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Abstract
We study the separability problem for automatic relations (i.e., relations on finite words definable by
synchronous automata) in terms of recognizable relations (i.e., finite unions of products of regular
languages). This problem takes as input two automatic relations R and R′, and asks if there exists
a recognizable relation S that contains R and does not intersect R′. We show this problem to be
undecidable when the number of products allowed in the recognizable relation is fixed. In particular,
checking if there exists a recognizable relation S with at most k products of regular languages that
separates R from R′ is undecidable, for each fixed k ⩾ 2. Our proofs reveal tight connections, of
independent interest, between the separability problem and the finite coloring problem for automatic
graphs, where colors are regular languages.
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1 Introduction

Context. The study of classes of relations on words has become an important topic in
language theory [12, 23, 5, 13, 9], and also in areas such as databases and verification
where they are used to build expressive languages. For instance, classes of relations of
this kind are relevant for querying strings over relational databases [3], comparing paths
in graph databases [2], or defining string constraints for model checking [20]. The most
studied such classes include recognizable, automatic, and rational relations, each one of the
latter two strictly extending the previous one. Rational relations are those definable by
multi-head automata, with heads possibly moving asynchronously; automatic relations are
rational relations that are accepted by multi-head automata whose heads are forced to move
synchronously; and recognizable relations correspond to finite unions of products of regular
languages (or, equivalently, to languages recognized via finite monoids, by Mezei’s Theorem).
By definition, all of these classes coincide with the class of regular languages when restricted
to unary relations.

1 This result was achieved by using the knowledge package and its companion tool knowledge-clustering.
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17:2 Separating Automatic Relations

Prior work has focused on the Rec-definability problem, which takes as input
an n-ary rational relation R and asks whether it is equivalent to a recognizable relation⋃

i Li,1 × · · · × Li,n, where each Li,j is a regular language. Intuitively, the problem asks
whether the different components of the rational relation R are almost independent of one
another. The study of Rec-definability is relevant since relations enjoying this property
are often amenable to some analysis including, e.g., abstract interpretations in program
verification, variable elimination in constraint logic programming, and query processing over
constraint databases (see the introduction of [1] for a thorough discussion on this topic).

In general, Rec-definability of rational relations is undecidable, but it becomes
decidable for two important subclasses: deterministic rational relations and automatic
relations. For deterministic rational relations, Rec-definability has been shown to be
decidable in double-exponential time for binary relations by Valiant [27] – improving Stearns’s
triple-exponential bound [25]. The decidability result was later extended to relations of
arbitrary arity by Carton, Choffrut and Grigorieff [8, Theorem 3.7]. For automatic relations,
the decidability of Rec-definability can be obtained by a simple reduction to the problem
of checking whether a finite automaton recognizes an infinite language [21] – which is decidable
via a standard reachability argument. The precise complexity of the problem, however, was
only recently pinned down. By applying techniques based on Ramsey Theorem over infinite
graphs, it was shown that Rec-definability of automatic relations is PSpace-complete
when relations are specified by non-deterministic automata [1, Theorem 1] [4, Corollary 2.9].

On the other hand, much less is known about the Rec-separability problem, which
takes two n-ary rational relations R, R′ ⊆ A∗×A∗ and checks whether there is a recognizable
relation S =

⋃
i Li,1 × · · · × Li,n with R ⊆ S and R′ ∩ S = ∅. In other words, this problem

asks whether we can overapproximate R with a recognizable relation S that is constrained
not to intersect with R′. Separability problems of this kind abound in theoretical computer
science, in particular in formal language theory where they have gained a lot of attention
over the last few years – see, e.g., [24, 16, 11, 10].

As for definability, the Rec-separability problem for rational relations is in general
undecidable. In this paper we focus on the separability problem for automatic relations, that
is, the restriction of the Rec-separability problem defined above to the case when both
R and R′ are automatic relations. Notice that when R′ is the complement of R this problem
boils down to Rec-definability. However, Rec-separability for automatic relations is
more general than Rec-definability, and to this day it is unknown whether it is decidable.

Main contributions and technical approach. While we do not solve the separability problem
for automatic relations, we report on some significant progress in our understanding of the
problem. We start by establishing a tight connection between Rec-separability and the
colorability problem for “automatic graphs”, which may shed some light on the difficulty
of the former problem. An automatic graph [7, 14, 17, 18] is an infinite graph defined on a
regular set of finite words, whose edge set is described by a binary automatic relation. The
regular colorability problem is then the problem of checking if a given automatic
graph is finitely colorable, with the restriction that each color forms a regular language.
Concretely, we show that the Rec-separability problem for binary automatic relations is
equivalent, under polynomial time reductions, to the regular colorability problem.
Moreover, we introduce a hierarchy (k-Rec)k>0 of recognizable relations so that the coloring
problem, when restricted to k > 0 colors – called k-regular colorability problem –
reduces to the separability problem by relations of k-Rec. Concretely:



P. Barceló, D. Figueira, and R. Morvan 17:3

▶ Theorem 3.1. There are polynomial-time reductions:
1. from the Rec-separability problem to the regular colorability problem;
2. from the regular colorability problem to the Rec-separability problem; and
3. from the k-regular colorability problem to the k-Rec-separability problem,

for every k > 0.
Further, the last two reductions are so that the second relation in the instance of the separa-
bility problem is the identity Id.

The regular colorability problem seems challenging, and in particular we lack
tools for establishing that an automatic graph is finitely colorable; let alone checking that
said colors define regular sets. On the other hand, it is easy to see that the k-regular
colorability problem is undecidable for each fixed k > 1 if we lift the restriction that
colors define regular sets, i.e., checking if an automatic graph admits a k-coloring – this has
been proved in an unpublished thesis by Köcher [15, Proposition 6.5]. To be more precise, the
problem is even co-recursively enumerable-complete2. We establish that this undecidability
holds even with the restriction on colors being regular sets:

▶ Theorem 4.4. The k-regular colorability problem on automatic graphs is un-
decidable, for every k ⩾ 2. More precisely, the problem is recursively enumerable-complete.
This holds also for connected automatic graphs.

Note that the definitions of k-regular colorability problem and k-colorability
problem look similar, and are both undecidable, but the former is RE-complete while the
latter is coRE-complete.

By reduction from the k-regular colorability problem we obtain an important
consequence for our separability problem: It is undecidable to check if two automatic relations
can be separated by a recognizable relation defined by a fixed number of unions of products of
regular languages. More specifically, fix k > 0 and define k-Prod as the class of recognizable
relations of the form S =

⋃
1⩽i⩽k Li,1 × · · · × Li,n – this hierarchy is intertwined with

the (k-Rec)k>0 hierarchy introduced previously. We show that the k-Prod-separability
problem, i.e., the problem of checking separability for binary automatic relations R and R′

in terms of a recognizable relation S in the class k-Prod, is undecidable for any k ⩾ 2.

▶ Theorem 5.6. The k-Prod-separability problem is undecidable, for every k ⩾ 2.

At this point, a natural question is whether our choice of restricting the study to the
class k-Prod, for fixed k > 1, is not too strong, in the sense that it turns undecidable not
only the separability but also the definability problem for automatic relations. We show that
this is not the case; in fact, by using a simple adaptation of the proof techniques in [1] we
can show that the problem of checking if an automatic relation can be expressed as a relation
in k-Prod, for any fixed k > 0, is decidable in single-exponential time:

▶ Corollary 6.4. The k-Prod-definability problem is decidable, for every k > 0.

Remark. For simplicity, we focus on binary automatic relations only. Extending the
decidability results to n-ary automatic relations, for n > 2 is direct by applying tools in [1].

2 The upper bound follows from De Bruijn–Erdős Theorem.

MFCS 2023
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2 Preliminaries

Automatic and recognizable relations. Let A be a finite alphabet. We write A⊥ for the
extension of A with a fresh symbol ⊥. Given a pair (w1, w2) ∈ A∗ × A∗, we write w1 ⊗ w2
for the word over alphabet A⊥ × A⊥ that is obtained as follows: first, padding the shorter
word with ⊥’s until both words are of the same length, and then reading the two words
synchronously as if they were a single word over a binary alphabet. For example, if w1 = aaba

and w2 = aa, then w1 ⊗ w2 = (a, a)(a, a)(b,⊥)(a,⊥). For any relation R ⊆ A∗ × A∗, let us
write ⊗R to denote the set

⊗R =̂ {u⊗ v | (u, v) ∈ R} ⊆ (A⊥ × A⊥)∗.

We then have the following:
R ⊆ A∗ × A∗ is an automatic relation iff ⊗R is a regular language;
R ⊆ A∗×A∗ is a recognizable relation iff R =

⋃n
i=1 Ai×Bi, where n ∈ N and all the Ai’s

and Bi’s are regular languages over A.
We denote by Rec the class of all recognizable relations.

▶ Example 2.1. For any fixed constant c > 0, the relation R composed by all pairs of words
of the form (an, an+c), for n ⩾ 0, is automatic. In turn, R is not recognizable. An example
of a non-automatic relation is the one consisting of all pairs of the form (an, ad·n), for n > 0,
for any constant d > 1. ⌟

Separability. Let R and R′ be automatic relations over an alphabet A. A recognizable
relation S over A separates R from R′ if R ⊆ S and R′ ∩ S = ∅.

▶ Example 2.2. Consider the automatic relations R = {(an, an+1) | n ⩾ 0} and R′ =
{(an, an+2) | n ⩾ 0}. They are separable by the recognizable relation

S = (Aeven ×Aodd) ∪ (Aodd ×Aeven),

where Aeven and Aodd are the regular languages (aa)∗ and a(aa)∗, respectively. ⌟

We study the following separability problem, for a class C of recognizable relations.

Problem: C-separability problem
Input: Automatic relations R and R′ over A

Question: Is there a recognizable relation in C over A that separates R from R′?

We also consider the C-definability problem, which takes as input an automatic relation
R and asks if there is a recognizable relation S in C with S = R. It is easy to see that the
C-definability problem corresponds to an instance of the C-separability problem.

▷ Fact 2.3. For any class C of recognizable relations, the C-definability problem is
Turing-reducible to the C-separability problem.

Proof. Reduce an instance R of the definability problem to the instance (R, (A∗×A∗)\R)
of the separability problem. ◀

The following is known regarding the complexity of the Rec-definability problem.

▶ Proposition 2.4 ([1, Theorem 1]). The Rec-definability problem for automatic relations
specified by non-deterministic automata is PSpace-complete.
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Automatic graphs. Let L be a language of finite words over A, and R ⊆ L × L binary
relation over A. They naturally define a directed graph G = ⟨L, R⟩, i.e., the nodes of G are
the words over L and there is an edge in G from word u to word v iff (u, v) ∈ R. An automatic
graph is a graph of the form ⟨L, R⟩, for R an automatic relation and L a regular language3.
A k-coloring of ⟨L, R⟩ is a partition of L into k sets V1, . . . Vk such that (Vi × Vi) ∩E = ∅
for every i.

▶ Example 2.5. Consider again the automatic relation R = {(an, an+c) | n ⩾ 0}, where
c > 0 is a fixed constant. The graph ⟨a∗, R⟩ is formed by a disjoint union of c infinite directed
paths, and thus it is 2-colorable. ⌟

A k-regular coloring of an automatic graph is a k-coloring whose colors (Vi)1⩽i⩽k are regular
languages. A regular coloring is a k-regular coloring for some k.

▶ Example 2.6. The automatic graph ⟨a∗, R⟩ from Example 2.5 is 2-regular colorable. In
fact, it suffices to define color V1 as having every word of the form an with n ≡ i (mod 2c),
for i ∈ [0, c− 1], and V2 = A∗ \ V1. ⌟

The k-regular colorability problem is the problem of whether a given automatic
graph has a k-regular coloring. The regular colorability problem is the problem of
whether a given automatic graph has a regular coloring.

3 Separability is Equivalent to Regular Colorability

We start by showing that the separability problem in terms of arbitrary recognizable
relations is equivalent, under polynomial time reductions, to the regular colorability
problem. To make our statement precise, we need some terminology introduced below. Let
k-Rec be the class of languages expressed by unions of products of k regular languages which
form a partition, that is (in the binary case), relations of the form (Li1×Lj1)∪· · ·∪(Liℓ

×Ljℓ
),

with i1, j1, . . . , iℓ, jℓ ∈ J1, kK, for some regular partition L1, . . . , Lk of A∗ and ℓ ∈ N. Note
that Rec =

⋃
k k-Rec. Let us denote by Id the identity relation (on any implicit alphabet).

Observe that Id is automatic but not recognizable.

▶ Theorem 3.1. There are polynomial-time reductions:
1. from the Rec-separability problem to the regular colorability problem;
2. from the regular colorability problem to the Rec-separability problem; and
3. from the k-regular colorability problem to the k-Rec-separability problem,

for every k > 0.
Further, the last two reductions are so that the second relation in the instance of the separa-
bility problem is the identity Id.

Proof. We start with the last two reductions. Given an automatic graph ⟨L, E⟩ over an
alphabet A, consider the instance R1, R2 for the Rec-separability problem, where R1 = E

and R2 = Id. If ⟨L, E⟩ is k-regular colorable via the coloring V1, . . . , Vk then the k-Rec
relation

⋃
i̸=j Vi × Vj separates R1 and R2. Conversely, if a k-Rec relation R ⊆ A∗ × A∗ on

the partition V1 ∪̇ · · · ∪̇ Vk = A∗ separates R1 and R2, then
⋃

i ̸=j Vi × Vj also separates R1
and R2, and this implies that V1, . . . , Vk is a k-coloring for ⟨A∗, E⟩.

3 Note that an automatic graph can contain self-loops. However, since the presence of such an edge
prevent the graph from being k-colorable for any k ⩾ 0, all our examples will be self-loop-free.

MFCS 2023
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For the first reduction, let us introduce some terminology. Given two relations R1, R2
over A∗, say that u ∈ A∗ is compatible with u′ ∈ A∗ when for all words v ∈ A∗:

(compℓ): (u, v) ∈ R1 ⇒ (u′, v) ̸∈ R2, (compr): (v, u) ∈ R1 ⇒ (v, u′) ̸∈ R2,
(comp′

ℓ): (u′, v) ∈ R1 ⇒ (u, v) ̸∈ R2 and (comp′
r): (v, u′) ∈ R1 ⇒ (v, u) ̸∈ R2.

Define the incompatibility graph IncR1,R2 as the graph whose vertices are all words of A∗,
and with an edge from u to v whenever u is not compatible with v. Note that IncR,Id is
exactly the graph ⟨A∗, R⟩. For a less trivial example of an incompatibility graph, see the full
version.

▶ Lemma 3.2. If R1 and R2 are automatic, then so is IncR1,R2 . Moreover, we can build
an automaton for IncR1,R2 in polynomial time in the size of the automata for R1 and R2.

Given an instance (R1, R2) of the separability problem, we reduce it to the regular
colorability problem on its incompatibility graph IncR1,R2 .
Left-to-right implication: Assume that there exists S in k-Rec that separates R1 from R2.

Then S can be written as (Ai1 ×Aj1) ∪ · · · ∪ (Aiℓ
×Ajℓ

), where (A1, . . . , Ak) is a partition
of A∗ in k regular languages. We define the color of a word u ∈ A∗ as the unique i ∈ J1, kK
s.t. u ∈ Ai. In other words, the coloring is simply (A1, . . . , Ak).

This is indeed a proper coloring: if u and u′ have the same color, we claim that u

is compatible with u′. Indeed, take any v ∈ A∗: if (u, v) ∈ R1, then (u, v) ∈ S, so
(u, v) ∈ Aim ×Ajm for some m. But since u has the same color as u′, the fact that u ∈ Aim

implies u′ ∈ Aim
, and hence (u′, v) ∈ Aim

× Ajm
⊆ S. But S separates R1 from R2, and

therefore (u′, v) ̸∈ R2. This tells us that (compℓ) holds. The other conditions hold by
symmetry. We conclude that (A1, . . . , Ak) defines a proper coloring of IncR1,R2 , and this
coloring, with k colors, is regular since the Ai’s are regular languages by definition.
Right-to-left implication: Assume that IncR1,R2 is finitely colorable, say by (A1, . . . , Ak).

Then let S be the union of all Si’s where

Si =̂ {(u, v) | u ∈ Ai and (u′, v) ∈ R1 for some u′ ∈ Ai}
∪ {(u, v) | v ∈ Ai and (u, v′) ∈ R1 for some v′ ∈ Ai}.

Since (A1, . . . , Ak) covers every node of IncR1,R2 , we get R1 ⊆ S. Moreover, we claim that
R2 ∩ S = ∅. Indeed, if (u, v) ∈ S, then (u, v) ∈ Si for some i, j. It either means that
1 (u′, v) ∈ R1 for some u′ ∈ Ai, or 2 (u, v′) ∈ R2 for some v′ ∈ Ai. In case 1 , the

fact that u ∈ Ai implies that u and u′ have the same color. Thus, u must be compatible with
u′ and hence (u, v) ̸∈ R2 using (comp′

ℓ). The other case is symmetric. Therefore, (u, v) ̸∈ R2,
and thus S separates R1 from R2.

Finally, S is recognizable; in fact, S =
⋃k

i=1
(
Ai × R1[Ai]

)
∪

(
R−1

1 [Ai]× Ai

)
, where for

any set X ⊆ A∗ we define R1[X] (resp. R−1
1 [X]) as the set of v ∈ A∗ (resp. u ∈ A∗) such

that (u, v) ∈ R1 for some u ∈ X (resp. v ∈ X). Hence, R1 and R2 are Rec-separable. ◀

It is not known to date whether the regular colorability problem is decidable,
and hence the same holds for the Rec-separability problem in light of the previous
theorem. This is due to the fact that there are no known characterizations of when an
automatic graph is finitely colorable. In spite of this, we believe that the connection between
separability and finite colorability is of interest, as it provides us with a way to define and
study meaningful restrictions of our problems. The first such restriction corresponds to the
k-regular colorability problem for automatic graphs, which we study in the next
section.

https://arxiv.org/abs/2305.08727
https://arxiv.org/abs/2305.08727
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4 k-Regular Colorability Problem

While we do not know how to approach the regular colorability problem, we show
that as soon as we add the restriction that the number of colors is bounded, the problem
becomes undecidable; i.e., the k-regular colorability problem is undecidable for k ⩾ 2.
Using this, we obtain in the next section the undecidability for the separability problem
on two natural classes of recognizable relations. This is proven by a reduction from a suitable
problem on reversible Turing Machines with certain restrictions, which we call “well-founded”.

4.1 Regularity of Reachability for Turing Machines
We use the standard notation u[i..j] to denote the factor of a word u between (and including)
positions i and j, and u[i] to denote u[i..i]. Consider any deterministic Turing Machine (TM)
T = ⟨Q, Γ,⊥, δ, q0, F ⟩, where Q is the set of states, Γ is tape alphabet, ⊥ is the blank symbol,
δ : (Q \ F )× Γ⊥ → Q× Γ× {L, R} is the transition (partial) function, where Γ⊥ = Γ ∪ {⊥},
and q0 and F is the initial and set of final states, respectively. We represent a configuration
with tape content w · ⊥ω (where w ∈ Γ∗ · {⊥}), in state q and with the head pointing to the
cell number 1 ⩽ i ⩽ |w|, as the string

w[1..i− 1] · (w[i], q) · w[i + 1..|w|]

over the alphabet AT = Γ∪(Γ⊥×Q). In light of this representation, we will henceforth denote
by “configuration” any string from the set ConfsT =̂ (Γ∗ · (Γ⊥×Q))∪ (Γ∗ · (Γ×Q) ·Γ∗). The
initial configuration is (⊥, q0). The configuration graph of T is the infinite graph GT having
ConfsT as set of vertices and an edge from c to c′, denoted c→ c′, if c′ is the configuration
of the next step of T starting from c. Observe that the configuration graph GT of any TM T

is an effective automatic graph (see, e.g., [18]).
We say that a deterministic TM T is reversible if every node of GT has in-degree at most

1, in other words if the machine is co-deterministic4. We say that a TM T is a well-founded
Reversible Turing Machine (wf-RTM ) if its configuration graph is such that (1) the initial
configuration has in-degree 0 (2) every node has in-degree and out-degree at most one (3)
there are no infinite backward paths c1 ← c2 ← · · · in GT .

Note that every well-founded Reversible Turing Machine is deterministic and reversible
and, moreover, its configuration graph is a (possibly infinite) disjoint union of directed paths,
which are all finite, or isomorphic to (N, +1). The set of reachable configurations, denoted by
Reach, is the set of all configurations that admit a path from the initial configuration in GT ,
for a given TM T . Such a configuration graph is depicted on Figure 2a.

The reachable regularity problem is the problem of, given a wf-RTM T , whether
its set of reachable configurations is a regular language. To show that is it undecidable, we
exhibit a reduction from the halting problem on deterministic reversible Turing machines.

▶ Proposition 4.1 ([19, Theorem 1]). The halting problem on deterministic reversible Turing
machines is undecidable.

For more details and pointers on reversible Turing machines, see [22, Chapter 5].

▶ Lemma 4.2. The reachable regularity problem is undecidable.

4 Note that a modern proof of undecidability of the isomorphism problem for automatic structures by
Blumensath [6, §VIII. Theorem 4.3, p. 396 & second claim, p. 398] also relies on the use of reversible
Turing machines.

MFCS 2023



17:8 Separating Automatic Relations

Proof sketch. By reducing the halting problem on deterministic reversible Turing machines,
in such a way that the reachable configurations whose state q coincide with the state of the
original machine are of the form (uqvanbn) where (uqv) is a configuration of the original
machine, a and b are new symbols, and n ∈ N. Transitions are defined in such a way
that the new machine is a wf-RTM: this is implemented by having, for every transition
uqv → u′q′v′ of the original machine and every n ∈ N, a (multi-step) transition (uqvanbn)→∗

(u′q′v′an+1bn+1) – and is illustrated in Figure 1. Moreover:

0 0 1 0 1 a a a b b b

p

0 0 1 0 1 1 a a b b b

0 0 1 0 1 1 a a a a b

0 0 1 0 1 1 a a a a b b b b

0 0 1 0 1 1 a a a a b b b b

q

simulate T

overwrite the first two b’s
with a’s

append three b’s

go back to the new posi-
tion, in the new state

Figure 1 Encoding of a single transition of the form “when reading a blank in state p, write a 1,
go in state q and move right” of the machine T in the machine T ′ in the proof of Lemma 4.2. Red
unlabelled states represent states of T ′ that are not originally present in T .

if the original machine was halting, then the reachable configurations of the new one are
finite and hence regular;
otherwise, the set of reachable configurations is not regular, which follows from the
non-regularity of any infinite subset of {anbn | n ∈ N}.

See the full version for more details. ◀

4.2 Undecidability of the k-Regular Colorability Problem
We can now show undecidability for the k-regular colorability problem by reduction
from the reachable regularity problem as defined before.

▷ Fact 4.3. Given an automatic graph, the set of nodes with no predecessor is effectively a
regular language.

▶ Theorem 4.4. The k-regular colorability problem on automatic graphs is un-
decidable, for every k ⩾ 2. More precisely, the problem is recursively enumerable-complete.
This holds also for connected automatic graphs.

https://arxiv.org/abs/2305.08727
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· · ·Init

Reach

(a) Configuration graph of a well-founded
Reversible Turing Machine.

· · ·nodes originat-
ing from Init

nodes originating from Reach

(b) The automatic graph to which it is reduced.

Figure 2 Reduction used in the proof of Theorem 4.4.

Proof. Lower bound. By reduction from the reachable regularity problem for
wf-RTMs (Lemma 4.2). We first show it for k = 2. Given a wf-RTM T , let cinit be its
initial configuration. Observe that the set Init of all vertices of GT with in-degree 0 is
an effective regular language (by Fact 4.3), and that cinit ∈ Init. Let B and R be fresh
symbols. Consider the automatic graph ⟨L, E⟩ for L = {B, R} × ConfsT , having an edge
from (z, c) ∈ {B, R} × ConfsT to (z′, c′) ∈ {B, R} × ConfsT if either
1. (z, z′) = (B, R) and c = c′;
2. (z, z′) = (R, B) and there is an edge from c to c′ in GT ; or
3. (z, z′) = (B, B), c = cinit and c′ ∈ Init \ {cinit}.
Fresh symbols B and R are utilized to represent two versions of each configuration - one in
Blue and one in Red. This graph is depicted on Figure 2. Note that ⟨L, E⟩ is connected and
2-colorable: in fact, it is a directed (possibly infinite) tree with root (B, cinit).

We claim that ⟨L, E⟩ is 2-regular colorable if, and only if, the set of reachable configurations
of T is a regular language. In fact, up to permuting the two-colors, ⟨L, E⟩ admits a unique
2-coloring, defined by:

C1 =̂ {B} × Reach ∪ {R} × (ConfsT \ Reach)

and C2 is the complement of C1. If Reach is regular, then so is C1. Dually, if C1 is regular,
then Reach is the set of configurations c such that (B, c) ∈ C1 and hence is regular. It follows
that ⟨A∗, E⟩ is 2-regular colorable if and only if the reachable configurations of T are regular,
which concludes the proof for k = 2.

To prove the statement for any k > 2, we define ⟨L, Ek⟩ as the result of adding a (k − 2)-
clique to ⟨L, E⟩ and adding an edge from every vertex of the clique to every vertex incident to
an edge of E. This forces the clique to use k− 2 colors that cannot be used in the remaining
part of the graph and the proof is then analogous.
Upper-bound. We show that the problem is recursively enumerable. Let us define a

k-colored automaton like a regular (complete) DFA, except that instead of having a set of
final states, it has a partition ⟨C1, . . . , Ck⟩ of its states. Such an automaton recognizes a
regular coloring A∗ → {1, . . . , k}. Given an automatic graph ⟨L, R⟩ – specified by NFA’s A1
and A2 recognizing L and ⊗R respectively – and a k-colored automaton B, we can build, by
a product construction, an NFA A′

2 which accepts all u⊗ v ∈ ⊗R such that the color of u is
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distinct from the color of v. Then, A′
2 is equivalent to A2 if, and only if, B describes a proper

k-coloring of ⟨L, R⟩. The RE upper-bound of the k-regular colorability problem
follows: it suffices to enumerate all k-colored automata and check for equivalence. ◀

Note that this reduction provides an easy way of building graphs in the shape of Figure 2b
that are 2-colorable (in fact, they are trees) but not 2-regular colorable. In fact, we can
provide a slightly more direct construction.

▶ Example 4.5. On the alphabet A = {a, b}, the tree T depicted in Figure 3 whose set of
vertices is V = a∗b∗ and whose set of edges is E = Eincr ∪ Einit, with

Eincr = {(apbq, ap+1bq+1) | p, q ∈ N}
Einit = {(ε, ap) | p ∈ N} ∪ {(ε, bq) | q ∈ N},

is automatic but not 2-regular colorable. Indeed, its only 2-coloring consists in partitioning
the vertices of T into

C = {anbn | n ∈ 2N} ∪ {apbq | p > q and q is odd} ∪ {apbq | p < q and p is odd}

and its complement V \ C. Let P = {apbq | p, q ∈ 2N} = (aa)∗(bb)∗: P is regular, yet
C ∩ P = {anbn | n ∈ 2N} is not. Hence, C is not regular, and thus T is not 2-regular
colorable. ⌟

ε ab a2b2 a3b3

a aab a3b2 a4b3

b abb a2b3 a3b4

aa a3b a4b2 a5b3

C V \ C

Figure 3 The automatic tree T of Example 4.5, and its unique 2-coloring (C, V \ C), which is
not regular.

5 Separability for Bounded Recognizable Relations

In this section we capitalize on the undecidability result of the previous section, showing
how this implies the undecidability for the separability problem on two natural classes of
bounded recognizable relations, namely: k-Rec, and k-Prod. Remember that, for any k,
k-Prod is the subclass of Rec consisting of unions of k cross-products of regular languages
(which is a subclass of 22k-Rec).

k-Rec-separability. First, observe that the 1-Rec-separability problem is trivially
decidable, since the only possible separator is A∗ × A∗. However, for any other k > 1, the
problem is undecidable.

▶ Proposition 5.1. The k-Rec-separability problem is undecidable, for every k > 1.

Proof. A consequence of the reduction from the k-regular colorability problem of
Theorem 3.1, combined with the undecidability of the latter for every k > 1 (Theorem 4.4). ◀
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k-Prod-separability. On the k-Prod hierarchy we will find the same phenomenon. In
particular the case k = 1 is also trivially decidable.

▶ Proposition 5.2. The 1-Prod-separability problem is decidable.

Proof. Given two automatic relations R1, R2, there exists S ∈ 1-Prod that separates R1
from R2 if and only if π1(R1)× π2(R1) separates R1 from R2. ◀

As soon as k > 1, the k-Prod separability problem becomes undecidable. This is a
consequence of the following simple lemma.

▶ Lemma 5.3. A symmetric automatic relation R and the identity Id are separable by a
relation in 2-Prod iff they have a separator of the form (A×B) ∪ (B ×A).

Proof. Assume that S ∈ 2-Prod separates R from Id. Then R ⊆ S, but since R is symmetric,
R = R−1 ⊆ S−1 so R ⊆ S ∩ S−1, and hence R ⊆ S ∩ S−1. Moreover, since S has a trivial
intersection with Id, so does S ∩ S−1. Hence, S ∩ S−1 separates R from Id.

Since S ∈ 2-Prod, there exists A1, A2, B1, B2 ⊆ A∗ such that S = A1 × B1 ∪ B2 × A2.
Note that S ∩ Id = ∅ yields Ai ∩Bi = ∅ for each i ∈ {1, 2}. Finally:

S ∩ S−1 =
(
A1 ×B1 ∪B2 ×A2

)
∩

(
B1 ×A1 ∪A2 ×B2

)
=

(
(A1 ×B1) ∩ (B1 ×A1)

)
∪

(
(A1 ×B1) ∩ (A2 ×B2)

)
∪

(
(B2 ×A2) ∩ (B1 ×A1)

)
∪

(
(B2 ×A2) ∩ (A2 ×B2)

)
=

( =∅︷ ︸︸ ︷
(A1 ∩B1)× (A1 ∩B1)

)
∪

(
(A1 ∩A2)× (B1 ∩B2)

)
∪

(
(B1 ∩B2)× (A1 ∩A2)

)
∪

(
(A2 ∩B2)× (A2 ∩B2)︸ ︷︷ ︸

=∅

)
=

(
(A1 ∩A2)× (B1 ∩B2)

)
∪

(
(B1 ∩B2)× (A1 ∩A2)

)
. ◀

We can then establish the following:

▶ Corollary 5.4. A symmetric automatic relation R and Id are separable by a relation in
2-Prod iff ⟨A∗, R⟩ is 2-regular colorable.

Proof. By observing that for any symmetric relation R ⊆ A∗ × A∗, we have that A, B ⊆ A∗

is a coloring of ⟨A∗, R⟩ if, and only if, (A×B) ∪ (B ×A) separates R from Id. ◀

We can now easily show undecidability for the 2-Prod separability problem by
reduction from the 2-regular colorability problem.

▶ Lemma 5.5. The 2-Prod-separability problem is undecidable.

Proof. By reduction from the 2-regular colorability problem on automatic graphs,
which is undecidable by Theorem 4.4. Let ⟨L, R⟩ be an automatic graph and ⟨L, R′⟩ the
symmetric closure of ⟨L, R⟩. It follows that ⟨L, R′⟩ is still automatic and that there is a
2-regular coloring for ⟨L, R′⟩ iff there is a 2-regular coloring for ⟨L, R⟩ (the same coloring in
fact). Thus, by Corollary 5.4, ⟨L, R⟩ is 2-regular colorable iff there is a 2-Prod relation that
separates R′ from Id. ◀

Further, this implies undecidability for every larger k:

▶ Theorem 5.6. The k-Prod-separability problem is undecidable, for every k ⩾ 2.
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R2

R1

S S′ \ S

a0

b0

a1

b1

a2

b2

u ∈ A∗

v ∈ A∗

Figure 4 Construction in the proof of Theorem 5.6 for k = 5. S is depicted as the union of two
(gray) rectangles since S ∈ 2-Prod. The relation R′

1 is obtained from R1 (blue shape) by adding
all blue edges, namely (ai, bi) for 1 ⩽ i ⩽ k − 2. The relation R′

2 is obtained from R2 (red shape)
by adding all red edges, namely every other edge involving a vertex ai or bi. Finally, S′ (five gray
rectangles) is obtained from S by adding each {ai} × {bi}.

Proof. The case k = 2 is shown in Lemma 5.5, so suppose k > 2. The proof goes by
reduction from the 2-Prod-separability problem. Let R1, R2 be a pair of automatic
relations over an alphabet A. Consider the alphabet extended with 2(k − 2) fresh symbols
A′ = A ∪̇ {a1, . . . , ak−2, b1, . . . , bk−2}. We build automatic relations R′

1, R′
2 over A′ such that

(R1, R2) are 2-Prod separable over A iff (R′
1, R′

2) are k-Prod separable over A′.
Let R′

1 = R1 ∪̇ {(ai, bi) : 1 ⩽ i ⩽ k − 2} and

R′
2 = R2 ∪̇ {(ai, w) : w ∈ A∗, 1 ⩽ i ⩽ k − 2} ∪̇

{(w, bi) : w ∈ A∗, 1 ⩽ i ⩽ k − 2} ∪̇
{(ai, bj) : 1 ⩽ i, j ⩽ k − 2, i ̸= j} ∪̇
{(bi, aj) : 1 ⩽ i, j ⩽ k − 2}

If (R1, R2) has a 2-Prod separator S, then S̃ ∪̇ {(ai, bi) : 1 ⩽ i ⩽ k − 2} is a k-Prod
separator of (R′

1, R′
2).

Conversely, if S′ = (A1 ×B1) ∪ · · · ∪ (Ak ×Bk) is a k-Prod separator of (R′
1, R′

2), then
for every i there must be some ji such that Aji ×Bji contains (ai, bi). Observe that

Aji
∪Bji

cannot contain any ai′ or bi′ for i′ ̸= i, and
Aji
∪Bji

cannot contain any w ∈ A∗;
since otherwise we would have (Aji

×Bji
) ∩R′

2 ̸= ∅. Hence, {i 7→ ji}i is injective, and thus
S′ is of the form S′ = (A1 ×B1) ∪ (A2 ×B2) ∪ ({a1} × {b1}) ∪ · · · ∪ ({ak−2} × {bk−2}). We
can further assume that A1, B1, A2, B2 do not contain any ai or bi since otherwise we can
remove them preserving the property of being a k-Prod separator of R′

1 and R′
2. Hence,

S =̂ (A1 × B1) ∪ (A2 × B2) must cover R1 and be disjoint from R2, obtaining that S is a
2-Prod separator of R1 and R2. ◀

6 Definability for Bounded Recognizable Relations

Up until now, we have examined two hierarchies of bounded recognizable relations, namely
k-Prod and k-Rec. Our previous analysis demonstrated that, for any element in these
hierarchies (where k > 1), the separability problem is undecidable. Nevertheless, we will
now establish that the definability problem is decidable.

Given an automatic relation R ⊆ A∗ × A∗, consider the automatic equivalence relation
∼R ⊆ A∗ × A∗, defined as w ∼R w′ if for every v ∈ A∗ we have
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1. (w, v) ∈ R iff (w′, v) ∈ R, and
2. (v, w) ∈ R iff (v, w′) ∈ R.

It turns out that equivalence classes of ∼R define the coarsest partition onto which R

can be recognized in terms of k-Rec:

▶ Lemma 6.1. For every automatic R ⊆ A∗ × A∗, ∼R has index at most k if, and only if,
R is in k-Rec.

Proof. Left-to-right Assume that ∼R has the equivalence classes E1, . . . , Ek. Consider
the set P ⊆ {1, . . . , k}2 of all pairs (i, j) such that there are ui ∈ Ei and uj ∈ Ej with
(ui, uj) ∈ R. Define the k-Rec relation R′ =

⋃
(i,j)∈P Ei × Ej . We claim that R = R′. In

fact, by definition of ∼R , note that if there are ui ∈ Ei and uj ∈ Ej with (ui, uj) ∈ R, then
Ei×Ej ⊆ R. Hence, R′ ⊆ R. On the other hand, for every pair (u, v) ∈ R there is (i, j) ∈ P

such that u ∈ Ei, v ∈ Ej implying (u, v) ∈ R′. Hence, R ⊆ R′.
Right-to-left If R is a union of products of sets from the partition E1 ∪̇ · · · ∪̇ Ek = A∗,

then every two elements of each Ei are ∼R -related, and thus ∼R has index at most k. ◀

We can then conclude that the definability problem for k-Rec is decidable.

▶ Corollary 6.2. The k-Rec-definability problem is decidable, for every k > 0.

Proof. An automatic relation R is in k-Rec iff ∼R has at most k equivalence classes by
Lemma 6.1. In other words, an automatic relation R is not in k-Rec iff the complement of
∼R contains a (k + 1)-clique, which can be easily tested. ◀

The relation ∼R can also be used to characterize which automatic relations are definable
in the class k-Prod.

▶ Lemma 6.3. An automatic relation R is in k-Prod if, and only if, R = (A1 ×B1)∪ · · · ∪
(Ak ×Bk) where each Ai and Bi is a union of equivalence classes of ∼R .

Proof. It suffices to show that for every equivalence class E from ∼R , if A1 ∩E ̸= ∅ then
R = ((A1 ∪ E)×B1) ∪ · · · ∪ (Ak ×Bk), and similarly for B1. Assume w ∈ A1 ∩ E and take
any pair (u, v) ∈ E ×B1. We show that (u, v) ∈ R. By definition of ∼R , since (w, v) ∈ R

and w ∼R u, we have that (u, v) ∈ R. ◀

Again, this characterization allows us to show that definability in the class k-Prod is
decidable.

▶ Corollary 6.4. The k-Prod-definability problem is decidable, for every k > 0.

Proof. By brute force testing whether the automatic relation R is equivalent to (A1 ×B1)∪
· · · ∪ (Ak ×Bk) for every possible Ai, Bi which is a union of equivalence classes of ∼R . ◀

7 Discussion

We have established, among other things, the undecidability of the k-regular colorability
problem for k ⩾ 2. Yet, little is known about the regular colorability problem.

▶ Conjecture 7.1. The Rec-separability problem – or, equivalently, the regular
colorability problem – is undecidable.

Beyond its decidability status, the structural properties of regular colorability evades us:
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▶ Conjecture 7.2. Over automatic graphs, the following notions are pairwise disjoint:
1. to be finitely regular colorable,
2. to be finitely colorable,
3. not to contain unbounded cliques.

Note that the implications (1) ⇒ (2) ⇒ (3) trivially hold. Moreover, recall that while the
automatic tree of Example 4.5 is not 2-regular colorable, it is 3-regular colorable (it suffices
to color ε with a new color, and then color apbq by looking at the parity of p− q). Hence, it
does not prove that (2) ̸⇒ (1). Likewise, on arbitrary infinite graphs, we know that there
exists triangle-free graphs that are not finitely colorable [26] – but we believe these graphs
not to be automatic, and hence they would not prove that (3) ̸⇒ (2).

Finally, observe that it is decidable to test whether an automatic graph has infinite cliques
[18, Corollary 5.5]. We conjecture that this property generalizes to unbounded cliques.

▶ Conjecture 7.3. The problem of whether an automatic graph has bounded cliques is
decidable.
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