
On Property Testing of the Binary Rank
Nader H. Bshouty #

Technion, Haifa, Israel

Abstract
Let M be an n × m (0, 1)-matrix. We define the s-binary rank, denoted as brs(M), of M as the
minimum integer d such that there exist d monochromatic rectangles covering all the 1-entries in the
matrix, with each 1-entry being covered by at most s rectangles. When s = 1, this corresponds to
the binary rank, denoted as br(M), which is well-known in the literature and has many applications.

Let R(M) and C(M) denote the sets of rows and columns of M , respectively. Using the result
of Sgall [10], we establish that if M has an s-binary rank at most d, then |R(M)| · |C(M)| ≤

(
d

≤s

)
2d,

where
(

d
≤s

)
=
∑s

i=0

(
d
i

)
. This bound is tight, meaning that there exists a matrix M ′ with an s-binary

rank of d, for which |R(M ′)| · |C(M ′)| =
(

d
≤s

)
2d.

Using this result, we present novel one-sided adaptive and non-adaptive testers for (0, 1)-
matrices with an s-binary rank at most d (and exactly d). These testers require Õ

((
d

≤s

)
2d/ϵ

)
and

Õ
((

d
≤s

)
2d/ϵ2) queries, respectively.

For a fixed s, this improves upon the query complexity of the tester proposed by Parnas et al.
in [9] by a factor of Θ̃(2d).

2012 ACM Subject Classification Theory of computation

Keywords and phrases Property testing, binary rank, Boolean rank

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.27

1 Introduction

Let M be an n × m (0, 1)-matrix. We define the s-binary rank, denoted as brs(M), of
M as the minimum integer d such that there exist d sets (rectangles) Ik × Jk, where
Ik ⊆ [n] := {1, . . . , n} and Jk ⊂ [m] for k ∈ [d] that satisfy the conditions: for every
(i, j) ∈ [n]× [m] where M [i, j] = 1, there is at least one and at most s integer t ∈ [d] such that
(i, j) ∈ It × Jt (each 1-entry in M is covered by at least one and at most s monochromatic
rectangles). Additionally, M [i, j] = 1 for all (i, j) ∈ Ik × Jk for k ∈ [d] (monochromatic
rectangles).

When s = 1, the s-binary rank br1(M) is known as the binary rank, denoted as br(M).
When s =∞, the s-binary rank br∞(M) is referred to as the Boolean rank. Both of these
concepts are well-known in the literature. You can explore many applications of these
concepts by referring to notable sources such as Amilhastre and Vigneron [1], Chalermsook
et al. [3], and Gregory et al. [5]. These references, along with the internal citations, provide
an extensive collection of related works with additional applications.

The binary rank can also be defined as follows: the binary rank of an n×m (0, 1)-matrix
M is equal to the minimum d such that there exist an n× d (0, 1)-matrix N and a d×m

(0, 1)-matrix L satisfying M = NL. The binary rank can also be interpreted as the minimum
number of bipartite cliques required to partition all the edges of a bipartite graph with
adjacency matrix M . Similarly, the s-binary rank of M is the minimum number of bipartite
cliques needed to cover all the edges of a bipartite graph with adjacency matrix M , with
each edge being covered by at most s bipartite cliques. In [3], Chalermsook et al, show that
approximating the binary rank within a factor of n1−δ for any given δ is NP-hard.

A property-testing algorithm, also known as a tester, for the s-binary rank [9], takes as
input 0 < ϵ < 1, integers d, n, and m, and has query access to the entries of an n × m

(0, 1)-matrix M . If M has an s-binary rank at most d (or exactly d), the tester accepts with
© Nader H. Bshouty;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bshouty@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.MFCS.2023.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 On Property Testing of the Binary Rank

probability at least 2/3. If M is ϵ-far from having an s-binary rank at most d (or exactly d),
meaning that modifying more than an ϵ-fraction of the entries of M is required to obtain a
matrix with an s-binary rank at most d (or exactly d), then the tester rejects with probability
at least 2/3. If the tester accepts matrices with an s-binary rank at most d (or exactly d)
with probability 1, it is referred to as a one-sided error tester. In adaptive testing, the queries
can depend on the answers to previous queries, while in non-adaptive testing, all queries are
predetermined by the tester in advance. The objective is to construct a tester that makes
the fewest number of queries possible.

The testability of the s-binary rank at most d of (0, 1)-matrices was studied in [8, 9].
In [8], Nakar and Ron presented a non-adaptive one-sided error tester for s = 1 that makes
Õ(24d/ϵ4) queries. In [9], Parnas et al. gave non-adaptive and adaptive one-sided error testers
for s = 1 that makes O(22d/ϵ2) and O(22d/ϵ) queries, respectively. The results presented
in [9] also hold to the s-binary rank at most d.

In this paper, we establish the following theorems for the testability of the s-binary rank
at most d (or exactly d):

▶ Theorem 1. There exists an adaptive one-sided error tester for s-binary rank of n×m

(0, 1)-matrices that makes Õ
((

d
≤s

)
2d/ϵ

)
queries.

▶ Theorem 2. There exists a non-adaptive one-sided error tester for s-binary rank of n×m

(0, 1)-matrices that makes Õ
((

d
≤s

)
2d/ϵ2

)
queries.

For fixed s, this improves the query complexity of Parnas et al. in [9] by a factor of Õ(2d).

1.1 Our Approach
The tester of Parnas et al. [9] uses the fact that if M ′ is a k × k sub-matrix of M and M ′ is
of s-binary rank at most d, then the following properties hold:
1. M ′ has at most 2d distinct rows and at most 2d distinct columns.
2. If M is ϵ-far from having s-binary rank at most d, then extending M ′ by one more

uniformly at random row and column from M yields a (k + 1)× (k + 1) sub-matrix M ′′

of M that, with probability at least Ω(ϵ), satisfies: either the number of distinct rows in
M ′′ is greater by one than the number of distinct rows in M ′, or the number of distinct
columns in M ′′ is greater by one than the number of distinct columns in M ′.

So, their adaptive tester starts from an empty matrix M ′ = () and then runs O(2d/ϵ)
iterations. At every iteration, if M ′ is of size (2d + 1) × (2d + 1) it rejects. Otherwise, it
extends M ′ by uniformly at random one row and one column. Let M ′′ be the resulting
sub-matrix. If the s-binary rank of M ′′ is greater than d, the tester rejects. If the number
of distinct rows or columns in M ′′ is greater than the number in M ′, then it continues to
the next iteration with M ′ ←M ′′. Otherwise, it continues to the next iteration with M ′. If,
after O(2d/ϵ) iterations, M ′ has s-binary rank at most d, the tester accepts.

If the s-binary rank of M is at most d, then every sub-matrix of M has an s-binary
rank at most d, and the tester accepts. If M is ϵ-far from having s-binary rank at most d,
then: since, at each iteration, with probability at least Ω(ϵ), the number of distinct rows or
columns of M ′ is increased by one, and since matrices of s-binary rank d have at most 2d

distinct rows and at most 2d distinct columns, with high probability, we either obtain M ′

with an s-binary rank greater than d, or M ′ reaches to the dimension of (2d + 1)× (2d + 1).
In both cases, the tester rejects. The query complexity of the tester is O(22d/ϵ), which is the
worst-case number of the entries of the matrix M ′, O(22d), times the number of trials O(1/ϵ)
for extending M ′ by one row and one column.

N. H. Bshouty 27:3

We now give our approach. Call a sub-matrix M ′ of M perfect if it has distinct rows and
distinct columns. Our adaptive tester uses the fact that if M ′ is a perfect k × k′ sub-matrix
of M of s-binary rank d, then
1. kk′ ≤

(
d

≤s

)
2d.

2. If M is ϵ-far from having s-binary rank at most d, then at least one of the following
occurs1

a. With probability at least Ω(ϵ), extending M ′ by one uniformly at random column of
M , gives a perfect k × (k′ + 1) sub-matrix M ′′ of M .

b. With probability at least Ω(ϵ), extending M ′ by one uniformly at random row of M ,
gives a perfect (k + 1)× k′ sub-matrix M ′′ of M .

c. With probability at least Ω(ϵ), extending M ′ by one uniformly at random column and
one uniformly at random row of M , gives a perfect2 (k + 1)× (k′ + 1) sub-matrix M ′′

of M .
Item 1 follows from Sgall’s result in [10] (See Section 3), and item 2 is Claim 10 in Parnas
et al [9]. Now, the tester’s strategy is as follows. If k ≤ k′, the tester first tries to extend
M ′ with a new column. If it succeeds, it moves to the next iteration. Otherwise, it tries
to extend M ′ with a new row. If it succeeds, it moves to the next iteration. Otherwise, it
tries to extend M ′ with a new row and a new column. If it succeeds, it moves to the next
iteration. If it fails, it accepts. If k′ < k, it starts with the row, then the column, and then
both.

Using this strategy, we show that the query complexity will be, at most, the order of the
size kk′ ≤

(
d

≤s

)
2d of M ′ times the number of trials, Õ(1/ϵ), to find the new row, column, or

both. This achieves the query complexity in Theorem 1.
For the non-adaptive tester, the tester, uniformly at random, chooses t = Õ

((
d

≤s

)
2d/ϵ2

)
rows r1, . . . , rt ∈ [n] and t columns c1, . . . , ct ∈ [m] and queries all M [ri, cj] for all i ·j ≤ t and
puts them in a table. Then it runs the above non-adaptive tester. When the non-adaptive
tester asks for uniformly at random row or column, it provides the next element ri or cj ,
respectively. The queries are then answered from the table. We show that the adaptive
algorithm does not need to make queries that are not in the table before it halts. This
achieves the query complexity in Theorem 2.

1.2 Other Rank Problems

The real rank of a n×m-matrix M over any field F is the minimal d, such that there is a
n× d matrix N over F and a d×m matrix L over F such that M = NL. The testability of
the real rank was studied in [2, 6, 7]. In [2], Balcan et al. gave a non-adaptive tester for the
real rank that makes Õ(d2/ϵ) queries. They also show that this query complexity is optimal.

The Boolean rank (∞-binary rank) was studied in [8, 9]. Parnas et al. in [9] gave a
non-adaptive tester for the Boolean rank that makes Õ(d4/ϵ4) queries3.

1 Note that what we have in a-c is not precisely what we use in the algorithm and its proof of correctness.
For the exact statement, please refer to Claim 13. It can be observed that both statements are equivalent,
allowing for a change in the constant within the Ω notation.

2 It may happen that events (a) and (b) do not occur and (c) does
3 The query complexity in [9] is Õ(d4/ϵ6). We’ve noticed that Lemma 3 in [9] is also true when we replace

(ϵ2/64)n2 with (ϵ/4)n2. To prove that, in the proof of Lemma 3, replace Modification rules 1 and 2
with the following modification: Modify to 0 all beneficial entries. This gives the result stated here, [4].

MFCS 2023

27:4 On Property Testing of the Binary Rank

2 Definitions and Preliminary Results

Let M be a n × m (0, 1)-matrix. We denote by R(M) and C(M) the set of rows and
columns of M , respectively. The number of distinct rows and columns of M are denoted
by r(M) = |R(M)| and, c(M) = |C(M)|, respectively. The binary rank of a n×m-matrix
M , br(M), is equal to the minimal d, where there is a n× d (0, 1)-matrix N and a d×m

(0, 1)-matrix L such that M = NL.
We define the s-binary rank, brs(M), of M to be the minimal integer d such that there are

d sets (rectangles) Ik×Jk where Ik ⊆ [n] := {1, . . . , n}, Jk ⊂ [m], k ∈ [d] such that M [i, j] = 1
for all (i, j) ∈ Ik × Jk, k ∈ [d] (monochromatic rectangles) and for every (i, j) ∈ [n] × [m]
where M [i, j] = 1 there are at least one and at most s integers t ∈ [d] such that (i, j) ∈ It×Jt

(each 1-entry in M is covered by at least one and at most s monochromatic rectangles).
We now prove.

▶ Lemma 3. Let M be a n×m (0, 1)-matrix. The s-binary rank of M , brs(M), is equal to
the minimal integer d, where there is a n× d (0, 1)-matrix N and a d×m (0, 1)-matrix L

such that: For P = NL,
1. For every (i, j) ∈ [n]× [m], M [i, j] = 0 if and only if P [i, j] = 0.
2. For every (i, j) ∈ [n]× [m], P [i, j] ≤ s.

Proof. If M is of s-binary rank d, then there are rectangles {Ik × Jk}k∈[d], Ik ⊆ [n], Jk ⊂
[m], k ∈ [d] such that M [i, j] = 1 for all (i, j) ∈ Ik×Jk, k ∈ [d] and for every (i, j) ∈ [n]× [m]
where M [i, j] = 1 there are at least one and at most s integers t ∈ [d] such that (i, j) ∈ It×Jt.
Define row vectors a(k) ∈ {0, 1}n and b(k) ∈ {0, 1}m where a

(k)
i = 1 iff (if and only if) i ∈ Ik,

and b
(k)
j = 1 iff j ∈ Jk. Then define4 P = a(1)′

b(1) + · · · + a(d)′
b(d). It is easy to see that

(a(k)′
b(k))[i, j] = 1 iff (i, j) ∈ Ik × Jk. Therefore, P [i, j] = 0 iff M [i, j] = 0 and P [i, j] ≤ s for

all (i, j) ∈ [n] × [m]. Define the n × d matrix N =
[
a(1)′| · · · |a(d)′] and the d ×m matrix

L =
[
b(1)′| · · · |b(d)′]′

. It is again easy to see that P = NL.
The other direction can be easily seen by tracing backward in the above proof. ◀

We now prove the following,

▶ Lemma 4. Let P be a n × m matrix. Let N and L be n × d (0, 1)-matrix and d × m

(0, 1)-matrix, respectively, such that P = NL. Then r(P) ≤ r(N) and c(P) ≤ c(L).

Proof. We prove the result for r. The proof for c is similar. Let r1, . . . , rn be the rows of N

and p1, . . . , pn be the rows of P . Then pi = riL. Therefore, if ri = rj , then pi = pj . Thus,
r(P) ≤ r(N). ◀

Let M be a n × m matrix. For x ∈ X ⊆ [n], y ∈ Y ⊆ [m], we denote by M [X, Y]
the |X| × |Y | sub-matrix of M , (M [x′, y′])x′∈X,y′∈Y . Denote by M [X, y] the column vector
(M [x′, y])x′∈X and by M [x, Y] the row vector (M [x, y′])y′∈Y .

For x ∈ [n] (resp. y ∈ [m]) we say that M [X, y] is a new column (resp. M [x, Y] is a new
row) to M [X, Y] if it is not equal to any of the columns (resp. rows) of M [X, Y].

▶ Lemma 5. Let M be a n ×m matrix, x ∈ [n], X ⊆ [n], y ∈ [m], and Y ⊆ [m]. Suppose
M [x, Y] is not a new row to M [X, Y], and M [X, y] is not a new column to M [X, Y]. Then
M [x, Y ∪ {y}] is not a new row to M [X, Y ∪ {y}] if and only if M [X ∪ {x}, y] is not a new
column to M [X ∪ {x}, Y].

4 Here x′ is the transpose of x.

N. H. Bshouty 27:5

Proof. If M [x, Y ∪ {y}] is not a new row to M [X, Y ∪ {y}], then there is x′ ∈ X such
that M [x, Y ∪ {y}] = M [x′, Y ∪ {y}]. Since M [X, y] is not a new column to M [X, Y],
there is y′ ∈ Y such that M [X, y] = M [X, y′]. Since M [x, Y ∪ {y}] = M [x′, Y ∪ {y}],
we have M [x′, y′] = M [x, y′] and M [x, y] = M [x′, y]. Since M [X, y] = M [X, y′], we have
M [x′, y] = M [x′, y′]. Therefore, M [x, y] = M [x, y′] and M [X ∪ {x}, y] = M [X ∪ {x}, y′].
Thus, M [X ∪ {x}, y] is not a new column to M [X ∪ {x}, Y].

Similarly, the other direction follows. ◀

3 Matrices of s-Binary Rank d

In this section, we prove the following two Lemmas.

▶ Lemma 6. For any n×m (0, 1)-matrix M of s-binary rank at most d, we have

r(M) · c(M) ≤
(

d

≤ s

)
2d.

▶ Lemma 7. There is a (0, 1)-matrix M ′ of s-binary rank d that satisfies r(M ′) · c(M ′) =(
d

≤s

)
2d.

To prove Lemma 6, we use the following Sgall’s lemma.

▶ Lemma 8. [10]. Let A,B ⊆ 2[d] be such that for every A ∈ A and B ∈ B, |A ∩ B| ≤ s.
Then |A| · |B| ≤

(
d

≤s

)
2d.

We now prove Lemma 6.

Proof. Since the s-binary rank of M is at most d, by Lemma 3, there is a n× d (0, 1)-matrix
N and a d×m (0, 1)-matrix L such that, for P = NL

1. For every (i, j) ∈ [n]× [m], M [i, j] = 0 if and only if P [i, j] = 0.
2. For every (i, j) ∈ [n]× [m], P [i, j] ≤ s.

Obviously, r(M) ≤ r(P) and c(M) ≤ c(P). Consider A = {A1, . . . , An} ⊆ 2[d] and
B = {B1, . . . , Bm} ⊆ 2[d], where Ai = {j|Ni,j = 1} and Bk = {j|Lj,k = 1}. Since the entries
of P = NL are at most s, for every i ∈ [n] and k ∈ [m], |Ai ∩Bk| ≤ s.

By Lemma 4 and 8,

r(M) · c(M) ≤ r(P) · c(P) ≤ r(N) · c(L) = |A| · |B| ≤
(

d

≤ s

)
2d. ◀

We now prove Lemma 7.

Proof of Lemma 7. Let N be a 2d × d (0, 1)-matrix where its rows contain all the vectors
in {0, 1}d. Let L be a d×

(
d

≤s

)
matrix where its columns contain all the vectors in {0, 1}d of

weight at most s. Obviously, P = NL is 2d ×
(

d
≤s

)
with entries that are less than or equal to

s. Define a 2d ×
(

d
≤s

)
(0, 1)-matrix M ′ where M ′[i, j] = 0 if and only if P [i, j] = 0. Then, by

Lemma 3, M ′ is of s-binary rank at most d. We now show that r(M ′) · c(M ′) =
(

d
≤s

)
2d.

Since the identity d × d matrix Id is a sub-matrix of L, we have that NId = N is
(0, 1)-matrix and a sub-matrix of P and therefore of M ′. Therefore, r(M ′) ≥ r(N) = 2d.
Since Id is a sub-matrix of N , by the same argument, c(M ′) ≥ c(L) =

(
d

≤s

)
. Therefore

r(M ′) · c(M ′) ≥
(

d
≤s

)
2d. Thus, r(M ′) · c(M ′) =

(
d

≤s

)
2d.

We now show that M ′ has s-binary rank d. Suppose the contrary, i.e., M ′ has binary
rank d′ < d. Then there are 2d × d′ (0, 1)-matrix N and d′ ×

(
d

≤s

)
(0, 1)-matrix L such that

P = NL and M ′[i, j] = 0 iff P [i, j] = 0. Now by Lemma 4, r(M ′) ≤ r(P) ≤ r(N) ≤ 2d′
< 2d,

which gives a contradiction. ◀

MFCS 2023

27:6 On Property Testing of the Binary Rank

4 Testing The s-Binary Rank

In this section, we present the adaptive and non-adaptive testing algorithms for s-binary
rank at most d. We first give the adaptive algorithm and prove Theorem 1.

4.1 The Adaptive Tester

Adaptive-Test-Rank(d, s, M, n, m, ϵ)
Input: Oracle that accesses the entries of n×m (0, 1)-matrix M .
Output: Either “Accept” or “Reject”

1. X ← {1}; Y ← {1}; t = 9d/ϵ.
2. While |X| · |Y | ≤

(
d

≤s

)
2d do

3. If the s-binary rank of M [X, Y] is greater than d, then Reject.
4. F inish← False; X ′ ← ∅; Y ′ ← ∅. /∗ X ′ and Y ′ are multi-sets.
5. If |X| ≥ |Y | then
6. While (NOT Finish) AND |X ′| < t

7. Draw uniformly at random x ∈ [n]\X; X ′ ← X ′ ∪ {x};
8. If M [x, Y] is a new row to M [X, Y]

then X ← X ∪ {x}; Finish← True.

9. If (NOT Finish) then
10. While (NOT Finish) AND |Y ′| < t

11. Draw uniformly at random y ∈ [m]\Y ; Y ′ ← Y ′ ∪ {y}.
12. If M [X, y] is new column to M [X, Y]

then Y ← Y ∪ {y}; Finish← True.

13. Else (|X| < |Y |)
14. While (NOT Finish) AND |Y ′| < t

15. Draw uniformly at random y ∈ [m]\Y ; Y ′ ← Y ′ ∪ {y};
16. If M [X, y] is a new column to M [X, Y]

then Y ← Y ∪ {y}; Finish← True.

17. If (NOT Finish) then
18. While (NOT Finish) AND |X ′| < t

19. Draw uniformly at random x ∈ [n]\X; X ′ ← X ′ ∪ {x}
20. If M [x, Y] is a new row to M [X, Y]

then X ← X ∪ {x}; Finish← True.

21. While (NOT Finish) AND X ′ ̸= ∅ do
22. Draw uniformly at random x ∈ X ′ and y ∈ Y ′

23. If M [x, Y ∪ {y}] is a new row to M [X, Y ∪ {y}] OR, equivalently,
24. M [X ∪ {x}, y] is a new column to M [X ∪ {x}, Y]
25. then X ← X ∪ {x}; Y ← Y ∪ {y}; Finish← True.
26. else X ′ ← X ′\{x}; Y ′ ← Y ′\{y}.
27. If (NOT Finish) then Accept
28.Reject

Figure 1 An adaptive tester for s-binary rank at most d.

In this section, we prove Theorem 1.

N. H. Bshouty 27:7

Consider the tester Adaptive-Test-Rank in Figure 1. The tester, at every iteration
of the main While-loop (step 2) has a set X of rows of M and a set Y of columns of M . If
|X| ≥ |Y | (step 5), the tester first tries to extend M [X, Y] with a new column (steps 6-8). If
it succeeds, it moves to the next iteration. Otherwise, it tries to extend M [X, Y] with a new
row (steps 9-12). If it succeeds, it moves to the next iteration. Otherwise, it tries to extend
M [X, Y] with a new row and a new column (steps 21-26). If it succeeds, it moves to the
next iteration. If it fails, it accepts (step 27). If |X| < |Y | (step 13), it starts with the row
of M [X, Y] (steps 14-16), then the column (steps 18-20), and then both (steps 21-26). If it
fails, it accepts (step 27).

If |X| · |Y | >
(

d
≤s

)
2d (step 2 and then step 28) or the s-binary rank of M [X, Y] is greater

than d (step 3), then it rejects.
We first prove

▶ Lemma 9. Let t = 9d/ϵ. Tester Adaptive-Test-Rank makes at most 2
(

d
≤s

)
2dt =

Õ
((

d
≤s

)
2d
)

/ϵ queries.

Proof. We prove by induction that at every iteration of the main While-loop (step 2), the
tester knows the entries of M [X, Y], and the total number of queries, qX,Y , is at most
2|X||Y |t. Since the While-loop condition is |X||Y | ≤

(
d

≤s

)
2d, the result follows.

At the beginning of the algorithm, no queries are made, and |X| = |Y | = 1. Then
2|X||Y |t = 2t > 0 = qX,Y . Suppose, at the kth iteration, the tester knows the entries of
M [X, Y] and qX,Y ≤ 2|X||Y |t. We prove the result for the (k + 1)th iteration.

We have the following cases (at the (k + 1)th iteration)
Case I. |X| ≥ |Y | (step 5) and, for some x, M [x, Y] is a new row to M [X, Y] (step 8).

In that case, Finish becomes true, and no other sub-while-loop is executed. Therefore,
the number of queries made at this iteration is at most |Y |t (to find all M [x, Y]), and one
element x is added to X. Then, the tester knows all the entries of M [X ∪ {x}, Y] and

qX∪{x},Y = qX,Y + |Y |t ≤ 2|X||Y |t + |Y |t ≤ 2|X ∪ {x}| · |Y |t,

and the result follows.
Case II. |X| ≥ |Y | (step 5), for all x′ ∈ X ′, M [x′, Y] is not a new row to M [X, Y] (step 8),

and for some y, M [X, y] is a new column to M [X, Y] (step 12).
In that case, Finish becomes true, and no other sub-while-loop is executed after the
second sub-while-loop (step 10).
Therefore, in this case, the number of queries made at this iteration is at most |Y |t + |X|t.
|X|t queries in the first sub-while-loop (to find M [x, Y] for all x ∈ X ′), and at most |Y |t
queries in the second sub-while-loop (to find M [X, y′] for all y′ ∈ Y ′). Then one element
y is added to Y . Therefore, the tester knows the entries of M [X, Y ∪ {y}] and, since
|Y | ≤ |X|,

qX,Y ∪{y} = qX,Y + |X|t + |Y |t ≤ 2|X||Y |t + 2|X|t = 2|X| · |Y ∪ {y}|t,

and the result follows.
Case III. |X| ≥ |Y |, for all x′ ∈ X ′, M [x′, Y] is not a new row to M [X, Y], for all y′ ∈ Y ′,

M [X, y′] is not a new column to M [X, Y], and for some x ∈ X ′, y ∈ Y ′, M [x, Y ∪ {y}] is
a new row to M [X, Y ∪ {y}] (step 23).

MFCS 2023

27:8 On Property Testing of the Binary Rank

In this case, |X ′| = |Y ′| = t, the number of queries is |X|t + |Y |t + t. Exactly |X|t queries
in the first sub-while-loop, |Y |t queries in the second sub-while-loop, and at most5 t

queries in the sub-while-loop in step 21. Then one element x is added to X, and one
element y is added to Y . Then the tester knows the entries of M [X ∪ {x}, Y ∪ {y}] and

qX∪{x},Y ∪{y} = qX,Y +|X|t+|Y |t+t ≤ 2|X|·|Y |t+|X|t+|Y |t+t ≤ 2|X∪{x}|·|Y ∪{y}|t.

Case IV. |X| ≥ |Y |, for all x′ ∈ X ′, M [x′, Y] is not a new row to M [X, Y], for all y′ ∈ Y ′,
M [X, y′] is not a new column to M [X, Y], and for all the drawn pairs x ∈ X ′, y ∈ Y ′,
M [x, Y ∪ {y}] is not a new row to M [X, Y ∪ {y}] (step 23).
In this case, Finish will have value False, and the tester accepts in step 27.
The analysis of the case when |X| < |Y | is similar to the above analysis. ◀

We now prove the completeness of the tester.

▶ Lemma 10. If M is a n ×m (0, 1)-matrix of s-binary rank at most d, then the tester
Adaptive-Test-Rank accepts with probability 1.

Proof. The tester rejects if and only if one of the following occurs,
1. M [X, Y] has s-binary rank greater than d.
2. |X| · |Y | >

(
d

≤s

)
2d.

If M [X, Y] has s-binary rank greater than d, then M has s-binary rank greater than d. This
is because, if M = NL, then M [X, Y] = N [X, [d]] · L[[d], Y]. So item 1 cannot occur.

Before we show that item 2 cannot occur, we prove the following:

▷ Claim 11. The rows (resp. columns) of M [X, Y] are distinct.

Proof. The steps in the tester where we add rows or columns are steps 8, 12 16, 20, and 23.
In steps 8, 12 16, 20 it is clear that a row (resp. column) is added only if it is a new row
(resp. column) to M [X, Y]. Consider step 23 and suppose, w.l.o.g |X| ≥ |Y |. This step is
executed only when Finish = False. This happens when |X ′| = |Y ′| = t, for every x ∈ X ′,
M [x, Y] is not a new row to M [X, Y], and for every y ∈ Y ′, M [X, y] is not a new column to
M [X, Y]. Then x and y are added to X and Y , respectively, if M [x, Y ∪ {y}] is a new row
to M [X, Y ∪{y}]. Then, by Lemma 5, M [X ∪{x}, y] is a new column to M [X ∪{x}, Y]. So,
the rows (and columns) in M [X ∪ {x}, Y ∪ {y}] are distinct. This implies the result. ◁

Suppose, to the contrary, |X| · |Y | >
(

d
≤s

)
2d. Since M ′ = M [X, Y] satisfies r(M ′)c(M ′) =

|X| · |Y | >
(

d
≤s

)
2d, by Lemma 6, the s-binary rank of M ′, and therefore of M , is greater

than d. A contradiction. ◀

We now prove the soundness of the tester.
We first prove the following.

▷ Claim 12. Let M be a n×m (0, 1)-matrix, X ⊆ [n], and Y ⊆ [m]. Suppose there are two
functions, ′ : [n]→ X and ′′ : [m]→ Y , such that
1. For every x ∈ [n], M [x, Y] = M [x′, Y].
2. For every y ∈ [m], M [X, y] = M [X, y′′].
3. For every x ∈ [n] and y ∈ [m], M [x, y] = M [x′, y′′].
Then M has at most |X| distinct rows and |Y | distinct columns, and its s-binary rank is the
s-binary rank of M [X, Y].

5 This is because, for x ∈ X ′, y ∈ Y ′, the tester already knows M [x, Y] and M [X, y] from the first and
second sub-while-loop and only needs to query M [x, y].

N. H. Bshouty 27:9

Proof. Let x ∈ [n]\X. For every y, M [x, y] = M [x′, y′′] = M [x′, y]. Therefore, row x in M

is equal to row x′. Similarly, column y in M is equal to column y′′.
Since adding equal columns and rows to a matrix does not change the s-binary rank6, we

have brs(M [X, Y]) = brs(M [X, [m]]) = brs(M). ◁

The following Claim is proved in [9] (Claim 10). Here, we give the proof for completeness.

▷ Claim 13. Let M be a (0, 1)-matrix that is ϵ-far from having s-binary rank at most d.
Let X ⊆ [n] and Y ⊆ [m], such that brs(M [X, Y]) ≤ d, the columns of M [X, Y] are distinct,
and the rows of M [X, Y] are distinct. Then one of the following must hold:
1. The number of rows x ∈ [n] where M [x, Y] is a new row to M [X, Y] is at least nϵ/3.
2. The number of columns y ∈ [m] where M [X, y] is a new column to M [X, Y] is at least

mϵ/3.
3. The number pairs (x, y), x ̸∈ X, y ̸∈ Y , where, M [x, Y] = M [x′, Y] for some x′ ∈ X,

M [X, y] = M [X, y′′] for some y′′ ∈ Y , and M [x, y] ̸= M [x′, y′′], is at least mnϵ/3.

Proof. Assume, to the contrary, that none of the above statements holds. Change every
row x in M where M [x, Y] is a new row to M [X, Y] to a zero row. Let X ′ be the set of
such rows. Change every column y in M where M [X, y] is a new row to M [X, Y] to a zero
column. Let Y ′ be the set of such columns. For every other entry (x, y), x ̸∈ X, y ̸∈ Y that
is not changed to zero and M [x, y] ̸= M [x′, y′′], change M [x, y] to M [x′, y′′]. Let M ′ be the
matrix obtained from the above changes.

The number of entries (x, y) where M [x, y] ̸= M ′[x, y] is less than (nϵ/3)m + (mϵ/3)n +
mnϵ/3 = ϵmn. Therefore, M ′ is ϵ-close to M . By claim 13, brs(M ′) = brs(M [[n]\X ′, [m]\Y ′])
= brs(M [X, Y]) ≤ d. A contradiction. ◁
We now prove the soundness of the tester.

▶ Lemma 14. If M is ϵ-far from having s-binary rank d, then with probability at least 2/3,
Adaptive-Test-Rank rejects.

Proof. Consider the while-loop in step 2 at some iteration i. If brs(M [X, Y]) > d, then the
tester rejects in step 3. We will now show that if brs(M [X, Y]) ≤ d, then, with probability
at most 3e−2d, the tester accepts at iteration i.

To this end, let brs(M [X, Y]) ≤ d. Then, by Claim 13, one of the following holds.
1. The number of rows x ∈ [n] where M [x, Y] is a new row to M [X, Y] is at least nϵ/3.
2. The number of columns y ∈ [m] where M [X, y] is a new column to M [X, Y] is at least

mϵ/3.
3. The number pairs (x, y), x ̸∈ X, y ̸∈ Y , where, M [x, Y] = M [x′, Y] for some x′ ∈ X,

M [X, y] = M [X, y′′] for some y′′ ∈ Y , and M [x, y] ̸= M [x′, y′′], is at least mnϵ/3.
Now at the ith iteration, suppose w.l.o.g, |X| ≥ |Y | (the other case |Y | < |X| is similar). If
item 1 occurs, then with probability at least p = 1− (1− ϵ/3)t ≥ 1− e−2d, the tester finds
a new row to M [X, Y] and does not accept at iteration i. If item 2 occurs, then if it does
not find a new row to M [X, Y], with probability at least p, the tester finds a new column to
M [X, Y] and does not accept. If item 3 occurs, and it does not find a new row or column to
M [X, Y], then with probability at least p, it finds such a pair and does not accept. Therefore,
with probability at most 3(1− p) ≤ 3e−2d, the tester accepts at iteration i.

6 If we add a column to a matrix that is equal to column y, then the rectangles that cover column y can
be extended to cover the added column.

MFCS 2023

27:10 On Property Testing of the Binary Rank

Since the while-loop runs at most |X| + |Y | ≤ 2|X||Y | ≤ 2
(

d
≤s

)
2d ≤ 22d+1 iterations,

with probability at most 3e−2d22d+1 ≤ 1/3, the tester accepts in while-loop. Therefore, with
probability at least 2/3, the tester does not accept in the while-loop. Thus, it either rejects
because brs(M [X, Y]) > d or rejects in step 28. ◀

4.2 The Non-Adaptive Tester
In this section, we prove Theorem 2.

Non-Adaptive-Test-Rank(d, s, M, n, m, ϵ)
Input: Oracle that accesses the entries of (0, 1)-matrix M .
Output: Either “Accept” or “Reject”.

1. T ← 324·d2(d
≤s)2d

ϵ2 .
2. Draw uniformly at random x(1), . . . , x(T) ∈ [n].
3. Draw uniformly at random y(1), . . . , y(T) ∈ [m].
4. For every i ∈ [T] and j ∈ [T] such that i · j ≤ T

5. D[i, j]← Query M [x(i), y(j)]
6. u = 1; w = 1.

7. Run Adaptive-Test-Rank(d, s, M, n, m, ϵ)
When the tester asks for a uniform at random x - return x(u); u← u + 1
When the tester asks for a uniform at random y - return y(w); w ← w + 1
When the tester makes the Query M [x(i), y(j)] - return D[i, j]

Figure 2 A non-adaptive tester for s-binary rank at most d.

First, consider Adaptive-Test-Rank in Figure 1. Consider steps 7,11,15, and 19, where
it draws a new column or row. We prove.

▶ Lemma 15. Let t = 9d/ϵ. At each iteration of Adaptive-Test-Rank, the total number
of uniformly at random rows x ∈ [n] drawn is at most (|X|+ min(|X|, |Y | − 1))t, and the
number of uniformly at random rows y ∈ [m] drawn is at most (|Y |+ min(|X|, |Y |))t.

Proof. We prove by induction that at every iteration of the main While-loop (step 2), the
total number of random rows drawn by the tester, nX,Y , is at most (|X|+min(|X|, |Y |−1))t,
and the total number of random columns drawn, mX,Y , is at most (|Y |+ min(|X|, |Y |))t.

At the beginning, |X| = |Y | = 1, and the number of columns and rows is 1. In that case,7,
nX,Y = 1 ≤ t and mX,Y = 1 ≤ 2t. Suppose, at the kth iteration, the induction statement is
true. We prove the result for the (k + 1)th iteration.

At the (k + 1)th iteration, we have the following cases.
Case I. |X| ≥ |Y | (step 5) and, for some x, M [x, Y] is a new row to M [X, Y] (step 8).

In that case, Finish becomes true, and no other sub-while-loop is executed. Therefore,
the number of rows drawn at this iteration is at most t, and one element x is added to X.
No columns are drawn. Then,

nX∪{x},Y ≤ nX,Y +t ≤ (|X|+min(|X|, |Y |−1)+1)t ≤ (|X∪{x}|+min(|X∪{x}|, |Y |−1))t,

7 We assume that the first column/row drawn is column/row one

N. H. Bshouty 27:11

and

mX∪{x},Y = mX,Y ≤ (|Y |+ min(|X|, |Y |))t ≤ (|Y |+ min(|X ∪ {x}|, |Y |))t.

Thus, the result follows for this case.
Case II. |X| ≥ |Y | (step 5), for all x′ ∈ X ′, M [x′, Y] is not a new row to M [X, Y] (step 8),

and for some y, M [X, y] is a new column to M [X, Y] (step 12).
In that case, Finish becomes true, and no other sub-while-loop is executed after the
second sub-while-loop (step 10).
Therefore, in this case, the number of rows drawn at this iteration is t, one element y is
added to Y , and the number of columns drawn is at most t. Then

nX,Y ∪{y} = nX,Y + t ≤ (|X|+ min(|X|, |Y | − 1) + 1)t
= (|X|+ |Y |)t = (|X|+ min(|X|, |Y ∪ {y}| − 1))t,

and

mX,Y ∪{y} ≤ mX,Y + t ≤ (|Y |+min(|X|, |Y |)+1)t ≤ (|Y ∪{y}|+min(|X|, |Y ∪{y}|))t.

Thus, the result follows for this case.
Case III. |X| < |Y | (step 13), and for some y, M [X, y] is a new column to M [X, Y] (step 16).

In that case, Finish becomes true, and no other sub-while-loop is executed. Therefore,
the number of columns drawn at this iteration is at most t, and one element y is added
to Y . No rows are drawn. Then,

nX,Y ∪{y} = nX,Y ≤ (|X|+ min(|X|, |Y | − 1))t ≤ (|X|+ min(|X|, |Y ∪ {y}| − 1))t,

and

mX,Y ∪{y} ≤ mX,Y + t ≤ (|Y |+min(|X|, |Y |)+1)t = (|Y ∪{y}|+min(|X|, |Y ∪{y}|))t.

Thus, the result follows for this case.
Case IV. |X| < |Y | (step 13), for all y′ ∈ Y ′, M [X, y′] is not a new row to M [X, Y], and for

some x, M [x, Y] is a new column to M [X, Y] (step 20). In that case, Finish becomes
true, and no other sub-while-loop is executed after the fourth sub-while-loop (step 18).
In this case, the number of rows drawn at this iteration is t, one element x is added to X,
and the number of columns drawn is at most t. Then

nX∪{x},Y = nX,Y + t ≤ (|X|+ min(|X|, |Y | − 1) + 1)t
≤ (|X ∪ {x}|+ min(|X ∪ {x}|, |Y | − 1))t

mX∪{x},Y ≤ mX,Y + t ≤ (|Y |+ min(|X|, |Y |) + 1)t = (|Y |+ min(|X ∪ {x}|, |Y |))t.

Thus, the result follows for this case.
Case V. For all x′ ∈ X ′, M [x′, Y] is not a new row to M [X, Y], for all y′ ∈ Y ′, M [X, y′] is

not a new column to M [X, Y], and for some x ∈ X ′, y ∈ Y ′, M [x, Y ∪ {y}] is a new row
to M [X, Y ∪ {y}] (step 23).
In this case, the number of rows drawn at this iteration is t, the number of columns
drawn is t, one element x is added to X, and one element y is added to Y . Then

nX∪{x},Y ∪{y} = nX,Y + t ≤ (|X|+ min(|X|, |Y | − 1) + 1)t
≤ (|X ∪ {x}|+ min(|X ∪ {x}|, |Y ∪ {y}| − 1))t.

mX∪{x},Y ∪{y} = mX,Y + t ≤ (|Y |+ min(|X|, |Y |) + 1)t
≤ (|Y ∪ {y}|+ min(|X ∪ {x}|, |Y ∪ {y}|))t. ◀

MFCS 2023

27:12 On Property Testing of the Binary Rank

We are now ready to prove Theorem 2.

Proof. By Lemma 15, the total number of rows and columns drawn in Adaptive-Test-
Rank up to iteration t is at most n′ := 9(|X| + min(|X|, |Y | − 1))d/ϵ ≤ 18|X|d/ϵ and
m′ := 9(|Y |+ min(|X|, |Y |)d/ϵ ≤ 18|Y |d/ϵ, respectively. We also have |X| · |Y | ≤

(
d

≤s

)
2d. So

n′ ·m′ ≤ 324|X||Y |d2/ϵ2 ≤ T :=
324 · d2(d

≤s

)
2d

ϵ2 .

Consider the tester Non-Adaptive-Test-Rank in Figure 2. The tester draws T rows
x(1), . . . , x(T) ∈ [n], and columns y(1), . . . , y(T) ∈ [m] and queries all M [x(i), y(j)] where
ij ≤ T and puts the result in the table D. Then it runs Adaptive-Test-Random using the
above-drawn rows and columns. We now show that all the queries that Adaptive-Test-
Random makes can be fetched from the table D.

At any iteration, the number of rows drawn is at most n′, and the number of rows
drawn is at most m′. Therefore, the tester needs to know (in the worst case) all the entries
M [x(i), y(j)] where i ≤ n′ and j ≤ m′. Since ij ≤ n′m′ ≤ T , the result follows.

The number of queries that the tester makes is

T∑
i=1

T

i
= O(T ln T) = Õ

((
d

≤s

)
2d

ϵ2

)
. ◀

5 Testing the Exact s-Binary Rank

We first prove the following.

▶ Lemma 16. Let M and M ′ be n×m (0, 1)-matrices that differ in one row (or column).
Then |brs(M)− brs(M ′)| ≤ 1.

Proof. Suppose brs(M) = d and M ′ differ from M in row k. Let N and L be n× d (0, 1)-
matrix and d×m (0, 1)-matrix, respectively, such that P = NL, for every (i, j) ∈ [n]× [m],
P [i, j] ≤ s, and P [i, j] = 0 if and only if M [i, j] = 0. Add to N a column (as a (d + 1)th
column) that all its entries are zero except the k-th entry, which equals 1. Then change
N [k, j] to zero for all j ∈ [d]. Let N ′ be the resulting matrix. Add to L another row (as a
(d + 1)th row) equal to the k-th row of M ′. Let L′ be the resulting matrix. Let P ′ = N ′L′.
It is easy to see that P ′[i, j] = P [i, j] for all i ̸= k and j, and the kth row of P ′ is equal
to the kth row of M ′. Then, for every (i, j) ∈ [n] × [m], P ′[i, j] ≤ s, and P ′[i, j] = 0 if
and only if M ′[i, j] = 0. Therefore, brs(M ′) ≤ d + 1 = brs(M) + 1. In the same way,
brs(M) ≤ brs(M ′) + 1. ◀

▶ Lemma 17. Let η = d2/(nm). Let M be n×m (0, 1)-matrix. If M is ϵ-close to having
s-binary rank at most d, then M is (ϵ + η)-close to having s-binary rank d.

Proof. We will show that for every n×m (0, 1)-matrix H of s-binary rank at most d− 1,
there is a n×m (0, 1)-matrix G of s-binary rank d that is η-close to H. Therefore, if M is
ϵ-close to having s-binary rank at most d, then it is (ϵ + η)-close to having s-binary rank d.

Define the n × m (0, 1)-matrices Gk, k ∈ [d] ∪ {0}, where G0 = H and for k ≥ 1,
Gk[i, j] = H[i, j] if j > k or i > d, and Gk[[d], [k]] = Id[[d], [k]] where Id is the d× d identity
matrix. Since Gd[[d], [d]] = Id, we have brs(Gd) ≥ d. It is clear that for every k ∈ [d] ∪ {0},
Gk is (d2/nm)-close to H. If brs(Gd) = d, then take G = Gd, and we are done. Otherwise,
suppose brs(Gd) > d.

N. H. Bshouty 27:13

Now consider a sequence H = G0, G1, G2, . . . , Gd. By Lemma 16, we have brs(Gi−1)−1 ≤
brs(Gi) ≤ brs(Gi−1) + 1. Now since brs(G0) = brs(H) ≤ d − 1 and brs(Gd) > d, by the
discrete intermediate value theorem, there must be k ∈ [d] such that brs(Gk) = d. Then take
G = Gk, and we are done. ◀

Now, the tester for testing the s-binary rank d runs as follows. If mn < 2d2/ϵ, then find
all the entries of M with mn < 2d2/ϵ queries. If brs(M) = d, then accept. Otherwise, reject.
If mn ≥ 2d2/ϵ, then run Adaptive-Test-Rank(d, s, M, n, m, ϵ/2) (for the non-adaptive, we
run Non-Adaptive-Test-Rank(d, s, M, n, m, ϵ/2)) and output its answer.

We now show the correctness of this algorithm. If M is of s-binary rank d, then it is of
s-binary rank at most d, and the tester accepts.

Now, suppose f is ϵ-far from having s-binary rank d. If mn < 2d2/ϵ, the tester rejects. If
mn ≥ 2d2/ϵ, then, by Lemma 17, f is (ϵ− η)-far from having s-binary rank at most d, where
η = d2/(nm). Since η = d2/(nm) ≤ ϵ/2, the function f is (ϵ/2)-far from having s-binary
rank at most d, and therefore the tester, with probability at least 2/3, rejects.

6 Concluson and Open Problems

In this work, we introduced the notion of s-binary rank for (0, 1)-matrices, extending the
concept of binary rank. We established a tight upper bound on the size of matrices with
s-binary rank at most d, and showed the existence of matrices achieving this bound. Using
this result, we presented novel one-sided adaptive and non-adaptive testers for (0, 1)-matrices
with s-binary rank at most d, significantly improving the query complexity compared to
prior work. The adaptive tester requires Õ

((
d

≤s

)
2d/ϵ

)
queries, while the non-adaptive tester

requires Õ
((

d
≤s

)
2d/ϵ2

)
queries.

The following are open problems that are worth investigating:
Tighter Bounds on Query Complexity: Investigate whether the query complexity of the

testers for (0, 1)-matrices with s-binary rank at most d can be further improved. Specifically,
explore alternative approaches or refinements that can reduce the dependence on

(
d

≤s

)
and

2d in the query complexity bounds.
Generalization Beyond (0, 1)-Matrices: Extend the concept of s-binary rank to other types

of matrices, such as integer-valued matrices or matrices with entries from a larger alphabet.
Study the properties, computational aspects, and property testing of these generalizations.

Addressing these open problems will lead to a more profound understanding of the
s-binary rank, provide further insights into the structure of matrices, and potentially lead to
improved algorithmic techniques and applications in various fields.

References
1 Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen. Complexity of minimum

biclique cover and minimum biclique decomposition for bipartite domino-free graphs. Discret.
Appl. Math., 86(2-3):125–144, 1998. doi:10.1016/S0166-218X(98)00039-0.

2 Maria-Florina Balcan, Yi Li, David P. Woodruff, and Hongyang Zhang. Testing matrix
rank, optimally. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 727–746, 2019.
doi:10.1137/1.9781611975482.46.

3 Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and Andreas Karrenbauer. Nearly
tight approximability results for minimum biclique cover and partition. In Andreas S. Schulz
and Dorothea Wagner, editors, Algorithms – ESA 2014 – 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer
Science, pages 235–246. Springer, 2014. doi:10.1007/978-3-662-44777-2_20.

MFCS 2023

https://doi.org/10.1016/S0166-218X(98)00039-0
https://doi.org/10.1137/1.9781611975482.46
https://doi.org/10.1007/978-3-662-44777-2_20

27:14 On Property Testing of the Binary Rank

4 Dana Ron. Private Communication.
5 David A. Gregory, Norman J. Pullman, Kathryn F. Jones, and J. Richard Lundgren. Biclique

coverings of regular bigraphs and minimum semiring ranks of regular matrices. J. Comb.
Theory, Ser. B, 51(1):73–89, 1991. doi:10.1016/0095-8956(91)90006-6.

6 Robert Krauthgamer and Ori Sasson. Property testing of data dimensionality. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14,
2003, Baltimore, Maryland, USA, pages 18–27, 2003. URL: http://dl.acm.org/citation.
cfm?id=644108.644112.

7 Yi Li, Zhengyu Wang, and David P. Woodruff. Improved testing of low rank matrices.
In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA – August 24 – 27, 2014, pages 691–700, 2014.
doi:10.1145/2623330.2623736.

8 Yonatan Nakar and Dana Ron. On the testability of graph partition properties. In Eric Blais,
Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 – Princeton, NJ, USA, volume 116 of LIPIcs, pages 53:1–53:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.
53.

9 Michal Parnas, Dana Ron, and Adi Shraibman. Property testing of the boolean and binary
rank. Theory Comput. Syst., 65(8):1193–1210, 2021. doi:10.1007/s00224-021-10047-8.

10 Jiří Sgall. Bounds on pairs of families with restricted intersections. Comb., 19(4):555–566,
1999. doi:10.1007/s004939970007.

https://doi.org/10.1016/0095-8956(91)90006-6
http://dl.acm.org/citation.cfm?id=644108.644112
http://dl.acm.org/citation.cfm?id=644108.644112
https://doi.org/10.1145/2623330.2623736
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.53
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.53
https://doi.org/10.1007/s00224-021-10047-8
https://doi.org/10.1007/s004939970007

	1 Introduction
	1.1 Our Approach
	1.2 Other Rank Problems

	2 Definitions and Preliminary Results
	3 Matrices of s-Binary Rank d
	4 Testing The s-Binary Rank
	4.1 The Adaptive Tester
	4.2 The Non-Adaptive Tester

	5 Testing the Exact s-Binary Rank
	6 Concluson and Open Problems

