by a factor of D can be addressed by also rescaling the threshold
t′ = t · D. Nevertheless, note that this affects the encoding size of the risk-aversion factor γ.
Relying on algorithms for explicit computations in algebraic numbers [1, 6], we obtain:

▶ Theorem 19. For small algebraic instances, the entropic risk threshold problem: (a)
belongs to NP ∩ coNP for SGs; and (b) can be solved in polynomial time for MDPs or MCs.

While the mentioned results concern the threshold problem, we can even go a step further
in small algebraic instances of MCs. Here, the system of inequalities simplifies to a linear
system of equations, which we can solve explicitly in the algebraic numbers. For small
algebraic instances, this is possible in polynomial time yielding the following result.

▶ Theorem 20. For small algebraic instances, an explicit representation of NegUtil∗ can be
computed in: (a) polynomial time for MCs; and (b) in polynomial space for SGs and MDPs.

6 Approximation Algorithms

The results of the previous section suggest, depending on the form of the input, a polynomial-
space algorithm or even worse in the general case. Clearly, this is somewhat unsatisfactory
for practical applications. Recall that the difficulties are due to the occurring irrational
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transition probabilities. In the hope that we can work with approximations of these numbers,
we now aim to identify an approach which allows us to approximate the correct answer, i.e.
compute a value close to the optimal entropic risk that the Maximizer can ensure. Again,
fix an SG G, reward function r, risk parameter γ, and risk basis b throughout this section.
Then, given a precision ε > 0, we aim to compute a value v such that |ERisk∗ − v| < ε, i.e.
an approximation with small absolute error.

Since entropic risk is the logarithm of utility, we need to obtain an approximation of
NegUtil∗ to a sufficiently small relative error. Concretely, we need to compute a value vU

such that b−γε ≤ vU / NegUtil∗ ≤ bγε. Then, v = − 1
γ logb(vU ) yields an approximation, since

ERisk∗ − v = − 1
γ logb(NegUtil∗) + 1

γ logb(vU ) = 1
γ logb(vU / NegUtil∗) = (∗)

(∗) ≥ 1
γ logb(b−γε) = −ε and (∗) ≤ 1

γ logb(bγε) = ε.

(When we are interested in a concrete value for v, we need to determine vU with a slightly
higher precision and then approximate logb(vU ) sufficiently.) Now, in order to approximate
NegUtil∗, we still need to deal with a system comprising potentially irrational transition
probabilities. We argue that the occurring values b−γr(s) can be “rounded” to a sufficient
precision while keeping the overall relative error small. Using techniques from [12], we provide
an effective way to compute a game G≈, which behaves “similarly” to the reachability game
GR from Lemma 8, in the extended version [3]. Once G≈ is computed, we can employ classical
solution methods, such as linear equation solving for MCs, linear programming for MDPs, or,
e.g., quadratic programming for SGs leading to an algorithm in polynomial space for SGs.

▶ Theorem 21. In MCs and MDPs, the optimal value ERisk∗ can be approximated up to an
absolute error of ε in time polynomial in the size of the system, − log(ε), log b, γ · rmax, and
1/(γ · rmin), where rmax and rmin are the largest and smallest occurring non-zero rewards,
respectively. For SGs, this is possible in polynomial space.

In particular, for fixed b and γ, and bounded rewards (both from above and below), we
obtain a PTIME solution for MC and MDP. In general, the procedure is exponential for SG.
Alternatively, we can also apply different approaches such as value iteration [36].

▶ Remark 22. We note the connection to the small algebraic case: The “limiting factor” in
both cases is the (size of the) product of γ and the state rewards. If these are fixed or given
in unary, respectively, the complexity of our proposed algorithms is significantly reduced.

As a final note, recall that we do not assume γ or the transition probabilities to be rational.
We only require that we can expand their binary representation to arbitrary precision. Then,
we can conservatively approximate their logarithm to evaluate the required rounding precision
and approximate the transition probabilities of G≈ in the same way.

7 Conclusion

We applied the entropic risk to total rewards in SGs to capture risk-averse behavior in these
games. The objective forces agents to achieve a good overall performance while keeping the
chance of particularly bad outcomes small. We showed that SGs with the entropic risk as
payoff function are determined and admit optimal MD-strategies. This reflects the time-
consistency of entropic risk and makes entropic risk an appealing objective as, in contrast,
the optimization of other risk-averse objective functions that have been studied on MDPs in
the literature require strategies with large memory or complicated randomization.
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Computationally, difficulties arise due to the involved exponentiation leading to irrational
or even transcendental numbers. For the general case, we obtained decidability of the
threshold problem only subject to Shanuel’s conjecture while for purely rational inputs, the
problem can be solved via a reduction to the existential theory of the reals. Additional
restrictions on the encoding of the input allowed us to obtain better upper bounds. Further,
we provided an approximation algorithm for the optimal value. For an overview of the results,
see Table 1.

A question that is left open is whether the entropic risk threshold problem for algebraic
instances of MCs can be solved more efficiently than by the polynomial-time reduction to
the existential theory of the reals. This case constitutes a bottleneck in the complexity.
Furthermore, we worked with non-negative rewards, which made a reduction from games
with the entropic risk objective to reachability games possible. Dropping the restriction
to non-negative rewards constitutes an interesting direction of future research, in which
additional difficulties arise and a reduction to reachability is not possible anymore. A further
direction for future work is the experimental evaluation of the proposed algorithms to assess
their practical applicability as well as to investigate the behavior of the resulting optimal
strategies. In particular, it might be interesting to investigate the “cost” of risk-awareness,
namely how much the expected total reward of a risk-aware strategy differs from a purely
expectation maximizing one on realistic systems.
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