
On the Parameterized Complexity of Computing
st-Orientations with Few Transitive Edges
Carla Binucci #

Department of Engineering, University of Perugia, Italy

Giuseppe Liotta #

Department of Engineering, University of Perugia, Italy

Fabrizio Montecchiani #

Department of Engineering, University of Perugia, Italy

Giacomo Ortali #

Department of Engineering, University of Perugia, Italy

Tommaso Piselli #

Department of Engineering, University of Perugia, Italy

Abstract
Orienting the edges of an undirected graph such that the resulting digraph satisfies some given
constraints is a classical problem in graph theory, with multiple algorithmic applications. In
particular, an st-orientation orients each edge of the input graph such that the resulting digraph
is acyclic, and it contains a single source s and a single sink t. Computing an st-orientation of a
graph can be done efficiently, and it finds notable applications in graph algorithms and in particular
in graph drawing. On the other hand, finding an st-orientation with at most k transitive edges is
more challenging and it was recently proven to be NP-hard already when k = 0. We strengthen this
result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for
graphs of bounded vertex degree. These computational lower bounds naturally raise the question
about which structural parameters can lead to tractable parameterizations of the problem. Our
main result is a fixed-parameter tractable algorithm parameterized by treewidth.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathe-
matics of computing → Graph algorithms

Keywords and phrases st-orientations, parameterized complexity, graph drawing

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.18

Related Version Full Version: http://arxiv.org/abs/2306.03196 [2]

Funding Research partially supported by (i) University of Perugia, Fondi di Ricerca di Ateneo,
edizione 2021, project “AIDMIX - Artificial Intelligence for Decision making: Methods for Inter-
pretability and eXplainability”, (ii) Progetto RICBA22CB “Modelli, algoritmi e sistemi per la
visualizzazione e l’analisi di grafi e reti”.

1 Introduction

An orientation of an undirected graph is an assignment of a direction to each edge, turning the
initial graph into a directed graph (or digraph for short). Notable examples of orientations
are acyclic orientations, which guarantee the resulting digraph to be acyclic; transitive
orientations, which make the resulting digraph its own transitive closure; and Eulerian
orientations, in which each vertex has equal in-degree and out-degree. Of particular interest
for our research are certain constrained acyclic orientations, which find applications in
several domains, including graph planarity and graph drawing. More specifically, given a
graph G = (V, E) and two vertices s, t ∈ V , an st-orientation of G, also known as bipolar

© Carla Binucci, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, and Tommaso Piselli;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carla.binucci@unipg.it
https://orcid.org/0000-0002-5320-9110
mailto:giuseppe.liotta@unipg.it
https://orcid.org/0000-0002-2886-9694
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0002-0543-8912
mailto:giacomo.ortali@unipg.it
https://orcid.org/0000-0002-4481-698X
mailto:tommaso.piselli@studenti.unipg.it
https://orcid.org/0000-0002-7088-920X
https://doi.org/10.4230/LIPIcs.MFCS.2023.18
http://arxiv.org/abs/2306.03196
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 On the Parameterized Complexity of Computing st-Orientations

10

4

5
19

17

18

12

16

0

9

13
11

7

8

6

15

3

2

14

1

20

(a)

10==s

4

5

19

17

18

12

16
0

9

1311

7

8

6

15

3 2

14

1==t

20

(b)
10==s

4

5 19

17

18

12

16

0

9

13

11

7

8

6

15

3

2

14

1==t

20

(c)

Figure 1 (a): An undirected graph G with randomly labeled vertices. (b)-(c): Two polyline
drawings of G computed by using different st-orientations. The drawing in (b) uses an st-orientation
without transitive edges and it has smaller area and number of bends than the drawing in (c).

orientation, is an orientation of its edges such that the corresponding digraph is acyclic and
contains a single source s and a single sink t. It is well-known that G admits an st-orientation
if and only if it is biconnected after the addition of the edge st (if not already present). The
computation of an st-numbering (an equivalent concept defined on the vertices of the graph)
is for instance part of the quadratic-time planarity testing algorithm by Lempel, Even and
Cederbaum [11]. Later, Even and Tarjan [8] showed how to compute an st-numbering in
linear time, and used this result to derive a linear-time planarity testing algorithm. In the
field of graph drawing, bipolar orientations are a central algorithmic tool to compute different
types of layouts, including visibility representations, polyline drawings, dominance drawings,
and orthogonal drawings (see [5, 9] for references). On a similar note, a notable result states
that a planar digraph admits an upward planar drawing if and only if it is the subgraph of a
planar st-graph, that is, a planar digraph with a bipolar orientation [6].

Recently, Binucci, Didimo and Patrignani [1] focused on st-orientations with no transitive
edges. We recall that an edge uv is transitive if the digraph contains a path directed from u

to v; for example, the bold (red) edges in Figure 1c are transitive, see also Section 2 for formal
definitions. Besides being of theoretical interest, such orientations, when they exist, can
be used to compute readable and compact drawings of graphs [1]. For example, a classical
graph drawing algorithm relies on st-orientations to compute polyline representations of
planar graphs. The algorithm is such that both the height and the number of bends of the
representations can be reduced by computing st-orientations with few transitive edges. See
Algorithm Polyline in [5] for details and Figure 1 for an example.

Unfortunately, while an st-orientation of an n-vertex graph can be computed in O(n) time,
computing one that has the minimum number of transitive edges is much more challenging
from a computational perspective. Namely, Binucci et al. [1] prove that the problem of
deciding whether an st-orientation with no transitive edges exists is NP-complete, and provide
an ILP model for planar graphs.

C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, and T. Piselli 18:3

tw k

∅ para-NP-hardFPT

δ + k σ + k

Figure 2 The complexity landscape of the st-Orientation problem. The symbols tw, δ, and σ

denote the treewidth, the maximum vertex degree, and the diameter of the graph, respectively. The
boxes with red boundaries denote the new results presented in this paper.

Contribution. We study the parameterized complexity of finding st-orientations with few
transitive edges. More formally, given a graph G and an integer k, the st-Orientation
problem asks for an st-orientation of G with at most k transitive edges (see also Section 2).
As already discussed, st-Orientation is para-NP-hard by the natural parameter k [1]. We
strengthen this result by showing that, for k = 0, st-Orientation remains NP-hard even for
graphs of diameter at most six, and for graphs of vertex degree at most four. In light of these
computational lower bounds, we seek for structural parameters that can lead to tractable
parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm
for st-Orientation parameterized by treewidth, a central parameter in the parameterized
complexity analysis (see [7, 12]). Figure 2 depicts a summary of the computational complexity
results known for the st-Orientation problem.

It is worth remarking that by Courcelle’s theorem one can derive an (implicit) FPT algo-
rithm parameterized by treewidth and k, while we provide an explicit algorithm parameterized
by treewidth only. The main challenge in applying dynamic programming over a tree decom-
position is that the algorithm must know if adding an edge to the graph may cause previously
forgotten non-transitive edges to become transitive, and, if so, how many of them. To tackle
this difficulty, we describe an approach that avoids storing information about all edges that
may potentially become transitive; instead, the algorithm guesses the edges that will be
transitive in a candidate solution and ensures that no other edge will become transitive in
the course of the algorithm. Our technique can be easily adapted to handle more general
constraints on the sought orientation, for instance the presence of multiple sources and sinks.

Paper structure. We begin with preliminary definitions and basic tools, which can be
found in Section 2. In Section 3 we describe our main result, an FPT algorithm for the
st-Orientation problem parameterized by treewidth. Section 4 contains our second
contribution, namely we adapt the NP-hardness proof in [1] to prove that the result holds
also for graphs that have bounded diameter and for graphs with bounded vertex degree.
In the latter case, the graphs used in the reduction not only have bounded vertex degree
(at most four), but are also subdivisions of triconnected graphs. In Section 5 we list some
interesting open problems that stem from our research.

For space reasons, some proofs have been omitted, and the corresponding statements are
marked with (⋆).

2 Preliminaries

Edge orientations. Let G = (V, E) be an undirected graph. An orientation O of G is an
assignment of a direction, also called orientation, to each edge of G. We denote by DO(G) the
digraph obtained from G by applying the orientation O. For each undirected pair (u, v) ∈ E,
we write uv if (u, v) is oriented from u to v in DO(G), and we write vu otherwise. A directed

MFCS 2023

18:4 On the Parameterized Complexity of Computing st-Orientations

path from a vertex u to a vertex v is denoted by u ⇝ v. A vertex of DO(G) is a source
(sink) if all its edges are outgoing (incoming). An edge uv of DO(G) is transitive if DO(G)
contains a directed path u⇝ v distinct from the edge uv. A digraph DO(G) is an st-graph
if: (i) it contains a single source s and a single sink t, and (ii) it is acyclic. An orientation O

such that DO(G) is an st-graph is called an st-orientation.

st-Orientation
Input: An undirected graph G = (V, E), two vertices s, t ∈ V , and an integer k ≥ 1.
Output: An st-orientation O of G such that the resulting digraph DO(G) contains at
most k transitive edges.

We recall that st-Orientation is NP-complete already for k = 0 [1], which hinders
tractability in the parameter k. Also, in what follows, we always assume that the input
graph G is connected, otherwise we can immediately reject the instance as any orientation
would give rise to at least one source and one sink for each connected component of G.

Tree-decompositions. Let (X , T) be a pair such that X = {Xi}i∈[ℓ] is a collection of subsets
of vertices of a graph G = (V, E), called bags, and T is a tree whose nodes are in one-to-one
correspondence with the elements of X . When this creates no ambiguity, Xi will denote
both a bag of X and the node of T whose corresponding bag is Xi. The pair (X , T) is a
tree-decomposition of G if:
1.

⋃
i∈[ℓ] Xi = V ,

2. For every edge uv of G, there exists a bag Xi that contains both u and v, and
3. For every vertex v of G, the set of nodes of T whose bags contain v induces a non-empty

(connected) subtree of T .
The width of (X , T) is maxℓ

i=1 |Xi| − 1, while the treewidth of G, denoted by tw(G), is
the minimum width over all tree-decompositions of G. The problem of computing a tree-
decomposition of width tw(G) is fixed-parameter tractable in tw(G) [3]. A tree-decomposition
(X , T) of a graph G is nice if T is a rooted binary tree with the following additional
properties [4]:
1. If a node Xi of T has two children whose bags are Xj and Xj′ , then Xi = Xj = Xj′ . In

this case, Xi is a join bag.
2. If a node Xi of T has only one child Xj , then Xi ̸= Xj and there exists a vertex v ∈ G

such that either Xi = Xj ∪ {v} or Xi ∪ {v} = Xj . In the former case Xi is an introduce
bag, while in the latter case Xi is a forget bag.

3. If a node Xi is the root or a leaf of T , then Xi = ∅. In this case, Xi is a leaf bag.
Given a tree-decomposition of width ω of G, a nice tree-decomposition of G with the same
width can be computed in O(ω · n) time [10].

3 The st-Orientation Problem Parameterized by Treewidth

In this section, we describe a fixed-parameter tractable algorithm for st-Orientation
parameterized by treewidth. In fact, the algorithm we propose can solve a slightly more
general problem. Namely, it does not assume that s and t are part of the input, but it looks
for an st-orientation in which the source and the sink can be any pair of vertices of the input
graph. However, if s and t are prescribed, a simple check can be added to the algorithm (we
will highlight the crucial point in which the check is needed) to ensure this property.

Let G = (V, E) be an undirected graph. A solution of the st-Orientation problem is
an orientation O of G such that DO(G) is an st-graph with at most k transitive edges. Let
(X , T) be a tree-decomposition of G of width ω. For a bag Xi ∈ X , we denote by G[Xi] the

C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, and T. Piselli 18:5

...

v

e1
e2es

u

w

Xj

Xi

(a)

v

Xi

Xj

...

...

e

u1

u2

us

w1

w2

wh

(b)

Figure 3 (a) The directed edges wv and vu make all edges e1, ..., es transitive. (b) Each pair of
directed edges wpv and vqu, for p ∈ [1, h] and q ∈ [1, s], makes e transitive.

subgraph of G induced by the vertices of Xi, and by Ti the subtree of T rooted at Xi. Also,
we denote by Gi the subgraph of G induced by all the vertices in the bags of Ti. We adopt a
dynamic-programming approach performing a bottom-up traversal of T . The solution space
is encoded into records associated with the bags of T , which we describe in the next section.

3.1 Encoding solutions

Before describing the records stored for each bag, we highlight the main challenges about
how to encode the partial solutions computed throughout the course of the algorithm. Let v

be a vertex introduced in a bag Xi. Adding v and its incident edges to a partial solution may
either turn many (possibly linearly many) forgotten edges into transitive edges and/or it
may make the same forgotten edge transitive with respect to arbitrarily many different paths.
This is schematically illustrated in Figure 3, where Xi and its child bag Xj are highlighted
by shaded regions. In Figure 3a, e1, . . . , es are forgotten edges, i.e., edges in Gi but not in
G[Xi]; if we orient edge (u, v) from v to u and edge (v, w) from w to v all edges e1, . . . , es

become transitive. In Figure 3b, e is a forgotten edge, while u1, . . . , us and w1, . . . , wh are
vertices of bag Xj ; orienting the edges (wp, v) from wp to v (1 ≤ p ≤ h) and the edges (v, uq)
from v to uq, turns e into a transitive edge with respect to h × s different paths. In case
of Figure 3a the algorithm cannot afford reconsidering the forgotten edges as they can be
arbitrarily many. In case of Figure 3b the algorithm should avoid counting e multiple times
(for each newly created path). To overcome these issues, the algorithm guesses the edges that
are transitive in a candidate solution and verifies that no other edge can become transitive
during the bottom-up visit of T . This is done by suitable records, describe below.

Let O be a solution and consider a bag Xi ∈ X . The record Ri of Xi that encodes O

represents the interface of the solution O with respect to Xi. For ease of notation, the
restriction of DO(G) to Gi is denoted by Di, and similarly the restriction to G[Xi] is D[Xi].
Record Ri stores the following information.

Oi which is the orientation of D[Xi].
Ai which is the subset of the edges of D[Xi] that are transitive in DO(G). We call such
edges admissible transitive edges or simply admissible edges. The edges of Gi not in Ai

are called non-admissible. We remark that an edge of Ai may not be transitive in Di.
Pi which is the set of ordered pairs of vertices (a, b) such that: (i) a, b ∈ Xi, and (ii) Di

contains the path a⇝ b.

MFCS 2023

18:6 On the Parameterized Complexity of Computing st-Orientations

Fi which is the set of ordered pairs of vertices (a, b) such that: (i) a, b ∈ Xi, and (ii)
connecting a to b with a directed path makes a non-admissible edge of Di to become
transitive.
ci which is the cost of Ri, that is, the number of transitive edges in Di. Note that
ci ≥ |Ai|.
Si which maps each vertex v ∈ Xi to a Boolean value Si(v) that is true if and only if v is
a source in Di. Analogously, Ti maps each vertex v ∈ Xi to a Boolean value Ti(v) that is
true if and only if v is a sink in Di.
σi which is a flag that indicates whether DO(G) contains a source that belongs to Gi but
not to Xi. Analogously, τi is a flag that indicates whether DO(G) contains a sink that
belongs to Gi but not to Xi.

Observe that, for a bag Xi, different solutions O and O′ of G may be encoded by the
same record Ri. In this case, O and O′ are equivalent. Clearly, this defines an equivalent
relation on the set of solutions for G, and each record represents an equivalence class. The
goal of the algorithm is to incrementally construct the set of records (i.e., the quotient set)
for each bag rather than the whole set of solutions. More formally, for each bag Xi ∈ X ,
we associate a set of records Ri = {R1

i , ..., Rh
i }. While this is not essential for establishing

fixed-parameter tractability, we further observe that if more records are equal except for
their costs, it suffices to keep in Ri the one whose cost is no larger than any other record.
The next lemma easily follows.

▶ Lemma 1 (⋆). For a bag Xi, the cardinality of Ri is 2O(ω2). Also, each record of Ri has
size O(ω2).

3.2 Description of the algorithm
We are now ready to describe our dynamic-programming algorithm over a nice tree-
decomposition (X , T) of the input graph G. Let Xi be the current bag visited by the
algorithm. We compute the records of Xi based on the records computed for its child or
children (if any). If the set of records of a bag is empty, the algorithm halts and returns a
negative answer. We distinguish four cases based on the type of the bag Xi. Observe that,
to index the records within Ri, we added a superscript q ∈ [h] to each record, and we will do
the same for all the record’s elements.

Xi is a leaf bag. We have that Xi is the empty set and Ri consists of only one record, i.e.,
Ri = {R1

i = ⟨∅, ∅, ∅, ∅, 0, ∅, ∅, false, false⟩}.

Xi is an introduce bag. Let Xj = Xi \ {v} be the child of Xi. Initially, Ri = ∅. Next,
the algorithm exhaustively extends each record Rp

j ∈ Rj to a set of records of Ri as follows.
Let Ov be the set of all the possible orientations of the edges incident to v in G[Xi], and
similarly let Av be the set of all the possible subsets of the edges incident to v in G[Xi]. The
algorithm considers all possible pairs (o, t) such that o ∈ Ov and t ∈ Av. For each pair (o, t),
we proceed as follows.
1. Let q = |Ri|+ 1, the algorithm computes a candidate orientation Oq

i of G[Xi] starting
from Op

j and orienting the edges of v according to o.
2. Similarly, it computes the candidate set of admissible edges Aq

i starting from Ap
j and

adding to it the edges in t.
3. Next, it sets the candidate cost cq

i = cp
j + |t|.

C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, and T. Piselli 18:7

v

Xi

Xj

e a

b

(a, b) ∈ Fp
i

c e ̸∈ Aq
i

(c, b) ∈ Fq
i

(a)

v

Xi

Xj
(u,w) ∈ Fq

i

e ̸∈ Aq
i

e

u

w

(b)

Figure 4 Illustration of Step 5c of the algorithm when Xi is an introduce bag.

4. Let the extension ⟨Oq
i ,Aq

i , cq
i ⟩ be valid if:

a. cq
i ≤ k;

b. there is no pair (a, b) ∈ Pp
j so that bv, va ∈ D[Xq

i];
c. there is no pair (a, b) ∈ Fp

j so that av, vb ∈ D[Xq
i].

Clearly, if an extension is not valid, the corresponding record cannot encode any solution;
namely, condition (a) ensures that the candidate cost does not exceed k, condition (b)
guarantees the absence of cycles, condition (c) guarantees that no non-admissible edge
becomes transitive. Hence, if an extension is not valid, the algorithm discards it and
continues with the next pair (o, t).

5. Instead, if the extension is valid, the algorithm computes the record Rq
i = ⟨Oq

i ,Aq
i ,Pq

i ,Fq
i ,

cq
i ,Sq

i , T q
i , σq

i , τ q
i ⟩ of Ri, where σq

i = σp
j , τ q

i = τp
j (recall that Xj ⊂ Xi). To complete the

record Rq
i , it remains to compute Sq

i , T q
i , Pq

i and Fq
i .

a. For each vertex w ∈ Xj , we set Sq
i (w) = true if and only if Sp

j (w) = true and there
is no edge of v oriented from v to w in D[Xq

i] (which would make w not a source
anymore). Similarly, for each vertex w ∈ Xj , we set T q

i (w) = true if and only if
T p

j (w) = true and there is no edge of v oriented from w to v in D[Xq
i]. Finally, we set

Sq
i (v) = true if and only if v is a source in D[Xq

i] (as by the definition), and we set
T q

i (v) = true if and only if v is a sink in D[Xq
i].

b. We initially set Pq
i = ∅. We recompute the paths from scratch as follows. We build

an auxiliary digraph D∗ which we initialize with D[Xq
i]. We then add to D∗ the

information about paths in Pp
j . Namely, for each (a, b) ∈ Pp

j , we add an edge ab to
D∗ (if it does not already exists). Once this is done, for each pair u, w ∈ Xi ×Xi for
which there is a path u⇝ w in D∗, we add the pair (u, w) to Pq

i .
c. Consider now Fq

i . We initially set Fq
i = Fp

j . Observe that the addition of v might
have created new pairs of vertices that should belong to Fq

i . Namely, for each pair
(a, b) ∈ Fp

j , we verify what are the vertices c such that D[Xq
i] contains a path a⇝ c

while D[Xp
j] does not (observe that a⇝ c contains v, possibly c = v); for each such

vertex, we add (c, b) to Fq
i . See Figure 4a for an illustration. Similarly, we verify what

are the vertices d such that D[Xq
i] contains a path d⇝ b while D[Xp

j] does not (again
d⇝ b contains v, possibly d = v); for each such vertex, we add (a, d) to Fq

i . Finally,
we consider all the edges incident to v and that are not in Aq

i . These edges are not
admissible and we should further update Fq

i accordingly. This can be done as follows:
we consider each edge incident to v not in Aq

i , for each such an edge e we verify what
are the pairs of vertices in Xi (including e’s endpoints) such that connecting them
with a path makes e transitive, we add such pairs to Fq

i if not already present. See
Figure 4b for an illustration.

MFCS 2023

18:8 On the Parameterized Complexity of Computing st-Orientations

Xi is a forget bag. Let Xj = Xi ∪ {v} be the child of Xi. The algorithm computes Ri by
exhaustively merging records of Rj as follow.
1. For each Rp

j ∈ Rj , we remove from Op
j and Ap

j all the edges incident to v and from Pp
j

and Fp
j all the pairs where one of the vertices is v. Observe that due to this operation,

there might now be records that are identical except possibly for their costs. Among
them, we only keep one record whose cost is no larger than any other record.

2. Let Rp
j be a record of Rj that was not discarded by the procedure above. If Sp

j (v) ∧ σp
j ,

we discard Rp
j (because the encoded orientation would contain two sources), else we set

σp
j = true (because v is a source). Similarly, if T p

j (v) ∧ τp
j , we discard Rp

j , else we set
τp

j = true. At this point, if the record has not been discarded yet and vertices s and t are
prescribed, we can add the following check. If Sp

j (v) ∧ σp
j , then v is a source, hence if

v ̸= s, we discard the record. Analogously, if T p
j (v) ∧ τp

j , then v is a sink, hence if v ̸= t,
we discard the record.

3. Finally, we remove from Sp
j and T p

j the values Sp
j (v) and T p

j (v).
4. All the records that have not been discarded and have been updated according to the

above procedure are added to Ri.

Xi is a join bag. Let Xj = Xj′ be the two children of Xi. The algorithm computes Ri by
exhaustively checking if a pair of records, one from Xj and one from Xj′ , can be merged
together. For each pair Rp

j and Rp′

j′ , we proceed as follows.
1. We initially set Ri = ∅. The two records Rp

j and Rp′

j′ are mergeable if:
a. Op

j = Op′

j′ ;
b. Ap

j = Ap′

j′ ;
c. cp

j + cp′

j′ − |Ap
j | ≤ k;

d. there is no pair (a, b) ∈ Pp
j such that (b, a) ∈ Pp′

j′ ;
e. there is no pair (a, b) ∈ Pp

j such that (a, b) ∈ Fp′

j′ ;
f. there is no pair (a, b) ∈ Pp′

j′ such that (a, b) ∈ Fp
j ;

g. ¬(σp
j ∧ σp′

j′);
h. ¬(τp

j ∧ τp′

j′).
Conditions a-b are obviously necessary to merge the records. Condition c guarantees
that the number of transitive edges (avoiding double counting the admissible edges in Xi)
is at most k. Condition d guarantees the absence of cycles. Conditions e-f guarantee that
no non-admissible edge becomes transitive. Conditions g-h guarantee that the resulting
orientation contains at most one source and one sink. If the two records are not mergeable,
we discard the pair and proceed with the next one. Otherwise we create a new record Rq

i ,
with q = |Ri|+ 1, and continue to the next step.

2. Based on the previous discussion, we can now compute Rq
i as follows:

a. Oq
i = Op

j ;
b. Aq

i = Ap
j ;

c. cq
i = cp

j + cp′

j′ − |Ap
j |;

d. For each pair (a, b) of vertices of Xi, we add it to Pq
i if it is contained in Pp

j or in Pp′

j′ .
e. For each pair (a, b) of vertices of Xi, we add it to Fq

i if Fp
j (a, b) ∨ Fp′

j′ (a, b).
f. For each vertex v of Xi, we set Sq

i (v) = Sp
j (v) ∧ Sp′

j′ (v);
g. For each vertex v of Xi, we set T q

i (v) = T p
j (v) ∧ T p′

j′ (v);
h. σq

i = σp
j ∨ σp′

j′ ;
i. τ q

i = τp
j ∨ τp′

j′ .

C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, and T. Piselli 18:9

The next lemma establishes the correctness of the algorithm.

▶ Lemma 2. Graph G admits a solution for st-Orientation if and only if the algorithm
terminates after visiting the root of T . Also, the algorithm outputs a solution, if any.

Proof. (→) Suppose that the algorithm terminates after visiting the root bag Xρ of T . We
reconstruct a solution O of G as follows. We can assume that our algorithm stores additional
pointers for each record (a common practice in dynamic programming), such that each record
has a single outgoing pointer (and potentially many incoming pointers). Consider a record
Rq

i of a bag Xi. If Xi is an introduce bag, there is only one record Rp
j of the child bag Xj

from which Rq
i was generated and the pointer links Rq

i and Rp
j . If Xi is forget bag, there

might be multiple records that have been merged into Rq
i and in this case the pointer link Rq

i

with one of these records with minimum cost. If Xi is a join bag, there are two mergeable
records Rp

j and Rp′

j′ that have been merged together, and the pointer links Rq
i to Rp

j and
Rp′

j′ . With these pointers at hand, we can apply a top-down traversal of T , starting from the
single (empty) record of the root bag Xρ and reconstruct the corresponding orientation O.
Namely, when visiting an introduce bag and the corresponding record, we orient the edges of
the introduced vertex v according to the orientation Ov defined by the record.

We now claim that DO(G) is an st-graph with at most k transitive edges. Suppose first,
for a contradiction, that DO(G) contains more than one source. Let s and s′ be two sources
of DO(G). Then Sq

i (s) = false in the bag Xi in which s has been forgotten, and similarly
for Sq

i (s′). This is however not possible by construction of Sq
i . Thus, either the record Rq

i

has been discarded because Sp
j (v) ∧ σp

j (see item 2 when Xi is a forget bag) or σp
j = false.

The first case contradicts the fact that Rq
i is a record used to reconstruct O. The second

case implies that s′ has not been encountered; however, in this latter case the algorithm sets
σp

j = true, hence some descendant record will be discarded as soon as s′ is forgotten, again
contradicting the fact that we are considering records with pointers up to the root bag. A
symmetric argument shows that DO(G) contains a single sink. We next argue that DO(G)
is acyclic. Suppose, again for a contradiction, that DO(G) contains a cycle. In particular,
the cycle was created either in an introduce bag or in a join bag. In the former case, let
v be the last vertex of this cycle that has been introduced in a bag Xi. Let a, b be the
neighbors of v that are part of the cycle, and w.l.o.g. assume that the edges are va and
bv. It must be Pq

i does not contain the pair (a, b), otherwise we would have discarded this
particular orientation for the edges incident to v (see item 4.b when Xi is an introduce bag).
On the other hand, one easily verifies that when introducing a vertex v, all the new paths
involving v are computed from scratch (see item 5.b when Xi is an introduce bag), and,
similarly, when joining two bags, the existence of a path in one of the two bags is correctly
reported in the new record (see item 2.d when Xi is a join bag). If the cycle was created
in a join bag the argument is analogous, in particular, observe that we verify that there
is no path contained in the record of one of the child bags such that the same path with
reversed direction exists in the record of the other child bag (see item 1.d when Xi is a
join bag). We conclude this direction of the proof by showing that DO(G) contains at most
k transitive edges. Observe first that the cost of the record ensures that at most k edges
of G are part of some set of admissible edges. Suppose, for a contradiction, that DO(G)
contains more than k transitive edges. Then there is a bag Xi and a record Rq

i in which a
non-admissible edge became transitive. Also, Xi is either an introduce or a join bag. If Xi

introduced a vertex v, observe that all the newly introduced edges are incident to v. On the
other hand, the algorithm discarded the orientations of the edges of v for which there is a
pair (a, b) ∈ Fp

j (with Xj being the child of Xi) so that av, vb ∈ D[Xq
i] (see item 4.c when

MFCS 2023

18:10 On the Parameterized Complexity of Computing st-Orientations

Xi is an introduce bag). Then either the orientation was discarded, which contradicts the
fact that we are considering a record used to build the solution, or Fp

j missed the pair (a, b).
Again one verifies this second case is not possible, because the new pairs that are formed in
an introduce bag are correctly identified (see item 5.c when Xi is an introduce bag) by the
algorithm and similarly for join bags (see item 2.e when Xi is a join bag). If Xi is a join
bag, the argument is analogous, in particular, we verified that there is no path in one of the
two child records that makes transitive a non-admissible edge in the other child record (see
items 1.e and 1.f when Xi is a join bag). This concludes the first part of the proof.
(←) It remains to prove that, if G admits a solution O, then the algorithm terminates after
visiting the root Xρ of T . If this were not the case, there would be a bag Xi of T and a
candidate record that encodes O, such that the record has been incorrectly discarded by
the algorithm; we show that this is not possible. Suppose first that Xi is an introduce bag.
Then a candidate record is discarded if the cost exceeds k, or if a cycle is created, or if a
non-admissible edge becomes transitive (see the conditions of item 4 when Xi is an introduce
bag). In all cases the candidate record does not encode a solution. If Xi is a forget bag, we
may discard a candidate record if it is identical to another but has a non-smaller cost (see
item 1 when Xi is a forget bag). Hence we always keep a record that either encodes the
solution at hand or a solution with fewer transitive edges but with exactly the same interface
at Xi. Also, we may discard a record if the forgotten vertex v is a source and Gi already
contains a source (see item 2 when Xi is a forget bag). This is correct, because no further
edge can be added to v after it is forgotten. A symmetric argument holds for the case in
which a record is discarded due to v being a sink. Finally, if Xi is a join bag, pairs of records
of its children bags are discarded if not mergeable (see the conditions of item 1 when Xi is a
join bag). One easily verifies that failing one of the conditions for mergeability implies that
the record does not encode a solution (see also the discussion after item 1). ◀

The next theorem summarizes our contribution.

▶ Theorem 3 (⋆). Given an input graph G = (V, E) of treewidth ω and an integer k ≥ 0,
there is an algorithm that either finds a solution of st-Orientation or reject the input in
time 2O(ω2) · n.

4 The Complexity of the Non-Transitive st-OrientationProblem for
Graphs of Bounded Diameter and Bounded Degree

We begin by recalling the special case of st-Orientation considered in [1]. An st-orientation
O of a graph G is non-transitive if DO(G) does not contain transitive edges.

Non-Transitive st-Orientation (NT-st-Orientation)
Input: An undirected graph G = (V, E), and two vertices s, t ∈ V .
Output: An non-transitive st-orientation O of G such that vertices s and t are the source
and sink of DO(G), respectively.

The hardness proof of NT-st-Orientation in [1] exploits a reduction from Not-all-equal
3-Sat (NAE-3-Sat) [13]. Recall that the input of NAE-3-Sat is a pair ⟨X, φ⟩ where X is
a set of boolean variables and φ is a set of clauses, each composed of three literals out of
X, and the problem asks for an assignment of the variables in X so that each clause in φ is
composed of at least one true variable and one false variable.

C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, and T. Piselli 18:11

In this section, we show that NT-st-Orientation is NP-hard even for graphs of bounded
diameter and for graphs of bounded vertex degree that are subdivisions of triconnected
graphs. To prove our results, we first summarize the construction used in [1].

4.1 A Glimpse into the Hardness Proof of NT-st-Orientation
The construction in [1] adopts three types of gadgets, which we recall below. Given an edge
e of a digraph D such that e has an end-vertex v of degree 1, we say that e enters D if it is
outgoing with respect to v, and we say that e exits D otherwise. Similarly, given a directed
edge e = uv, we say that e exits u and that e enters v.

The fork gadget F is depicted in Figure 5a. See Lemma 1 of [1]. Namely, if F does not
contain s or t (the source and sink prescribed in the input), then in any non-transitive
orientation O of a graph G containing F , either e1 enters F and e9, e10 exit F , or
vice versa. Figure 5a depicts F , DO1(F) and DO2(F), where O1 and O2 are the two
st-orientations admitted by F .
The variable gadget Gx associated to a variable x ∈ X is shown in Figure 5b; observe
it contains the designated vertices s and t. Its crucial property is stated in Lemma 2
of [1]. Namely, in any non-transitive st-orientation O of a graph G containing Gx, either
x exists Gx and x enters Gx, or vice-versa.
The split gadget Sk is shown in Figure 5c; it consists of k−1 fork gadgets chained together,
for some fixed k > 0. The crucial property of this gadget is described in Lemma 3 of [1].
Namely, in any non-transitive st-orientation O of a graph G containing Sk, either x (the
input edge of Sk) enters Sk and the edges e9 and e10 of the fork gadgets F1, ..., Fk−1
incident to one degree-1 vertex (the outgoing edges of Sk) exit Sk, or vice-versa.

Given an instance ⟨X, φ⟩ of NAE-3-Sat, the instance ⟨Gφ, s, t⟩ of NT-st-Orientation
is constructed as follow. For each x ∈ X we add Gx and two split gadgets Sk and Sk, where
k (resp. k) is the number of clauses where x appears in its non-negated (resp. negated)
form (edges x and x are the input edges of Sk and Sk, respectively). Finally, for each clause
c = (x1, x2, x3) ∈ φ, we add a vertex c that is incident to an output edge of the split gadget
of each of its variables. See Figure 6b, where the non-dashed edges and all the vertices with
the exception of g define Gφ. It can be shown that ⟨X, φ⟩ is a yes-instance of NAE-3-Sat if
and only if ⟨Gφ, s, t⟩ is a yes-instance of NT-st-Orientation [1].

4.2 Hardness for Graphs of Bounded Diameter
Given an undirected graph G, the distance between two vertices of G is the length of any
shortest path connecting them. The diameter of G is the maximum distance over all pairs of
vertices of the graph. We now adapt the construction in Section 4.1 to show that NT-st-
Orientation remains NP-hard also for graphs of bounded diameter. We define the extended
fork gadget by adding an edge e11 to the fork gadget (see Figure 6a).

Construction of Hφ. Given an instance ⟨X, φ⟩ of NAE-3-Sat and the instance ⟨Gφ, s, t⟩
of NT-st-Orientation computed as described in Section 4.1, we define ⟨Hφ, s, t⟩ as follows.
We first set Hφ = Gφ. Then, we add a vertex g to Hφ and an edge (g, f) for each vertex f

belonging to a fork F of Hφ and incident to the corresponding edges e3, e6, and e7. Also,
we add edges (g, t) and (s, g), and we subdivide each of them once. See Figure 6b (the
non-dashed edges and all the vertices with the exception of g define Gφ).

MFCS 2023

18:12 On the Parameterized Complexity of Computing st-Orientations

e9

e10

e1

F

e6

e5

e2
e3

e7

e8
e4

DO1
(F)

DO2
(F)

(a) F .

s

t

x

x

DO(Gx)

(b) Gx.

DO(F1)

DO(F2)

DO(Fk−1)

x

DO(Sk)

output edges

input edge

(c) Sk.

Figure 5 (a) The fork gadget F and its two possible non-transitive st-orientations. (b) The
variable gadget DO(Gx) associated to x ∈ X, where O is one of its two possible orientations. (c)
The split gadget DO(Sk) associated to x, where O is one of its two possible orientations.

▶ Theorem 4 (⋆). NT-st-Orientation is NP-hard for graphs of diameter at most 6.

Proof sketch. We construct Hφ as described above. Observe that any vertex of G is at
distance at most 3 to g, hence Hφ has diameter at most 6. We show that a non-transitive
st-orientation of Gφ corresponds to a non-transitive st-orientation of Hφ (→) and vice
versa (←).

(→) Given a non-transitive st-orientation O′ of Gφ, we construct an st-orientation O of Hφ

by extending O′ as follow. We orient the four edges of Hφ \Gφ connecting s to t such that the
path is directed from s to g. For each other edge e, which is incident to g, we orient it so that
e enters g if and only if e is the edge incident to an extended fork gadget whose corresponding
edge e1 is an entering edge. See Figure 6b. For each two vertices a, b ∈ DO(Hφ), there is
no path a⇝ b so that ag, gb ∈ DO(Hφ). Hence, since DO′(Gφ) has no cycle, also DO(Hφ)
has no cycle. Consequently, O is an acyclic orientation with s and t being its single source
and sink, respectively. We now show that it does not contain transitive edges. Let e = ab be
any edge of DO(Hφ). We have that any path from s⇝ t containing g either contains edges
incident to degree-2 vertices or edges e1, e3, and e11 of an extended fork gadget. All these
edges have endpoints which are not adjacent by construction. Hence, there is no path a⇝ b

containing g and, since O′ is non-transitive, e is not transitive in DO(Hφ).

(←) This direction is based on the observation that, given an extended fork gadget F , in any
non-transitive st-orientation O of G, either e3 enters f and e6, e7 exit f or vice versa. ◀

C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, and T. Piselli 18:13

e9

e10

e1

F

e6

e5

e2
e3

e7

e8
e4

e11

f

w

w′

(a)

t

s

c= (x1 ∨ x2 ∨ x3)

x1

x1

x2

x3

x2 x3

x1 = false x2 = true x3 = true

g

(b)

Figure 6 (a) A fork gadget F extended with edge e11. (b) Graphs DO′ (Gφ), defined by the
non-dashed edges, and graph DO(Hφ), obtained from G by adding g and the dashed edges. O′ and
O are non-transitive st-orientations of Gφ and Hφ, respectively. O is obtained by extending O′.

4.3 Hardness Subdivisions of Triconnected Graphs with Bounded Degree
We prove now that NT-st-Orientation is NP-hard even if G is a 4-graph, i.e., the degree
of each vertex is at most 4, and, in addition, it is a subdivision of a triconnected graph.

Construction of Jφ. Given an instance ⟨X, φ⟩ of NAE-3-Sat and the instance ⟨Gφ, s, t⟩
of NT-st-Orientation computed as described in Section 4.1, we compute ⟨Jφ, s, t⟩ as
follows. We remove s and t from J ′′

φ = Gφ. We obtain a disconnected graph whose connected
components are Jφ,1, ..., Jφ,h. We add a vertex si and a vertex ti to each Jφ,i (which will
play the role of local sources and sinks for each component). Next, for each i ∈ [1, h− 1]:
(i) We add the edge (si, si+1) and (ti+1, ti); (ii) We add an edge ei+1,i incident to a vertex
identified as the f -vertex of a fork gadget of Jφ,i+1 and to a vertex identified as the f -vertex
of a fork gadget of Jφ,j . We denote by J ′

φ the obtained graph; see Figure 7a for a schematic
illustration. For each Jφ,i (i ∈ [1, h]) of J ′

φ, the only vertices having degree higher than 4
are si and ti. For each i ∈ [1, h], we proceed as follow. We first consider ti. If ti has degree
p ≤ 4, we do nothing. Otherwise, if p ≥ 5, we proceed as follows: (i) We consider p− 1 edges
incident to ti and to vertices of Jφ,i and we remove them; (ii) We connect the endpoints
vi

1, ..., vi
p of the removed edges that are not ti to a split gadget Sp−1 and ti to the input edge

of Sp−1. Figure 7b depicts ti (i ∈ [1, h]) and its neighborhood {vi
1, ..., vi

p} in J ′
φ and Figure 7c

depicts how ti is connected to the vertices vi
1, ..., vi

p after the above operation. We perform a
symmetric operation on si. The resulting graph is denoted by Jφ, and it has vertex degree
at most four by construction.

▶ Theorem 5 (⋆). NT-st-Orientation is NP-hard for 4-graphs that are subdivisions of
triconnected graphs.

MFCS 2023

18:14 On the Parameterized Complexity of Computing st-Orientations

...

...

...

...

...

...

...

...

...

Jφ,1

Jφ,2

Jφ,h

t1

t2

th

s1

s2

sh

e1,2

e2,3

eh−1,h

(a) J ′
φ.

ti

v1 v2 v3 vip−2 vip−1 vip
...

(b) ti in J ′
φ.

ti

Sp−1

vi1 vi2 vi3 vip−2 vip−1 vip

(c) ti in Jφ.

Figure 7 (a) Schematic representation of graph J ′
φ. (b-c) How vertex ti is connected to its

neighbourhood in (b) J ′
φ and (c) Jφ.

5 Open Problems

Several interesting open problems stem from our research. Among them:

Is there an FPT-algorithm for the st-Orientation problem parameterized by treewidth
running in 2o(ω2) · poly(n) time?
Does st-Orientation parameterized by treedepth admit a polynomial kernel?
We have shown that finding non-transitive st-orientations is NP-hard for graphs of vertex
degree at most four. On the other hand, the problem is trivial for graphs of vertex degree
at most two. What is the complexity of the problem for vertex degree at most three?
Similarly, one can observe that the problem is easy for graphs of diameter at most two,
while it remains open the complexity for diameter in the range [3, 5].

References
1 Carla Binucci, Walter Didimo, and Maurizio Patrignani. st-orientations with few transitive

edges. In Patrizio Angelini and Reinhard von Hanxleden, editors, GD 2022, volume 13764 of
LNCS, pages 201–216. Springer, 2022. doi:10.1007/978-3-031-22203-0_15.

2 Carla Binucci, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, and Tommaso Piselli.
On the parameterized complexity of computing st-orientations with few transitive edges.
CoRR, abs/2306.03196, 2023. arXiv:2306.03196.

3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

4 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996. doi:10.1006/jagm.1996.0049.

5 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

6 Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci., 61:175–198, 1988. doi:10.1016/0304-3975(88)90123-5.

7 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

8 Shimon Even and Robert Endre Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2(3):339–344, 1976. doi:10.1016/0304-3975(76)90086-4.

https://doi.org/10.1007/978-3-031-22203-0_15
https://arxiv.org/abs/2306.03196
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1016/0304-3975(76)90086-4

C. Binucci, G. Liotta, F. Montecchiani, G. Ortali, and T. Piselli 18:15

9 Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs, Methods and Models,
volume 2025 of LNCS. Springer, 2001. doi:10.1007/3-540-44969-8.

10 Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer,
1994.

11 A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. In
Theory of Graphs: International Symposium., pages 215–232. Gorden and Breach, 1967.

12 Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

13 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing (STOC 1978), pages 216–226. Association
for Computing Machinery, 1978. doi:10.1145/800133.804350.

MFCS 2023

https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1145/800133.804350

	1 Introduction
	2 Preliminaries
	3 The st-Orientation Problem Parameterized by Treewidth
	3.1 Encoding solutions
	3.2 Description of the algorithm

	4 The Complexity of the Non-Transitive st-OrientationProblem for Graphs of Bounded Diameter and Bounded Degree
	4.1 A Glimpse into the Hardness Proof of NT-st-Orientation
	4.2 Hardness for Graphs of Bounded Diameter
	4.3 Hardness Subdivisions of Triconnected Graphs with Bounded Degree

	5 Open Problems

