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Abstract
We prove that functions over the reals computable in polynomial time can be characterised using
discrete ordinary differential equations (ODE), also known as finite differences. We also provide
a characterisation of functions computable in polynomial space over the reals. In particular, this
covers space complexity, while existing characterisations were only able to cover time complexity,
and were restricted to functions over the integers, and we prove that no artificial sign or test function
is needed even for time complexity. At a technical level, this is obtained by proving that Turing
machines can be simulated with analytic discrete ordinary differential equations. We believe this
result opens the way to many applications, as it opens the possibility of programming with ODEs,
with an underlying well-understood time and space complexity.
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1 Introduction

Recursion schemes constitute a major approach to classical computability theory and, to
some extent, to complexity theory. The foundational characterisation of FPTIME, based
on bounded primitive recursion on notations, due to Cobham [10] gave birth to the field
of implicit complexity at the interplay of logic and theory of programming. Alternative
characterizations, based on safe recursion [1] or on ramification ([16, 15]) or for other
classes [17] followed: see [8, 9] for monographs.

Initially motivated to help understanding how analogue models of computations compare
to classical digital ones, in an orthogonal way, various computability and complexity classes
have been recently characterised using Ordinary Differential Equations (ODE). An unexpected
side effect of these proofs is the possibility of programming with classical ODEs, over the
continuum. It recently led to solving various open problems. This includes the proof of
the existence of a universal ODE [6], the proof of the Turing-completeness of chemical
reactions [11], or hardness of problems related to dynamical systems [12].

Discrete ODEs, that we consider in this article, are an approach in-between born from
the attempt of [4, 5] to explain some of the constructions for continuous ODEs in an easier
way. The basic principle is, for a function f(x), to consider its discrete derivative defined as
∆f(x) = f(x + 1)− f(x) (also denoted f ′(x) in what follows to help analogy with classical
continuous counterparts). A consequence of this attempt is the characterisation obtained
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in [4, 5]. They provided a characterisation of FPTIME for functions over the integers
that does not require the specification of an explicit bound in the recursion, in contrast to
Cobham’s work [10], nor the assignment of a specific role or type to variables, in contrast to
safe recursion or ramification [1, 14]. Instead, they only assume involved ODEs to be linear,
a very classical natural concept for differential equations.
▶ Remark 1. Unfortunately, even if it was the original motivation, both approaches for
characterising complexity classes for continuous and discrete ODEs are currently not directly
connected. A key difference is that there is no simple expression (no analogue of the Leibniz
rule) for the derivative of the composition of functions in the discrete settings. The Leibniz
rule is a very basic tool for establishing results over the continuum, using various stability
properties, but that cannot be used easily over discrete settings.

In the context of algebraic classes of functions, the following notation is classical: call
operation an operator that takes finitely many functions and returns some new function
defined from them. Then [f1, f2, . . . , fk; op1, op2, . . . , opℓ] denotes the smallest set of functions
containing f1, f2, . . . , fk that is closed under the operations op1, op2, . . . opℓ. Call discrete
function a function of type f : S1×· · ·×Sd → S′

1× . . . S′
d′ , where each Si, S′

i is either N or Z.
Write FPTIME for the class of functions computable in polynomial time, and FPSPACE
for the class of functions computable in polynomial space.
▶ Remark 2. The literature considers two possible definitions for FPSPACE, according to
whether functions with non-polynomial size values are allowed or not. In our case, we should
add “whose outputs remain of polynomial size”, to resolve the ambiguity1.

A main result of [4, 5] is the following (LDL stands for linear derivation on length):

▶ Theorem 3 ([4]). For functions over the reals, we have LDL = FPTIME where LDL =
[0, 1, πk

i , ℓ(x), +,−,×, sg(x) ; composition, linear length ODE].

In particular, writing as usual BA for functions from A to B, we deduce:

▶ Corollary 4 (Functions over the integers). LDL ∩ NN = FPTIME ∩ NN.

That is to say, LDL (and hence FPTIME for functions over the integers) is the smallest
class of functions that contains the constant functions 0 and 1, the projections πk

i of the
ie coordinate of a vector of size k, the length function ℓ(x), mapping an integer to the
length of its binary representation, the addition x+y, the subtraction x−y, the multiplication
x × y, the sign function sg(x) and that is closed under composition (when defined) and
linear length-ODE scheme: the linear length-ODE scheme, formally given by Definition 15,
corresponds to defining a function from a linear ODEs with respect to derivation along the
length of the argument, so of the form ∂f(x,y)

∂ℓ = A[f(x, y), x, y] · f(x, y) + B[f(x, y), x, y].
Here, we use the notation ∂f(x,y)

∂ℓ which corresponds to the derivation of f along the
length function: given some function L : Np+1 → Z and in particular for the case where
L(x, y) = ℓ(x),

∂f(x, y)
∂L

= ∂f(x, y)
∂L(x, y) = h(f(x, y), x, y) (1)

is a formal synonym for f(x + 1, y) = f(x, y) + (L(x + 1, y)− L(x, y)) · h(f(x, y), x, y).

1 Otherwise, the class is not closed by composition: this may be considered as a basic requirement when
talking about the complexity of functions. The issue is about the usage of not counting the output as
part of the total space used. In this model, given f computable in polynomial space, and g in logarithmic
space, f ◦ g (and g ◦ f) is computable in polynomial space. But this is not true, if we assume only f
and g to be computable in polynomial space, since the first might give an output of exponential size.
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▶ Remark 5. This concept introduced in [4, 5], is motivated by the fact that the latter
expression is similar to the classical formula for continuous ODEs:

δf(x, y)
δx

= δL(x, y)
δx

· δf(x, y)
δL(x, y) ,

and hence is similar to a change of variable. Consequently, a linear length-ODE is basically
a linear ODE over a variable t once the change of variable t = ℓ(x) is done.

However, in the context of (classical) ODEs, considering functions over the reals is more
natural than only functions over the integers. Call real function a function f : S1×· · ·×Sd →
S′

1×. . . S′
d′ , where each Si, S′

i is either R, N or Z. A natural question about the characterisation
of FPTIME for real functions arises, and not only discrete functions: we consider here
computability over the reals in its most classical approach, namely computable analysis [19].

As a first step, the class LDL• = [0, 1, πk
i , ℓ(x), +,−,×, cond(x), x

2 ; composition, linear

length ODE] has been considered in [3, 2] where some characterisation of PTIME was
obtained, but only for functions from the integers to the reals (i.e. sequences) while it would
be more natural to characterise functions from the reals to the reals. More importantly, this
was obtained by assuming that some non-analytic exact function is among the basic
available functions to simulate a Turing machine: cond valuing 1 for x > 3

4 and 0 for x < 1
4 .

We prove first this is not needed, and mainly, we extend all previous results to real
functions, furthermore covering not only time complexity but also space complexity. Consider

LDL◦ = [0, 1, πk
i , ℓ(x), +,−, tanh,

x

2 ,
x

3 ; composition, linear length ODE],

where ℓ : N → N is the length function, mapping some integer to the length of its binary
representation, x

2 : R→ R is the function dividing by 2 (similarly for x
3 ) and all other basic

functions defined exactly as for LDL, but considered here as functions from the reals to reals.

▶ Remark 6. This class is LDL but without the sg(x) function, nor the multiplication function,
or LDL• but without the cond function, nor the multiplication. This is done by adding the
analytic tanh functions as a substitute (and adding x/3).

▶ Remark 7. We can consider N ⊂ Z ⊂ R but as functions may have different types of
outputs, the composition is an issue. We consider, as in [3, 2], that composition may not be
defined in some cases: it is a partial operator. For example, given f : N→ R and g : R→ R,
the composition of g and f is defined as expected, but f cannot be composed with a function
such as h : N→ N.

First, we improve Theorem 3 by stating FPTIME over the integers can be characterised
algebraically using linear length ODEs and only analytic functions (i.e. no need for sign
function). Since LDL◦ is about functions over the reals, and Theorem 3 is about functions
over the integers, we need a way to compare these classes. Given a function f : Rd → Rd′

sending every integer n ∈ Nd to the vicinity of some integer of Nd, say at distance less than
1/4, we write DP(f) for its discrete part: this is the function from Nd → Nd′ mapping n ∈ Nd

to the integer rounding of f(n). Given a class C of such functions, we write DP(C) for the
class of the discrete parts of the functions of C.

▶ Theorem 8. DP(LDL◦) = FPTIME ∩ NN.

Write LDL◦ for the class obtained by adding some effective limit operation similar to the
one considered in [3] to get LDL•. We get a characterization of functions over the reals (and
not only sequences as in [3]) computable in polynomial time.

MFCS 2023
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▶ Theorem 9 (Generic functions over the reals). LDL◦ ∩ RR = FPTIME ∩ RR

More generally: LDL◦ ∩ RNd×Rd′

= FPTIME ∩ RNd×Rd .

We also prove that, by adding a robust linear ODE scheme (Definition 18), we get a
class RLD◦ (this stands for robust linear derivation) with the similar statements but for
FPSPACE.

▶ Theorem 10. DP(RLD◦) = FPSPACE ∩ NN.

▶ Theorem 11 (Generic functions over the reals). RLD◦ ∩ RR = FPSPACE ∩ RR

More generally: RLD◦ ∩ RNd×Rd′

= FPSPACE ∩ RNd×Rd .

As far as we know, this is the first time a characterisation of FPSPACE with discrete
ODEs is provided. If we forget the context of discrete ODEs, FPSPACE has been charac-
terised in [18] but using a bounded recursion scheme, i.e. requiring some explicit bound in
the spirit of Cobham’s statement [10]. We avoid this issue by considering numerically stable
schemes, which are very natural in the context of ODEs.

At a technical level, all our results are obtained by proving Turing machines can be
simulated with analytic discrete ODEs in a suitable manner. We believe our constructions
could be applied to many other situations, where programming with ODEs is needed.

In Section 2, we recall some basic statements about the theory of discrete ODEs. In
Section 3, we establish some properties about particular functions required for our proofs.
In Section 4 we prove our main technical result: Turing machines can be simulated using
functions from LDL◦. Section 5 is about converting integers and reals (dyadic) to words of
a specific form. Section 6 is about applications of our toolbox. We prove in particular all
above theorems.

2 Some concepts related to discrete ODEs

In this section, we recall some concepts and definitions from discrete ODEs, either well-known
or established in [4, 5, 3]. We consider here that tanh is tanh, the hyperbolic tangent. The
papers [4, 5] use similar definitions with the sign function sg and [3] with the piecewise affine
function cond, that values 1 for x > 3

4 and 0 for x < 1
4 , instead of tanh.

▶ Definition 12 ([3]). A tanh-polynomial expression P (x1, ..., xh) is an expression built-on
+,−,× (often denoted ·) and tanh functions over a set of variables V = {x1, ..., xh} and
integer constants.

We need to measure the degree, similarly to the classical notion of degree in polyno-
mial expression, but considering all subterms that are within the scope of a tanh function
contributes to 0 to the degree.

▶ Definition 13 ([3]). The degree deg(x, P ) of a term P in x ∈ V is defined inductively as
follows: deg(x, x) = 1 and for x′ ∈ V ∪ Z such that x′ ≠ x, deg(x, x′) = 0; deg(x, P + Q) =
max{deg(x, P ), deg(x, Q)}; deg(x, P ×Q) = deg(x, P ) + deg(x, Q); deg(x, tanh(P )) = 0. A
tanh-polynomial expression P is essentially constant in x if deg(x, P ) = 0.

A vectorial function (resp. a matrix or a vector) is said to be a tanh-polynomial expression
if all its coordinates (resp. coefficients) are, and essentially constant if all its coefficients are.

▶ Definition 14 ([4, 5, 3]). A tanh-polynomial expression g(f(x, y), h(x, y), x, y) is essentially
linear in f(x, y) if it is of the form: A[f(x, y), h(x, y), x, y] · f(x, y) + B[f(x, y), h(x, y), x, y]
where A and B are tanh-polynomial expressions essentially constant in f(x, y).
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For example, the expression P (x, y, z) = x · tanh (x2 − z) · y + y3 is essentially linear in
x, essentially constant in z and not linear in y. The expression: z + (1 − tanh(x)) · (1 −
tanh(−x)) · (y − z) is essentially constant in x and linear in y and z.

▶ Definition 15 (Linear length ODE [4, 5]). A function f is linear length-ODE definable from
u essentially linear in f(x, y), g and h, if it corresponds to the solution of

f(0, y) = g(y) and
∂f(x, y)

∂ℓ
= u(f(x, y), h(x, y), x, y). (2)

A fundamental fact is that the derivation with respect to length provides a way to do
some change of variables:

▶ Lemma 16 ([4, 5]). Assume that (2) holds. Then f(x, y) is given by f(x, y) = F(ℓ(x), y)
where F is the solution of the initial value problem

F(1, y) = g(y), and
∂F(t, y)

∂t
= u(F(t, y), h(2t − 1, y), 2t − 1, y). (3)

This means f(x, y) depends only on the length of its first argument: f(x, y) = f(2ℓ(x), y).
Then (3) can be seen as defining a function (with this latter property) by a recurrence of
type

f(20, y) = g(y), and f(2t+1, y) = u(f(2t, y), h(2t − 1, y), 2t, y). (4)

for some u is essentially linear in f(2t, y). As recurrence (3) is basically equivalent to (2):

▶ Corollary 17 (Linear length ODE presented with powers of 2). A function f is linear L-ODE
definable iff the value of f(x, y) depends only on the length of its first argument and satisfies
(4), for some g and h, and u, essentially linear in f(2t, y).

We assume it is easier for our reader to deal with recurrences of the form (4) than with
ODEs of the form (2). Consequently, this is how we will describe many functions from now on,
starting with some basic functions, authorising compositions, and the above schemes. As an
example, n 7→ 2n can easily be defined that way (by 20 = 1, and 2n+1 = 2 · 2n = 2n + 2n) and
we can produce n 7→ 2p(n) for any polynomial p. For example, (n1, . . . , nk)→ 2n1n2...nk can
be obtained, using k such schemes in turn, providing the case of the polynomial p(n) = nk.

When talking about space complexity, we will also consider the case where the ODE is
not derivated with respect to length but with classical derivation. For functions over the
reals an important issue is numerical stability.

▶ Definition 18 (Robust linear ODE [4, 5]). A bounded function f is robustly linear ODE
definable from u essentially linear in f(x, y), g and h if:
1. it corresponds to the solution of

f(0, y) = g(y) and
∂f(x, y)

∂x
= u(f(x, y), h(x, y), x, y), (5)

2. where the schema (5) is polynomially numerically stable.

Here, writing a =n b for ∥a − b∥ ≤ 2−n for conciseness, 2. means formally there
exists some polynomial p such that, for all integer n, writing ϵ(n) = p(n + ℓ(y)), if you
consider any solution of ỹ =ϵ(n) y and h̃(x, ỹ) =ϵ(n) h(x, ỹ), and f̃(0, ỹ) =ϵ(n) g(y) and
∂ f̃(x,ỹ)

∂x =ϵ(n) u(f̃(x, ỹ), h̃(x, ỹ), x, ỹ) then f̃(x, ỹ) =ϵ(n) f(x, y).

MFCS 2023
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3 Some results about various functions

A key part of our proofs is the construction of very specific functions in LDL◦: we write
{x} for the fractional part of the real x, i.e. {x} = x − ⌊x⌋. We provide some graphical
representations of some of them to show that these functions are sometimes highly non-trivial
(see for e.g. Figures 3 or 6).

A first observation is that we can uniformly approximate the ReLU(x) = max(0, x)
function using a essentially constant function:

▶ Lemma 19. We denote by Y (x, 2m+2) the function Y (x, 2m+2) = 1+tanh(2m+2x)
2 (illustrated

by Figure 1). For all integer m, for all x ∈ R, |ReLU(x)− xY (x, 2m+2)| ≤ 2−m.

Figure 1 Graphical representation of xY (x, 22+2) obtained with maple.

We deduce we can uniformly approximate the continuous sigmoid functions (when 1/(b−a)
is in LDL◦) defined as: s(a, b, x) = 0 whenever w ≤ a, x−a

b−a whenever a ≤ x ≤ b, and 1
whenever b ≤ x.

▶ Lemma 20 (Uniform approximation of any piecewise continuous sigmoid). Assume 1
b−a is

in LDL◦. Then there is some function C-s(m, a, b, x) ∈ LDL◦ (illustrated by Figure 2) such
that for all integer m, | C-s(m, a, b, x)− s(a, b, x)| ≤ 2−m.

Figure 2 Graphical representation of C-s(2, 1
2 , 3

4 , x) and C-s(25, 1
2 , 3

4 , x) obtained with maple.

Proof. We can write s(a, b, x) = ReLU(x−a)−ReLU(x−b)
b−a . Thus, | C-s(m + 1 + c, a, b, x) −

s(a, b, x)| ≤ 2.2−m−1−c

b−a , using the triangle inequality. Take c such that 1
b−a ≤ 2c. ◀

The existence of the following function will play an important role to obtain the various
functions of the next corollary.
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▶ Theorem 21. There exists some function ξ : N2 → R in LDL◦ (illustrated in Fig-
ure 3) such that for all n, m ∈ N and x ∈ [−2n, 2n], whenever x ∈ [⌊x⌋ + 1

8 , ⌊x⌋ + 7
8 ] ,∣∣ξ(2m, 2n, x)− {x− 1

8}
∣∣ ≤ 2−m.

Figure 3 Graphical representations of ξ(2, 4, x) obtained with maple: some details on the right.

The main idea of the proof is, by parity, to reduce the problem to construct an auxiliary
function ξ′ that works for x ≥ 0, writing ξ(2m, N, x) = ξ′(2m+2, N, x)−ξ′(2m+2, N,−x)+ 3

4−
3
4 C-s(2

m+2, 0, 1
8 , x), and then proving that ξ′ is definable in LDL◦, using an adhoc recursive

(in n) definition of it.

▶ Corollary 22 (A bestiary of functions). There exist
1. ξ1, ξ2 : N2 × R 7→ R ∈ LDL◦ such that, for all n, m ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ − 1
2 , ⌊x⌋ + 1

4 ] , |ξ1(2m, 2n, x) − {x}| ≤ 2−m, and whenever x ∈ [⌊x⌋, ⌊x⌋ + 3
4 ] ,

|ξ2(2m, 2n, x)− {x}| ≤ 2−m (see Figure 4).
2. σ1, σ2 : N2 × R 7→ R ∈ LDL◦ such that, for all n, m ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ − 1
2 , ⌊x⌋ + 1

4 ], σ1(2m, 2n, x) − ⌊x⌋ ≤ 2−m, and whenever x ∈ [⌊x⌋, ⌊x⌋ + 3
4 ],

|σ2(2m, 2n, x)− ⌊x⌋| ≤ 2−m (see Figure 5).
3. λ : N2 × R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ + 1
4 , ⌊x⌋ + 1

2 ], |λ(2m, 2n, x) − 0| ≤ 2−m, and whenever x ∈ [⌊x⌋ + 3
4 , ⌊x⌋ + 1],

|λ(2m, 2n, x)− 1| ≤ 2−m.
4. mod2 : N2 ×R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ − 1
4 , ⌊x⌋+ 1

4 ], |mod2(2m, 2n, x)-⌊x⌋mod 2| ≤ 2−m.

Figure 4 Graphical representation of ξ1(2, 4, x) and ξ2(2, 4, x) obtained with maple.

MFCS 2023
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Figure 5 Graphical representation of σ1(2, 4, x) and σ2(2, 4, x) obtained with maple.

Figure 6 Graphical representation of ÷2(2, 4, x) obtained with maple.

5. ÷2 : N2 × R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever
x ∈ [⌊x⌋ − 1

4 , ⌊x⌋+ 1
4 ], | ÷2 (2m, 2n, x)− ⌊x⌋//2| ≤ 2−m, with // the integer division (see

Figure 6).

Proof. Take ξ1(M, N, x) = ξ(M, N, x − 3
8 ) − 1

2 , ξ2(M, N, x) = ξ(N, x − 7
8 ), σi(M, N, x) =

x − ξi(M, N, x), λ(M, N, x) = C-s(2M, 1/4, 1/2, ξ(2M, N, x − 9/8)), mod2(M, N, x) = 1 −
λ(M, N/2, 1

2 x + 7
8 ), ÷2(M, N, x) = 1

2 (σ1(M, N, x)−mod2(M, N, x)). ◀

Observing that for if(d, l) = 4 s(1, 2, 1/2 + d + l/4)− 2, for l ∈ [0, 1], we have if(0, l) = 0,
and if(1, l) = l, and using Lemma 20 on this sigmoid, we get:

▶ Lemma 23. There exists C-if ∈ LDL◦ such that, l ∈ [0, 1], if we take |d′ − 0| ≤ 1/4, then
| C-if(d′, l)− 0| ≤ 2−m, and if we take |d′ − 1| ≤ 1/4, then | C-if(d′, l)− l| ≤ 2−m.

▶ Lemma 24. Let α1, α2, . . . , αn be some integers, and V1, V2, . . . , Vn some constants. We
write send(αi 7→ Vi)i∈{1,...,n} for the function that maps any x ∈ [αi − 1/4, αi + 1/4] to Vi,
for all i ∈ {1, . . . , n}.

There is some function in LDL◦, that we write C-send(2m, αi 7→ Vi)i∈{1,...,n}, that maps
any x ∈ [αi − 1/4, αi + 1/4] to a real at distance at most 2−m of Vi, for all i ∈ {1, . . . , n}.

▶ Lemma 25. Let N be some integer. Let α1, α2, . . . , αn be some integers, and Vi,j for 1 ≤
i ≤ n some constants, with 0 ≤ j < N . We write send((αi, j) 7→ Vi,j)i∈{1,...,n},j∈{0,...,N−1}
for the function that maps any x ∈ [αi − 1/4, αi + 1/4] and y ∈ [j − 1/4, j + 1/4] to Vi,j , for
all i ∈ {1, . . . , n}, j ∈ {0, . . . , N − 1}.
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There is some function in LDL◦, that we write
C-send(2m, (αi, j) 7→ Vi,j)i∈{1,...,n},j∈{0,...,N−1}, that maps any x ∈ [αi − 1/4, αi + 1/4] and
y ∈ [j − 1/4, j + 1/4] to a real at distance at most 2−m of Vi,j, for all i ∈ {1, . . . , n},
j ∈ {0, . . . , N − 1}.

4 Simulating Turing machines with functions of LDL◦

This section is devoted to the simulation of a Turing machine using some analytic functions,
and in particular functions from LDL◦. We use some ideas from [3] but with several
improvements, as we need to deal with errors and avoid multiplications.

Consider without loss of generality some Turing machine M = (Q, {0, 1, 3}, qinit, δ, F )
using the symbols 0, 1, 3, where B = 0 is the blank symbol.
▶ Remark 26. The reason of the choice of symbols 1 and 3 will be made clear later.
We assume Q = {0, 1, . . . , |Q|−1}. Let . . . l−kl−k+1 . . . l−1l0r0r1 . . . rn. . . . denote the content
of the tape of the Turing machine M . In this representation, the head is in front of symbol
r0, and li, ri ∈ {0, 1, 3} for all i. Such a configuration C can be denoted by C = (q, l, r),
where l, r ∈ Σω are words over alphabet Σ = {0, 1, 3} and q ∈ Q denotes the internal state of
M . Write: γword : Σω → R for the function that maps a word w = w0w1w2 . . . to the dyadic
γword(w) =

∑
n≥0 wn4−(n+1).

The idea is that such a configuration C can also be encoded by some element C =
(q, l, r) ∈ N× R2, by considering r = γword(r) and l = γword(l). In other words, we encode
the configuration of a bi-infinite tape Turing machine M by real numbers using their radix
4 encoding, but using only digits 1,3. Notice that this lives in Q × [0, 1]2. Denoting the
image of γword : Σω → R by I, this even lives in Q× I2.
▶ Remark 27. Notice that I is a Cantor-like set: it corresponds to the rational numbers that
can be written using only 1 and 3 in base 4. We write IS for those with at most S digits
after the point (i.e. of the form n/4S for some integer n).

▶ Lemma 28. We can construct some function Next in LDL◦ that simulates one step of
M : given a configuration C, writing C ′ for the next configuration, we have for all integer m,
∥Next(2m, C)− C

′∥ ≤ 2−m.

Proof. We can write l = l0l• and r = r0r•, where l0 and r0 are the first letters of l and r, and
l• and r• corresponding to the (possibly infinite) word l−1l−2 . . . and r1r2 . . . respectively.

... l• l0 r0 r• ...︸ ︷︷ ︸
l

︸ ︷︷ ︸
r

The function Next is of the form Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′) defined as
a definition by case of type:

(q′, l′, r′) =
{

(q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)
(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)

This can be rewritten as a first candidate for the function Next. Consider the similar
function working over the representation of the configurations as reals, considering r0 = ⌊4r⌋

Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′)

=
{

(q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)
(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)
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• in the first case “→” : l′ = 4−1l + 4−1x and r′ = r• = {4r}
• in the second case “←” : l′ = l• = {4l} and r′ = 4−2{4r}+ 4−2x + ⌊4l⌋/4 (6)

We introduce the following functions: →: Q× {0, 1, 3} 7→ {0, 1} and ←: Q× {0, 1, 3} 7→
{0, 1} such that → (q, a) (respectively: ← (q, a)) is 1 when δ(q, a) = (·, ·,→) (resp. (·, ·,←)),
i.e. the head moves right (resp. left), and 0 otherwise. We define nextqq

a = q′ if δ(q, a) =
(q′, ·, ·), i.e. values (q′, x, m) for some x and m ∈ {←,→}.

We can rewrite Next(q, l, r) = (q′, l
′
, r′) as l′ =

∑
q,r0

[
→ (q, r0)

(
l

4 + x

4

)
+← (q, r0)

{
4l

}]
and r′ =

∑
q,r0

[
→ (q, r0) {4r}+← (q, r0)

(
{4r}
42 + x

42 + ⌊4l⌋
4

)]
, and, using notation of

Lemma 25, q′ = send((q, r) 7→ nextqq
r)q∈Q,r∈{0,1,3}(q, ⌊4r⌋).

Our problem with such expressions is that they involve some discontinuous functions
such as the integer part and the fractional part function, and we would rather have analytic
(hence continuous) functions. A key point is that from our trick of using only symbols 1
and 3, we are sure that in an expression like ⌊4r⌋, either it values 0 (this is the specific case
where there remain only blanks in r), or that 4r lives in an interval [1, 2] or in interval [3, 4].
That means that we could replace ⌊4r⌋ by σ(4r) if we take σ as some continuous function
that would be affine and values respectively 0, 1 and 3 on {0} ∪ [1, 2] ∪ [3, 4] (that is to say
matches ⌊4r⌋ on this domain). A possible candidate is σ(x) = s(1/4, 3/4, x) + s(9/4, 11/4, x).
Then considering ξ(x) = x−σ(x), then ξ(4r) would be the same as {4r}: that is, considering
r0 = σ(4r), replacing in the above expression every {4·} by ξ(·), and every ⌊·⌋ by σ(·), and
get something that would still work the same, but using only continuous functions.

But, we would like to go to some analytic functions and not only continuous functions,
and it is well-known that an analytic function that equals some affine function on some
interval (e.g. on [1,2]) must be affine, and hence cannot be 3 on [3, 4]. But the point is that
we can try to tolerate errors, and replace s(·, ·) by C-s(2m+c, ·, ·) in the expressions above for
σ and ξ, taking c such that (3 + 1/42)3|Q| ≤ 2c. This would just introduce some error at
most (3 + 1/42)3|Q|2−c2−m ≤ 2−m.
▶ Remark 29. We could also replace every → (q, r) in above expressions for l

′ and r′ by
C-send(k, (q, r) 7→→ (q, r))(q, σ(4r)), for a suitable error bound k, and symmetrically for
← (q, r). However, if we do so, we still might have some multiplications in the above
expressions.
The key is to use Lemma 23: we can also write the above expressions as

l′ =
∑

q,r

[
C-if

(
2m+c, C-send(22, (q, r) 7→→ (q, r))(q, σ(4r)), l

4 + x
4

)
+ C-if

(
2m+c, C-send(22, (q, r) 7→← (q, r))(q, σ(4r)), ξ(4l)

)]
r′ =

∑
q,r

[
C-if

(
2m+c, C-send(22, (q, r) 7→→ (q, r))(q, σ(4r)), ξ(4r)

)
+ C-if

(
2m+c, C-send(22, (q, r) 7→← (q, r))(q, σ(4r)), ξ(4r)

42 + x
42 + σ(4l)

4

)]
and still have the same bound on the error. ◀

Once we have one step, we would like to simulate some arbitrary computation of a Turing
machine, by considering the iterations of function Next.

The problem of above construction, is that, even if we start from the exact encoding
C of a configuration, it introduces some error (even if at most 2−m). If we want to apply
again the function Next, then we will start not exactly from the encoding of a configuration.
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Looking at the choice of the function σ, a small error can be tolerated (roughly if the process
does not involve points at distance less than 1/4 of I), but this error is amplified (roughly
multiplied by 4 on some component), before introducing some new errors (even if at most
2−m). The point is that if we repeat the process, very soon it will be amplified, up to a level
where we have no true idea or control about what becomes the value of above function.

However, if we know some bound on the space used by the Turing machine, we can
correct it to get at most some fixed additive error: a Turing machine using a space S uses at
most S cells to the right and to the left of the initial position of its head. Consequently, a
configuration C = (q, l, r) of such a machine involves words l and r of length at most S. Their
encoding l, and r are expected to remain in IS+1. Consider roundS+1(l) = ⌊4S+1l⌋/4S+1.

For a point l of IS+1, 4S+1l is an integer, and l = roundS+1(l). But now, for a point l̃ at
distance less than 4−(S+2) from a point l ∈ IS+1, roundS+1(̃l) = l. In other words, roundS+1
“deletes” errors of order 4−(S+2). Consequently, we can replace every l in above expressions
by σ1(22S+4, 22S+3, 4S+1l)/4S+1, as this is close to roundS+1(l), and the same for r, where
σ1 is the function from Corollary 22. We could also replace m by m + 2S + 4 to guarantee
that 2−m ≤ 4−(S+2). We get the following important improvement of the previous lemma:

▶ Lemma 30. We can construct some function Next in LDL◦ that simulates one step of M ,
i.e. that computes the Next function sending a configuration C of Turing machine M to C

′,
where C ′ is the next one: ∥Next(2m, 2S , C)−C

′∥ ≤ 2−m. Furthermore, it is robust to errors
on its input, up to space S: considering ∥C̃ − C∥ ≤ 4−(S+2), ∥Next(2m, 2S , C̃)− C

′∥ ≤ 2−m

remains true.

▶ Proposition 31. Consider some Turing machine M that computes some function f : Σ∗ →
Σ∗ in some time T (ℓ(ω)) on input ω. One can construct some function f̃ : N2 × R→ R in
LDL◦ that does the same: f̃(2m, 2T (ℓ(ω)), γword(ω)) that is at most 2−m far from γword(f(ω)).

Proof. The idea is to define the function Exec that maps some time 2t and some initial
configuration C to the configuration at time t. This can be obtained using previous lemma
by Exec(2m, 0, 2T , C) = C and Exec(2m, 2t+1, 2T , C) = Next(2m, 2T , Exec(2m, 2t, 2T , C)).

We can then get the value of the computation as Exec(2m, 2T (ℓ(ω)), 2T (ℓ(ω)), Cinit) on input
ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection, we get the following
function f̃(2m, 2T , y) = π3

3(Exec(2m, 2T , 2T , (q0, 0, y))) that satisfies the property. ◀

Actually, in order to get FPSPACE, observe that we can also replace the linear length
ODE by a linear ODE.

▶ Proposition 32. Consider some Turing machine M that computes some function f :
Σ∗ → Σ∗ in some polynomial space S(ℓ(ω)) on input ω. One can construct some function
f̃ : N2 × R → R in RLD◦ that does the same: we have f̃(2m, 2S(ℓ(ω)), γword(ω)) that is at
most 2−m far from γword(f(ω)).

Proof. The idea is the same, but not working with powers of 2, and with linear ODE:
define the function Exec that maps some time t and some initial configuration C to the
configuration at time t. This can be obtained using previous lemma by Exec(2m, 0, 2S , C) = C

and Exec(2m, t + 1, 2S , C) = Next(2m, 2S , Exec(2m, t, 2S , C)).
In order to claim this is a robust linear ODE, we need to state that Exec(2m, t, 2S , C)

is polynomially numerically stable: but this holds, since to estimate this value at 2−n it is
sufficient to work at precision 4−max(m,n,S+2) (independently of t, from the rounding).

We can then get the value of the computation as Exec(2m, 2S(ℓ(ω)), 2S(ℓ(ω)), Cinit) on input
ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection, we get the following
function f̃(2m, 2S , y) = π3

3(Exec(2m, S, 2S , (q0, 0, y))) that satisfies the property. ◀

MFCS 2023
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5 Converting integers and dyadics to words, and conversely

One point of our simulations of Turing machines is that they work over I, through encoding
γword, while we would like to talk about integers and real numbers: we need to be able to
convert an integer (more generally a dyadic) into some encoding over I and conversely.

Fix the following encoding: every digit in the binary expansion of d is encoded by a pair
of symbols in the radix 4 expansion of d ∈ I ∩ [0, 1]: digit 0 (respectively: 1) is encoded by
11 (resp. 13) if before the “decimal” point in d, and digit 0 (respectively: 1) is encoded by 31
(resp. 33) if after. For example, for d = 101.1 in base 2, d = 0.13111333 in base 4.

By iterating ℓ(n) times the function

F (r1, l2) =
{

(÷2(r1), (l2 + 5)/4) whenever mod2(r1) = 0
(÷2(r1), (l2 + 7)/4) whenever mod2(r1) = 1.

over (n, 0), and then projecting on the second argument, we can prove:

▶ Lemma 33 (From N to I). We can construct some function Decode : N2 → R in LDL◦

that maps m and n to some point at distance less than 2−m from γword(n).

This technique can be extended to consider decoding of tuples: there is a function
Decode : Nd+1 → R in LDL◦ that maps m and n to some point at distance less than 2−m

from γword(n), with n defined componentwise.
Conversely, given d, we need a way to construct d. Actually, as we will need to avoid

multiplications, we state that we can even do something stronger: given d, and (some
bounded) λ we can construct λd.

▶ Lemma 34 (From I to R, and multiplying in parallel). We can construct some function
EncodeMul : N2 × [0, 1] × R → R in LDL◦ that maps m, 2S, γword(d) and (bounded) λ to
some real at distance at most 2−m from λd, whenever d is of length less than S.

6 Proofs and applications

When we say that a function f : S1 × · · · × Sd → Rd′ is (respectively: polynomial time or
space) computable this will always be in the sense of computable analysis: see e.g. [7, 19]. We
actually follow the formalisation in [3] of required concepts from computable analysis, able
to mix complexity issues dealing with integer and real arguments. Theorem 8 follows from
point 1. of next Proposition for one inclusion, and previous simulation of Turing machines
for the other.

▶ Proposition 35.
1. All functions of LDL◦ are computable (in the sense of computable analysis) in polynomial

time.
2. All functions of RLD are computable (in the sense of computable analysis) in polynomial

space.

The proof of the proposition consists in observing this holds for the basic functions and
that composition preserves polynomial time (respectively: space) computability and also
by linear length ODEs. This latter fact is established by computable analysis arguments,
reasoning on some explicit formula giving the solution of linear length ODE. Regarding space,
the main issue is the need to prove the schema given by Definition 18 guarantees f is in
FPSPACE, when u, g, and h are. Assuming condition 1. of Definition 18 would not be
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sufficient: the problem is f(x, y) may polynomially grow too fast or have a modulus function
that would grow too fast. The point is, in Definition 18, we assumed f to be both bounded
and satisfying 2., i.e. polynomial numerical robustness. With these hypotheses, it is sufficient
to work with the precision given by this robustness condition and these conditions guarantee
the validity of computing with such approximated values.

We now go to various applications of it and of our toolbox. First, we state a characterisa-
tion of FPTIME for general functions, covering both the case of a function f : Nd → Rd′ ,
f : Rd → Rd′ as a special case: only the first type (sequences) was covered by [3].

▶ Theorem 36 (Theorem 9). A function f : Rd × Nd′′ → Rd′ is computable in polynomial
time iff there exists f̃ : Rd × Nd′′+2 → Rd′ ∈ LDL◦ such that for all x ∈ Rd, X ∈ N,
x ∈

[
−2X , 2X

]
, m ∈ Nd′′ , n ∈ N, ∥f̃(x, m, 2X , 2n)− f(x, m)∥ ≤ 2−n.

The reverse implication of Theorem 36 follows from Proposition 35, (1.) and arguments
from computable analysis. For the direct implication, for sequences, that is to say, functions
of type f : Nd′′ → Rd′ (i.e. d = 0, the case considered in [3]) we are almost done: reasoning
componentwise, we only need to consider f : Nd′′ → R (i.e. d′ = 1). As the function is
polynomial time computable, this means that there is a polynomial time computable function
g : Nd′′+1 → {1, 3}∗ so that on m, 2n, it provides the encoding ϕ(m, n) of some dyadic
ϕ(m, n) with ∥ϕ(m, n)− f(m)∥ ≤ 2−n for all m. The problem is then to decode, compute
and encode the result to produce this dyadic, using our previous toolbox.

More precisely, from Proposition 31, we get g̃ with |g̃(2e, 2p(max(m,n)), Decode(2e, m, n))−
γword(g(m, n))| ≤ 2−e for some polynomial p corresponding to the time required to compute
g, and e = max(p(max(m, n)), n). Then we need to transform the value to the correct dyadic:
we mean f̃(m, n) = EncodeMul(2e, 2t, g̃(2e, 2t, Decode(2e, m, n)), 1), where t = p(max(m, n)),
e = max(p(max(m, n)), n) provides a solution such that ∥f̃(m, 2n)− f(m)∥ ≤ 2−n.

▶ Remark 37. This is basically what is done in [3], except that we do it here with analytic
functions. However, as already observed in [3], this cannot be done for the case d ≥ 1,
i.e. for example for f : R→ R. The problem is that we used the fact that we can decode:
Decode maps an integer n to its encoding n (but is not guaranteed to do something valid on
non-integers). There cannot exist such functions that would be valid over all reals, as such
function must be continuous, and there is no way to map continuously real numbers to finite
words. This is where the approach of the article [3] is stuck.

To solve this, we use an adaptive barycentric technique. By lack of space, we discuss
only the case of a polynomial time computable function f : R × N → R. From standard
arguments from computable analysis (see e.g. [Corollary 2.21][13]), the following holds and
the point is to be able to realise all this with functions from LDL◦.

▶ Lemma 38. Assume f : R× N→ R is computable in polynomial time. There exists some
polynomial m : N2 → N and some f̃ : N4 → Z computable in polynomial time such that for
all x ∈ R, ∥2−nf̃(⌊2m(n,M)x⌋, u, 2M , 2n)− f(x, u)∥ ≤ 2−n whenever x

2m(n,M) ∈ [−2M , 2M ].

Assume we consider an approximation σi (with either i = 1 or i = 2) of the integer part
function given by Lemma 22. Then, given n, M , when 2m(n,M)x falls in some suitable interval
Ii for σi (see statement of Lemma 22), we are sure that σi(2e, 2m(n,M)+X+1, 2m(n,M)x) is at
some distance upon control from ⌊2m(n,M)x⌋. Consequently, 2−nf̃(σi(2m(n,M)+X+1, 2m(n,M)

x), u, 2M , 2n) provides some 2−n-approximation of f(x, u), up to some error upon control.
When this holds, we then use an argument similar to what we describe for sequences: using
functions from LDL◦, we can decode, compute, and encode the result to provide this dyadic.
It is provided by an expression Formulai(x, u, M, n) of the form EncodeMul(2e, 2t, ˜̃f(22, 2t,

Decode(2e, σi(2e, 2M , 2m(n,M)x))), 2−n).
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The problem is that it might also be the case that 2m(n,M)x falls in the complement
of the intervals (Ii)i. In that case, we have no clear idea of what could be the value of
σi(2e, 2m(n,M)+X+1, 2m(n,M)x), and consequently of what might be the value of the above
expression Formulai(x, u, M, n). But the point is that when it happens for an x for σ1, we
could have used σ2, and this would work, as one can check that the intervals of type I1 covers
the complements of the intervals of type I2 and conversely. They also overlap, but when x is
both in some I1 and I2, Formula1(x, u, M, n) and Formula2(x, u, M, n) may differ, but they
are both 2−n approximation of f(x).

The key is to compute some suitable “adaptive” barycenter, using function λ, provided by
Corollary 22. Writing ≈ for the fact that two values are closed up to some controlled bounded
error, observe from the statements of Lemma 22 that whenever λ(·, 2n, x) ≈ 0, we know
that σ2(·, 2n, x) ≈ ⌊x⌋; whenever λ(·, 2n, x) ≈ 1 we know that σ1(·, 2n, x) ≈ ⌊x⌋; whenever
λ(·, 2n, x) ∈ (0, 1), we know that σ1(·, 2n, x) ≈ ⌊x⌋+1 and σ2(·, 2n, x) ≈ ⌊x⌋. That means that
if we consider λ(·, 2n, x)Formula1(x, u, M, n)+(1−λ(·, 2n, n))Formula2(x, u, M, n) we are sure
to be close (up to some bounded error) to some 2−n approximation of f(x). There remains
that this requires some multiplication with λ. But from the form of Formulai(x, u, M, n),
this could be also be written as follows, ending the proof of Theorem 36.

EncodeMul(2e, 2t, ˜̃f(2e, 2t, Decode(2e, σ1(2e, 2M , 2m(n,M)x))), λ(2e, 2M , 2m(n,M)x)2−n)+

EncodeMul(2e, 2t, ˜̃f(2e, 2t, Decode(2e, σ2(2e, 2M , 2m(n,M)x))), (1 − λ(2e, 2M , 2m(n,M)x))2−n) (7)

From the fact that we have the reverse direction in Theorem 36, it is natural to consider
the operation that maps f̃ to f . Namely, we introduce the operation ELim (ELim stands
for Effective Limit):

▶ Definition 39 (Operation ELim). Given f̃ : Rd×Nd′′ ×N→ Rd′ ∈ LDL◦ such that for all
x ∈ Rd, X ∈ N, x ∈

[
−2X , 2X

]
, m ∈ Nd′′ , n ∈ N, ∥f̃(x, m, 2X , 2n)− f(x, m)∥ ≤ 2−n, then

ELim(f̃) is the (clearly uniquely defined) corresponding function f : Rd → Rd′ .

▶ Theorem 40. A continuous function f is computable in polynomial time if and only if all its
components belong to LDL◦, where LDL◦ = [0, 1, πk

i , ℓ(x), +,−, cond(x), x
2 , x

3 ; composition,
linear length ODE, ELim].

For the reverse direction, by induction, the only thing to prove is that the class of functions
from to the integers computable in polynomial time is preserved by the operation ELim.
Take such a function f̃ . By definition, given x, m, X we can compute f̃(x, m, 2X , 2n) with
precision 2−n in time polynomial in n. This must be, by definition of ELim schema, some
approximation of f(x, m) over [−2X , 2X ], and hence f is computable in polynomial time.
This also gives directly Theorem 9 as a corollary.

We obtain the statements for polynomial space computability (Theorems 10 and 11)
replacing LDL◦ by RLD◦, using similar reasoning about space instead of time, considering
point 2. instead of 1. of Proposition 35, and Proposition 32 instead of Proposition 31.
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