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Abstract
In the online simple knapsack problem, a knapsack of unit size 1 is given and an algorithm is tasked
to fill it using a set of items that are revealed one after another. Each item must be accepted or
rejected at the time they are presented, and these decisions are irrevocable. No prior knowledge
about the set and sequence of items is given. The goal is then to maximize the sum of the sizes of
all packed items compared to an optimal packing of all items of the sequence.

In this paper, we combine two existing variants of the problem that each extend the range of
possible actions for a newly presented item by a new option. The first is removability, in which
an item that was previously packed into the knapsack may be finally discarded at any point. The
second is reservations, which allows the algorithm to delay the decision on accepting or rejecting a
new item indefinitely for a proportional fee relative to the size of the given item.

If both removability and reservations are permitted, we show that the competitive ratio of the
online simple knapsack problem rises depending on the relative reservation costs. As soon as any
nonzero fee has to be paid for a reservation, no online algorithm can be better than 1.5-competitive.
With rising reservation costs, this competitive ratio increases up to the golden ratio (ϕ ≈ 1.618) that
is reached for relative reservation costs of 1 −

√
5

3 ≈ 0.254. We provide a matching upper and lower
bound for relative reservation costs up to this value. From this point onward, the tight bound by
Iwama and Taketomi for the removable knapsack problem is the best possible competitive ratio, not
using any reservations.
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1 Introduction

Online problems model situations where an algorithm receives an input piece-wise. The
analysis of online problems does not revolve around how much time and space is used when
solving the problem, but how good the solution provided by an online algorithm is with
respect to an optimal offline counterpart. In classical online models, an online algorithm
receives a piece of input or request and must output some irrevocable part of the solution
before the next request arrives, without room for changing the output later on.
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29:2 The Online Simple Knapsack Problem with Reservation and Removability

The simple knapsack problem is, as the name suggests, a simplification of the classical
knapsack problem: Given a set of items I, a size function w : I → R and a gain function
g : I → R, the task is to find a subset of items S ⊆ I such that

∑
i∈S w(i) ≤ 1 and

∑
i∈S g(i)

is maximized. In the simple knapsack problem, w : I → [0, 1] and w(i) = g(i) for all items
i ∈ I. The offline knapsack problem is a classical hard optimization problem and has been
shown to be NP-complete [14]. Both the knapsack problem and the simple knapsack problem
admit fully polynomial time approximation schemes [11].

In this work we study the online simple knapsack problem. Given a knapsack with
capacity 1, an algorithm receives a request sequence S = {x1, . . . , xn} consisting of items of
size smaller than or equal to 1, and must decide at each step whether to take such an item or
reject it. The length of the sequence is initially unknown to the algorithm and the decision
on each item must be made before the next item arrives. The decisions are irrevocable, and
once an item has been packed or rejected, the decision cannot be reversed in later steps.

Competitive analysis was introduced by Sleator and Tarjan [19] as a way to analyze the
performance of online algorithms. The strict competitive ratio of an online algorithm for
an online maximization problem, such as the online simple knapsack problem, is the ratio
between the gain obtained by an optimal offline algorithm and the gain obtained by the
online algorithm in the worst-case instance. For an introduction to online analysis, we refer
the reader to the standard book by Borodin and El-Yaniv [4].

Several variants of online models have been introduced to discern which problems are
truly complex, or have a high information content, and which problems are simple in general
but contain some rare worst-case instances yielding large competitive ratios. Some of these
approaches, such as randomized algorithms [1], advice complexity [7, 10, 15], randomization
of the adversary [6, 16, 18], etc. have been applied to various online problems, including the
online simple knapsack problem, with some success.

In the general online setting, it is well-known [17] that there cannot be an algorithm
for the online simple knapsack problem – and thus also for the online knapsack problem –
with a bounded competitive ratio. Thus, most research so far has been focused on analyzing
some variants of the problem or of the online model. Iwama and Taketomi [12] introduced
a variant that adds the possibility to remove previously packed items from the knapsack,
without any additional costs. This can be done at any point during the run of an algorithm.
They showed a tight competitive ratio of the golden ratio ϕ ≈ 1.618 for this model.

Recently Böckenhauer et al. [2] introduced a model for the online simple knapsack that
adds the possibility to reserve items for a fee proportional to their size. In this model, if
an item is reserved, the decision whether the item should be added to the knapsack can be
postponed to a later point. However, if an algorithm decides to reserve an item, it has to pay
some reservation cost c = xα that depends on a given parameter α between 0 and 1, and
the item size x. Surprisingly, in this case, even for arbitrarily small values of the reservation
parameter α, the competitive ratio is not better than 2.

In this paper, we consider a variant of the online simple knapsack problem where an
algorithm is allowed to reserve items (reservation) or alternatively to remove items previously
placed into the knapsack (removability). Both of these alternatives allow an algorithm to
postpone or alter decisions on whether to pack an object. Our reason to choose this variant
is that it is a variant of the online simple knapsack with bounded competitive ratio below
2, the best ratio that the reservation model allowed. Some of the questions we wanted to
answer is whether the reservations would help at all, and if so, if it is possible to achieve a
competitive ratio approaching 1 for low reservation costs. We also want to know if the model
behaves similarly to the secretary problem with reservation [5], where for large reservation
costs the competitive ratio is the same as without reservations.
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Figure 1 A schematic plot of the competitive ratio with respect to the reservation costs α for the
online simple knapsack problem with reservation and removability.

Other variants of the knapsack problem include the work by Böckenhauer et al. [3], who
studied the online simple knapsack problem with advice and randomization, and concluded
that with one single advice or random bit the problem becomes 2-competitive, whereas
further additional random bits do not improve the competitive ratio. Iwama and Zhang [13]
looked at the problem with resource augmentation, which means that the size of the knapsack
for the online problem is slightly larger than the knapsack size of the offline algorithm. Han,
Kawase and Makino [8] considered a version where the items may be removed from the
knapsack at the cost of a factor of the item size, and showed that if the factor is smaller than
1/2, the competitive ratio is 2, and otherwise it is a function depending on the factor itself.
This is different from the variant we consider, as in this case one pays to remove items from
the knapsack, whereas in our version the algorithm pays to reserve items, but not to remove
them. Another variant of the problem allows for a buffer of constant size, in which items
may be intermediately stored. Han et al. [9] studied the case where the buffer has at least as
much capacity as the knapsack itself; the items presented may be allocated into the buffer or
irrevocably rejected and only in the last step are the items selected for placement into the
knapsack. The reservation model has also been recently applied to the secretary problem [5],
where one can achieve a competitive ratio as close to 1 as possible with diminishing values of
the reservation cost. For large reservation costs, the competitive ratio is the same as in the
model without reservation.

For the online simple knapsack problem with both removability and reservation, we
provide tight upper and lower bounds of 3−1.5α

2−1.5α for 0 < α ≤ 1 −
√

5/3 ≈ 0.2546, which goes
from 1.5 to ϕ. For larger values of α, the competitive ratio stays constant at ϕ. These bounds
are depicted in Figure 1. This means that, even if the reservation costs are arbitrarily small
the competitive ratio is worse than 1.5, and for any α > 0.2546 the best achievable competitive
ratio is the one that can be achieved without reserving any items. This is in contrast to the
behavior of the competitive ratio for the reservation model without removability, where the
competitive ratio is constant at value 2 on the small range, and grows until being unbounded
for large values of α.

1.1 Problem Definition
We now formally define the online simple knapsack problem with reservation and removability.

Just as in the standard online simple knapsack problem, defined in the introduction, an
algorithm solving the problem with reservation and removability is given a knapsack with
capacity 1, and receives a request sequence S = {x1, . . . , xn} of items. Every item xi of the
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29:4 The Online Simple Knapsack Problem with Reservation and Removability

request sequence only has one parameter, the size, thus it is possible to refer to the size of
each item as xi while keeping the context clear. At the beginning of the request sequence,
the algorithm is also is given a parameter 0 ≤ α ≤ 1 for the reservation costs. After receiving
an item of size x the algorithm has three options. It can either decide to pack this item –
assuming the total size of already packed items together with the new item is smaller than 1
– , reserve this item at cost αx, or reject this item. Moreover, the algorithm can also decide
to remove and reject any item currently in the knapsack at any point. The decision to reject
an item is irrevocable.

Once the whole request sequence S has been processed, an algorithm A can decide to
pack any reserved items, removing any items in the knapsack accordingly if necessary, as long
as they fit into the knapsack. The goal of an algorithm is to maximize its total size of items
packed in the knapsack after the whole instance has been processed minus the reservation
costs, that is,

gainS(A, α) =
∑

xi packed
xi −

∑
xi reserved

αxi .

The performance of an algorithm is measured against the optimal solution in a worst-case
manner. Thus, the competitive ratio of an algorithm A is the highest ratio between the size
of an optimal solution OPT and the gain of A, over all instances

c(A, α) = sup
S

{
gainS(OPT, α)

gainS(A, α)

}
.

We now present matching upper and lower bounds for the competitive ratio of any
algorithm solving the online simple knapsack problem with reservation and removability.

2 Lower Bound

First note that no algorithm can be better than optimal, in particular we have a lower bound
of 1 for α = 0.

In this section we show that no algorithm can reach a competitive ratio smaller than
min{ 3−1.5α

2−1.5α , ϕ} for all 0 < α < 1. The ratio 3−1.5α
2−1.5α is equal to ϕ at α = 1 −

√
5

3 ≈ 0.2546.
For any larger values of α, we prove that it is not possible to construct an algorithm that
performs better than the strategy of Iwama and Taketomi for the knapsack with removability
and without reservation [12].

▶ Theorem 1. Given a parameter 0 < α ≤ 1 −
√

5
3 , there exists no algorithm for online

simple knapsack with reservation and removability achieving a competitive ratio better than
3−1.5α
2−1.5α .

Proof. We present an adversarial strategy to show that no algorithm can reach a competitive
ratio of 3−1.5α

2−1.5α − ε for any given ε > 0. For the following analysis, we will abbreviate 2−1.5α
3−1.5α

with k. Consider the following set of adversarial instances with 0 < δ ≪ ε:
The adversary starts by presenting the first item x1 of size 1 − k + δ. In this situation an

arbitrary algorithm A can choose between the following options:
Case 1, Pack x1. A packs the first item of size 1 − k + δ into the knapsack. The adversary

next presents the second item x2 of size k + δ that barely does not fit together with the
first item.
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Case 1.1, Remove x1 and pack x2. A discards the item of size 1 − k + δ and packs x2.
The adversary then presents an item of size 1 − x1 = k − δ. This would perfectly fit
together with the discarded item x1, so OPT has a solution of size 1. Since this item
does not fit together with x2, A only holds x2 as the larger one of the two items, which
results in the desired competitive ratio.

Case 1.2, Reserve x2. A reserves the item of size k + δ. The adversary presents the
item x3 of size k + δ2.
Case 1.2.1, Remove x1 and pack x3. Assuming A discards the first item that is still

held in its knapsack to pack the item of size k+δ2. Similar to Case 1.1, the adversary
then presents the counterpart to the discarded item of size 1 − x1 = k − δ. A cannot
pack its reserved item together with the newly packed item, since k − δ + k + δ2 > 1
for all α ∈ (0, 1 −

√
5

3 ). The gain of A is even smaller than in Case 1.1, due to the
costs of reserving an item.

Case 1.2.2, Reserve x3. A reserves the item of size k + δ2. The adversary presents
x4 of size k + δ3 and will continue to present items xj+1 of size k + δj as long as A

reserves those items. At some point A must stop reserving these items due to the
accumulating reservation costs exceeding any possible gain. As soon as A rejects an
item, or discards the item in its knapsack to pack an item, the case can be handled
analogously to 1.2.1 or 1.2.3. The gain of the algorithm will be lower than in these
cases due to the added reservation costs.

Case 1.2.3, Reject x3. The algorithm does not pack the item of size k + δ2. The
adversary presents an item of size 1 − x3. So while OPT reaches 1, A can at the
most pack x1 and the item of size 1 − x3. Together, with subtracted reservation
costs, the algorithm then has a gain of 2 − 4−3α

3−1.5α − αk. A simple analysis shows
that this yields a ratio higher than 3−1.5α

2−1.5α .
Case 1.3, Reject x2. A does not pack or reserve the item of size k + δ. No further items

are presented. The algorithm thus only holds x1, while an optimal solution would be
to pack the item x2. The ratio of k to 1 − k is worse than ϕ for every α < 1 −

√
5

3 and
therefore, in particular, larger than the desired ratio.

Case 2, Reserve x1. A reserves the first item of size 1 − k + δ. The adversary presents the
item x′

2 of size 2
3 + 2δ.

Case 2.1 Pack x′
2. The algorithm packs the item of size 2

3 + 2δ. The next item is x′
3 of

size 1
3 + 2δ.

Case 2.1.1 Remove x′
2 and pack x′

3. The algorithm discards the item of size 2
3 + 2δ

from its knapsack and instead packs the item of size 1
3 + 2δ. The adversary next

presents an item of size 1 − x′
2. OPT then has a solution of size 1. A can at most

reach a gain of x1 + x′
3 − αx1 = 1

3 + 1 − k + 3δ − α(1 − k) = k.
Case 2.1.2 Reserve x′

3. A reserves the item of size 1
3 + 2δ. The adversary continues

to present items x′
j+1 of size 1

3 + δ + δj−1, as long as A reserves those items. As
soon as A rejects an item or discards the item already in its knapsack to pack an
item, these cases can be handled analogously to 2.1.1 or 2.1.3. The gain of the
algorithm will be lower than in these cases due to the added reservation costs.

Case 2.1.3 Reject x′
3. The algorithm does not pack the item of size 1

3 + 2δ. The
adversary then presents an item of size 1 − x′

3. Since x′
3 was the smallest item of

all that have been presented so far, the counterpart will not fit together with any
other item of A. Therefore OPT has a gain of 1, whereas the largest packing of A

consists of the item x′
2 which is of smaller size than k.

MFCS 2023



29:6 The Online Simple Knapsack Problem with Reservation and Removability

Case 2.2 Reserve x′
2. A reserves the item of size 2

3 + 2δ. The adversary presents x′′
2 of

size 2
3 + δ + δ2.

Case 2.2.1 Pack x′′
2 . A packs the item of size 2

3 + δ + δ2 into the knapsack. The next
item is x′

3 of size 1
3 + 2δ.

Case 2.2.1.1 Remove x′′
2 and pack x′

3. The algorithm discards the item of size
2
3 + δ + δ2 from its knapsack and instead packs the item of size 1

3 + 2δ. The
adversary next presents an item of size 1 − x′′

2 . OPT then has a solution of size
1. A can at most reach a gain of x1 + x′

3 − αx1 = 1
3 + 1 − k + 3δ − α(1 − k) = k.

Case 2.2.1.2 Reserve x′
3. A reserves the item of size 1

3 + 2δ. The adversary con-
tinues to present items x′

j+1 of the size 1
3 + δ + δj−1, as long as A reserves those.

As soon as A rejects an item or discards the item already in its knapsack to pack
an item, these cases can be handled analogously to 2.2.1.1 or 2.2.1.3. The gain
of the algorithm will be lower than in these cases due to the added reservation
costs.

Case 2.2.1.3 Reject x′
3. The algorithm does not pack the item of size 1

3 + 2δ. The
adversary then presents an item of size 1 − x′

3. Since x′
3 was the smallest item of

all that have been presented so far, the counterpart will not fit together with any
other item of A. Therefore OPT has a gain of 1, whereas the largest packing of
A consists of the item x′

2 < k.
Case 2.2.2 Reserve x′′

2 . The algorithm reserves the item of size 2
3 + δ + δ2. The

adversary continues to present items x′′
j of the size 2

3 + δ + δj , as long as A reserves
these items. As soon as A rejects an item or discards the item already in its knapsack
to pack an item, these cases can be handled analogously to 2.2.1 or 2.2.3. The gain
of the algorithm will be lower than in these cases due to the added reservation costs.

Case 2.2.3 Reject x′′
2 . A does not pack the item of size 2

3 + δ + δ2. The adversary
then presents an item of size 1 − x′′

2 . The gain of OPT is then 1. The maximum
gain of A is then x1 + 1 − x′′

2 − α(x1 + x′
2) = 1 − k + 1

3 − δ − δ2 − α(1 − k + 1
3 − δ − δ2)

which is slightly smaller than the gain of A in Case 2.1.1 due to increased reservation
costs and thus especially smaller than k.

Case 2.3 Reject x′
2. The algorithm does not pack the item of size 2

3 + 2δ. No further
items are presented. Similarly to Case 1.3, the algorithm only holds x1, while an
optimal packing would be x′

2. Since even x′
2 > x2, the same argumentation from Case

1.3 concludes this case.
Case 3, Reject x1. No further items are presented. Therefore the optimal solution is

exactly the item x1 = 1 − k, while A has packed no items. The competitive ratio is then
unbounded. ◀

It is not surprising that for increasing reservation costs, the competitive ratio is increasing,
too. In particular, it is easy to see that the competitive ratio cannot decrease if the reservation
costs increase.

▶ Corollary 2. For α > 1 −
√

5
3 , no algorithm can be better than ϕ-competitive for the online

simple knapsack problem with reservation and removability.

Proof. The competitive ratio of Theorem 1 reaches ϕ at α = 1 −
√

5
3 . For every α > 1 −

√
5

3
it is possible to present the lower bound with exactly the same items as in Theorem 1 for
α = 1 −

√
5

3 . The only difference are the higher costs for every reservation. Thus, in every
case, the gain of an optimal offline solution stays the same, while the algorithm gets at most
the gain of the case α = 1 −

√
5

3 . ◀
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3 Upper Bound

If α = 0, then the problem becomes an offline problem, since an algorithm can reserve every
item for free. Thus a competitive ratio of 1 is achievable. Trivially, this matches the lower
bound.

However, as we will see now, as soon as the value of α is positive, the best achievable
competitive ratio is worse than 1.5-competitive.

To handle the range of 0 < α ≤ 1 −
√

5
3 , we present Algorithm 1 with a competitive ratio

of 3−1.5α
2−1.5α , matching the lower bound established in the previous subsection.
Algorithm 1, analyzed in this section, can be split in three phases. All of the phases work

similarly: First, if small items arrive, they are packed since they will not cause harm (we can
throw them out at any time).

Then there are two kind of interesting ranges for medium-sized items: A large-medium
range, where the algorithm tries to keep the smallest items to maintain the possibility to get
fitting counterparts (similar to [12]). And a small-medium range, where an item gets reserved,
because otherwise the ratio between large and small items in the large-medium range, where
only the smallest items are kept, gets too large by itself. After the first reservation, the
algorithm continues in the second phase; after the second reservation in the third phase.

Finally, very large items, which are sufficiently large to guarantee the desired competitive
ratio by themselves, are the easiest case since the algorithm can just pack these items to
achieve the desired competitive ratio immediately.

The main difference between the three phases is, that the ranges for the different actions
are shifted – due to the ability to use the reserved items, but also due to the paid reservation
costs that need to be compensated. Due to these shifts, in the third phase there is no
small-medium range, and there is no need to reserve any more items, thus Algorithm 1
reserves at most two items.

▶ Theorem 3. For 0 < α ≤ 1 −
√

5
3 , there exists an algorithm solving the online simple

knapsack problem with reservation and removability that is not worse than 3−1.5α
2−1.5α competitive.

Proof. We prove that Algorithm 1 achieves the competitive ratio on the statment. For ease
of notation, we define c := 3−1.5α

2−1.5α . If Algorithm 1 is at any point able to pack a knapsack
such that, even when paying the reservation costs, the desired competitive ratio is reached,
it stops afterwards. This is the case in lines 4, 9 and 16.

Depending on the instance, Algorithm 1 reserves zero, one or two items. In the following,
we show that the algorithm yields the desired competitive ratio in those three cases.
Case 1: Algorithm 1 ends in line 4 or 22, before the first reservation is made. When
presented with a new item, the algorithm first checks if this item together with a subset of
its packed items already yields a packing of size 1

c . In the following analysis, assume that
this is not the case, since if this were the case, the algorithm would have achieved the desired
competitive ratio anyways.

Items that are smaller than 1 − 1
c are packed by the algorithm in line 5. Items with sizes

between 1 − 1
c and 1

c2 will be reserved in line 7, if the condition in line 4 does not hold: We
investigate this case as Case 2.

The first item of size between 1
c2 and 1

c is packed. If further items in this range arrive,
only the smallest item of this range is packed (or kept) in the knapsack and the other items
from this range are discarded. If an item xk in this range, which should be kept in the
knapsack according to line 6, does not fit, it must be due to the items already in the knapsack,
which are each smaller than 1 − 1

c . Thus, in this case, it is possible to combine this item xk

with a subset of the small items in the knapsack to get a packing of size at least 1
c , triggering

the end of the packing in line 4.

MFCS 2023



29:8 The Online Simple Knapsack Problem with Reservation and Removability

Algorithm 1 Upper bound Algorithm for 0 < α ≤ 1 −
√

5
3 . OPT(S) denotes the size of the

optimal packing of the set S, c := 3−1.5α
2−1.5α

.

1: K := ∅; R := ∅
2: for k = 1, . . . , n do
3: if |R| = 0 then
4: if OPT(K ∪ {xk}) ≥ 1

c then Pack OPT(K ∪ {xk}) END
5: else if xk ≤ 1 − 1

c then K := K ∪ {xk};
6: else if xk ≥ 1

c2 then Keep only smallest x′
k ∈ K ∪ xk with x′

k ∈ [ 1
c2 , 1

c ];
7: else(1 − 1

c < xk < 1
c2 ) R := R ∪ xk, xf := xk;

8: else if |R| = 1 then
9: if OPT(K ∪ {xf , xk}) ≥ 1

c + αxf then Pack OPT(K ∪ {xf , xk}) END
10: else if 1 − 1

c − αxf < xk ≤ 1
3 then R := R ∪ xk, g := k;

11: else if xk ≤ 1 − 1
c − αxf then K := K ∪ {xk};

12: else Keep only smallest x′
k ∈ K ∪ xk with x′

k ∈ [1 − xf , 1
c + αxf ];

13: else
14: M := ∅; L := ∅
15: if OPT(K ∪ {xf , xg, xk}) ≥ 1

c + α(xf + xg) then
16: Pack OPT(K ∪ {xf , xg, xk}) END
17: else if xk ≤ 1 − 1

c + α(xf + xg) then K := K ∪ {xk};
18: else if 1 − xg − xf < xk < 1

c + α(xg + xf ) − xf then
19: Keep xk if xk + xg < min(xl ∈ L) ∧ xk < min(xm ∈ M); M := M ∪ xk;
20: else if 1 − xg < xk < 1

c + α(xf + xg) then
21: Keep xk if xk + xg < min(xm ∈ M) ∧ xk < min(xl ∈ L); L := L ∪ xk;
22: Pack OPT (K ∪ R)

On the other hand, if the instance ends before reserving the first item, the only possible
difference between an optimal solution and a solution of the algorithm is that the algorithm
only has the smallest item in the range between 1

c2 and 1
c , while the optimal solution might

have a different item in this range. Since the smallest item in this range is at least of size 1
c2

and the largest item is at most of size 1
c , the ratio is smaller than 1/c

1/c2 = c. Additional small
items can be part of both the optimal solution and the solution provided by the algorithm,
which only makes the ratio smaller.

Note that an optimal solution cannot contain two items in the range between 1
c2 and 1

c ,
since the algorithm would also be able to combine the two items in this range. The algorithm
always keeps the smallest possible item within the range, a second item within the range
that could fit into the knapsack would trigger the condition in line 4, since two items of size
at least 1

c2 are sufficient to reach 1
c ( 2

c2 ≥ 1
c for c ≤ 2).

Case 2: Algorithm ends in line 9 or 22 with one reserved item. Assume one item xf

in the range 1 − 1
c to 1

c2 was reserved. The reservation costs for this item are αxf . Thus,
the algorithm needs to pack at least 1

c + αxf to guarantee the desired competitive ratio
independently to the gain achieved by an optimal solution.

For items smaller than 1 − 1
c − αxf the same argument for the small items in Case 1

holds: These items can be packed in a greedy manner until the threshold 1
c + αxf is reached.

An item of size between 1 − 1
c − αxf and 1

3 will be reserved in line 10, if the algorithm cannot
pack a knapsack of size 1

c + αxf at this point. This case is discussed in the next part of the
proof, as Case 3.
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0 1
t

1 − xg

1 − xf

t − xg

t − xf

1 − xf − xg

Figure 2 A schematic plot of the size ranges in the algorithm when two items have already been
reserved. The targeted size for the items is t = 1

c
+ α(xg + xf ).

Note that it is sufficient to combine the first reserved item with a single item of size at
least 1

3 to reach the desired competitive ratio, even after paying the reservation costs, as

1
3 + (1 − α)xf ≥ 1

3 + (1 − α)
(

1 − 1
c

)
= 1

c
,

in the considered range of α. In addition, any item that reaches 1
c + αxf either by its own or

together with small items is sufficient as well. Thus, with every item between 1
3 and 1 − xf ,

or larger than 1
c + αxf , the threshold is reached already and the algorithm stops in line 9.

We are left to consider items of sizes between 1 − xf and 1
c + αxf , which will reach

line 12 in the algorithm. With the items in this range, we follow the same strategy as for the
large-medium items before the first reservation: The smallest of those items will be kept in
the knapsack. This works for the same reasons as in Case 1, as explained below.

Assume the instance stops here and the algorithm was not able to reach 1
c + αxf : The

only difference between the solution of the algorithm and an optimal solution is that the
algorithm sticks to the smallest item in the range between 1 − xf and 1

c + αxf , which gives us
the worst possible case. Note that no item of size smaller than 1 − xf can be rejected before
the first reservation, since it otherwise would have been packed in combination with f . The
ratio between 1

c + αxf and 1 − xf is less than c, since xf is at most 1
c2 . Again, additional

small items can be added to both the optimal solution and the solution provided by the
algorithm, only decreasing the ratio.
Case 3: Algorithm ends in line 16 or 22 with two reservations made. Assume two items
were reserved, the first item xf of size between 1 − 1

c and 1
c2 , and the second item xg of

size between 1 − 1
c − αxf and 1

3 . Therefore, the algorithm has already paid α(xg + xf ) as
reservation costs, and now needs a packing of size 1

c +α(xg +xf ) to guarantee the competitive
ratio of c independent of any optimal solution size.

First note that, an item or a subset of items is sufficient to reach 1
c + α(xf + xg) in three

cases: it either reaches the threshold by its own, reaches the threshold together with one of
the reserved items, or with the two reserved items combined.

To reach the threshold with one of the reserved items, a subset of items must have a
size between 1

c + α(xf + xg) − xf and 1 − xf , or between 1
c + α(xf + xg) − xg and 1 − xg

(depending on which of the reserved items will be used to combine this subset with). The
subsets sizes, that combined with xf are sufficient to reach the necessary threshold can
obviously be smaller than the subsets that can be combined with xg, since xg < 1

3 and
xf > 1

3 . With simple analysis, it can be shown that for any α between 0 and 1 −
√

5
3 and for

every choice of xg and xf in the given ranges, 1 − xg must be larger than 1
c + α(xf + xg) − xf .

Therefore these intervals overlap, as displayed in Figure 2.
It follows that there are three intervals in which an item can be presented and the

algorithm might not stop immediately:
1. Items smaller than 1

c + α(xg + xf ) − xg − xf are too small to reach the necessary
size in combination with both of the reserved items. Note that those are smaller than
1 − 1

c − α(xg + xf ), thus they can be packed greedily. As soon as the knapsack is overfull
due to those items a subset of the small items can be selected to reach 1

c + α(xg + xf ).
This argumentation is analogous to the small items argument in the two previous cases.

MFCS 2023
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2. Items between 1 − xg − xf and 1
c + α(xg + xf ) − xf , which are too large to fit together

with both reserved items, but too small to reach the threshold in combination with the
largest reserved item. We will call those items mid-sized.

3. Items that cannot be combined any of the reserved items but also do not reach the
threshold by themselves, i.e., items between 1 − xg > 2

3 and 1
c + α(xf + xg). Those items

will be called large.
As we have already justified, the small items in 1. are not a concern. We argue now that
the desired competitive ratio is also achieved when mid-sized and large items appear in the
request sequence after reserving two items.

The algorithm keeps either the smallest large item, or the smallest mid-sized item. This
is dependent on the situation, as detailed in lines 18 to 21: If the smallest large item is
smaller than the smallest mid-sized item in combination with xg, the algorithm keeps the
smallest large item. On the other hand, if the smallest mid-sized item in combination with
xg is smaller than the smallest large item, the algorithm keeps the smallest mid-sized item.
Note that we can assume that every large item is larger than 2

3 , since otherwise it can be
combined with xg, reaching the threshold 1

c + α(xg + xf ).
Therefore the following crucial observation holds: If the algorithm is able to pack either

one large item together with xf , xg or a mid-sized item, or the algorithm is able to pack
three items among xf , xg and mid-sized items, the algorithm will also reach the desired
threshold and competitive ratio.

To see this, first note that every mid-sized item of size smaller than or equal to 1
3 will be

packed into the knapsack and will never be replaced by a large item. This is the case because
every large item must be larger than 2

3 , and an item of size smaller than 1
3 in combination

with xg must be smaller or equal than 2
3 .

Assume that, at some point, an arbitrary algorithm is about to pack the last item of
a combination of one large and one mid-sized or reserved item, or a combination of three
mid-sized or reserved items. Due to the construction and the selection of items before, we
are able to do so as well:

If the last item is a large item, the algorithm is able to pack such a combination, since the
smallest mid-sized item is in the knapsack if it is smaller than the reserved xg. Otherwise
the reserved xg is available for a combination.
If the last item is a mid-sized one, it fits together with the current combination of items
selected by Algorithm 1 (either two mid-sized or one large item), since it is the smallest
possible combination by construction.

A simple calculation then shows that every such combination of items (one large and one
mid-sized/reserved item, or three mid-sized/reserved items) is of size at least 1

c + α(xg + xf ),
even if chosen as small as possible.

The only thing left to prove is that even if there is no such combination, the algorithm
still reaches the designated competitive ratio:

First note that large items are only rejected or removed from the knapsack in the first
two phases. Those items had at most size 1

c + αxf . Items that remained in the knapsack can
be considered as either small items that can be packed in a greedy manner, or as large items.
If there were an item that is not in the allowed range for large or small items in this phase, it
would have been used to reach the threshold for a guaranteed competitive ratio immediately,
just like it would have been possible if the item was presented in the third phase.

By using mid-sized and large items together with the reserved ones, every optimal solution
can only reach 1

c + α(xg + xf ), while Algorithm 1 cannot be worse than xg + xf on any
instance. An easy calculation shows that even for smallest possible sizes of xg and xf , their
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combination is sufficient to reach the competitive ratio of c, since an optimal solution cannot
be better than 1

c + α(xg + xf ). Since Algorithm 1 can use small items in the same manner
as an optimal solution, the appearence of small items cannot worsen the ratio. ◀

This concludes the analysis for an upper bound that matches the lower bound for values
of α smaller than α ≥ 1 −

√
5/3.

For any α ≥ 1 −
√

5/3, note that the algorithm for knapsack with removable objects
(without reservation) presented by Iwama and Taketomi [12] achieves a competitive ratio of
ϕ, thus matching our lower bound as well.

4 Concluding Remarks

The upper and lower bounds for the competitive ratio of the online simple knapsack with
reservation and removability show that, as long as the value of α is positive the competitive
ratio is above 1.5. For large values of α the competitive ratio stays the same as in the
removability model without reservation, which is somehow intuitive, showing that at some
point reserving items is not worth the costs. More surprising are the results for small values
of α. The algorithm with reservation that achieves the desired upper bound rarely makes use
of the reservation, even in the case with very small α only two items are reserved in total.
This behavior is similar to that of online simple knapsack with reservations but without
removability for small values of α.

For future research, a natural variation of the problem would be to allow items to be
reserved after they were added to the knapsack, i.e. to allow removing items from the knapsack
and reserve them instead of only having the option to discard them (like we considered here).

It is known that the classic general online knapsack does not yield a finite competitive
ratio and also the option to remove items of the knapsack does not help. Thus, it remains an
interesting question if the reservation model changes the situation. We think that, at least
for small reservation costs, it should be possible to achieve a constant competitive ratio, but
this is still open and could also be a topic for further research.
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