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Abstract
In this work, we study two natural generalizations of clique-width introduced by Martin Fürer.
Multi-clique-width (mcw) allows every vertex to hold multiple labels [ITCS 2017], while for fusion-
width (fw) we have a possibility to merge all vertices of a certain label [LATIN 2014]. Fürer has
shown that both parameters are upper-bounded by treewidth thus making them more appealing
from an algorithmic perspective than clique-width and asked for applications of these parameters
for problem solving. First, we determine the relation between these two parameters by showing that
mcw ≤ fw +1. Then we show that when parameterized by multi-clique-width, many problems (e.g.,
Connected Dominating Set) admit algorithms with the same running time as for clique-width
despite the exponential gap between these two parameters. For some problems (e.g., Hamiltonian
Cycle) we show an analogous result for fusion-width: For this we present an alternative view on
fusion-width by introducing so-called glue-expressions which might be interesting on their own. All
algorithms obtained in this work are tight up to (Strong) Exponential Time Hypothesis.
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1 Introduction

In parameterized complexity apart from the input size we consider a so-called parameter and
study the complexity of problems depending on both the input size and the parameter where
the allowed dependency on the input size is polynomial. In a more fine-grained setting one is
interested in the best possible dependency on the parameter under reasonable conjectures. A
broad line of research is devoted to so-called structural parameters measuring how simple
the graph structure is: different parameters quantify various notions of possibly useful
input structure. Probably the most prominent structural parameter is treewidth, which
reflects how well a graph can be decomposed using small vertex separators. For a variety
of problems, the tight complexity parameterized by treewidth (or its path-like analogue
pathwidth) has been determined under the so-called Strong Exponential Time Hypothesis
(e.g., [33, 24, 32, 11, 28, 12, 16]). However, the main drawback of treewidth is that it is only
bounded in sparse graphs: a graph on n vertices of treewidth k has no more than nk edges.

To capture the structure of dense graphs, several parameters have been introduced and
considered. One of the most studied is clique-width. The clique-width of a graph is at most k

if it can be constructed using the following four operations on k-labeled graphs: create
a vertex with some label from 1, . . . , k; form a disjoint union of two already constructed
graphs; give all vertices with label i label j instead; or create all edges between vertices
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35:2 Tight Algorithmic Applications of Clique-Width Generalizations

with labels i and j. It is known that if a graph has treewidth k, then it has clique-width
at most 3 · 2k−1 and it is also known that an exponential dependence in this bound is
necessary [9]. Conversely, cliques have clique-width at most 2 and unbounded treewidth. So
on the one hand, clique-width is strictly more expressive than treewidth in the sense that if
we can solve a problem efficiently on classes of graphs of bounded clique-width, then this is
also true for classes of graphs of bounded treewidth. On the other hand, the exponential gap
has the effect that as the price of solving the problem for larger graph classes we potentially
obtain worse running times for some graph families.

Fürer introduced and studied two natural generalizations of clique-width, namely fusion-
width (fw) [19] and multi-clique-width (mcw) [20]. For fusion-width, additionally to the
clique-width operations, he allows an operator that fuses (i.e., merges) all vertices of la-
bel i. Originally, fusion-width (under a different name) was introduced by Courcelle and
Makowsky [10]. However, they did not suggested studying it as a new width parameter since
it is parametrically (i.e., up to some function) equivalent to clique-width. For multi-clique-
width, the operations remain roughly the same as for clique-width but now every vertex is
allowed to have multiple labels. For these parameters, Fürer showed the following relations
to clique-width (cw) and treewidth (tw):

fw ≤ cw ≤ fw ·2fw mcw ≤ cw ≤ 2mcw fw ≤ tw +2 mcw ≤ tw +2 (1)

Fürer also observed that the exponential gaps between clique-width and both fusion- and
multi-clique-width are necessary. As our first result, we determine the relation between
fusion-width and multi-clique-width:

▶ Theorem 1. For every graph G, it holds that mcw(G) ≤ fw(G) + 1. Moreover, given a
fuse-k-expression ϕ of G, a multi-clique-width-(k + 1)-expression of G can be created in time
polynomial in |ϕ| and k.

The relations in (1) imply that a problem is FPT parameterized by fusion-width resp.
multi-clique-width if and only if this is the case for clique-width. However, the running times
of such algorithms might strongly differ. Fürer initiated a fine-grained study of problem
complexities relative to multi-clique-width, starting with the Independent Set problem. He
showed that this problem can be solved in O∗(2mcw) where O∗ hides factors polynomial in the
input size. On the other hand, Lokshtanov et al. proved that under SETH no algorithm can
solve this problem in O∗((2 − ε)pw) where pw denotes the parameter called pathwidth [28].
Clique-width of a graph is at most its pathwidth plus two [15] so the same lower bound holds
for clique-width and hence, multi-clique-width as well. Therefore, the tight dependence on
both clique-width and multi-clique-width is the same, namely O∗(2k). We show that this is
the case for many further problems.

▶ Theorem 2. Let G be a graph given together with a multi-k-expression of G. Then:
Dominating Set can be solved in time O∗(4k);
q-Coloring can be solved in time O∗((2q − 2)k);
Connected Vertex Cover can be solved in time O∗(6k);
Connected Dominating Set can be solved in time O∗(5k).

And these results are tight under SETH.
Further, Chromatic Number can be solved in time f(k) · n2O(k) and this is tight

under ETH.

We prove this by providing algorithms for multi-clique-width with the same running time as
the known tight algorithms for clique-width. The lower bounds for clique-width known from
the literature then apply to multi-clique-width as well proving the tightness of our results.
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By Theorem 1, these results also apply to fusion-width. For the following three problems we
obtain similar tight bounds relative to fusion-width as for clique-width, but it remains open
whether the same is true relative to multi-clique-width:

▶ Theorem 3. Let G be a graph given together with a fuse-k-expression of G. Then:
Max Cut can be solved in time f(k) · nO(k);
Edge Dominating Set can be solved in time f(k) · nO(k);
Hamiltonian Cycle can be solved in time f(k) · nO(k).

And these results are tight under ETH.

To prove these upper bounds, we provide an alternative view on fuse-expressions, called glue-
expressions, interesting on its own. We show that a fuse-k-expression can be transformed into
a glue-k-expression in polynomial time and then present dynamic-programming algorithms
on glue-expressions. Due to the exponential gap between clique-width and both fusion- and
multi-clique-width, our results provide exponentially faster algorithms on graphs witnessing
these gaps.

Related Work. Two parameters related to both treewidth and clique-width are modular
treewidth (mtw) [3, 22] and twinclass-treewidth [29, 31, 27] (unfortunately, sometimes also
referred to as modular treewidth). It is known that mcw ≤ mtw +3 (personal communication
with Falko Hegerfeld). Further dense parameters have been widely studied in the literature.
Rank-width (rw) was introduced by Oum and Seymour and it reflects the F2-rank of the
adjacency matrices in the so-called branch decompositions. Originally, it was defined to
obtain a fixed-parameter approximation of clique-width [30] by showing that rw ≤ cw ≤
2rw +1 −1. Later, Bui-Xuan et al. started the study of algorithmic properties of rank-width [5].
Recently, Bergougnoux et al. proved the tightness of first ETH-tight lower bounds for this
parameterization [2]. Another parameter defined via branch-decompositions and reflecting the
number of different neighborhoods across certain cuts is boolean-width (boolw), introduced
by Bui-Xuan et al. [6, 7]. Fürer [20] showed that boolw ≤ mcw ≤ 2boolw. Recently, Eiben
et al. presented a framework unifying the definitions and algorithms for computation of many
graph parameters [13].

Organization. We start with some required definitions and notations in Section 2. In
Section 3 we prove the relation between fusion-width and multi-clique-width from Theorem 1.
After that, in Section 4 we introduce glue-k-expressions and show how to obtain such an
expression given a fuse-k-expression of a graph. Then in Section 5 we employ these expressions
to obtain algorithms parameterized by fusion-width. In Section 6 we present algorithms
parameterized by multi-clique-width. We conclude with some open questions in Section 7.
In this work some technical details have been omitted due to space constraints. We refer to
the full version of the paper for all proofs [8].

2 Preliminaries

For k ∈ N0, we denote by [k] the set {1, . . . , k} and we denote by [k]0 the set [k] ∪ {0}.
We use standard graph-theoretic notation. Our graphs are simple and undirected if not

explicitly stated otherwise. For a graph H and a partition (V1, V2) of V (H), by EH(V1, V2) =
{{v1, v2} | v1 ∈ V1, v2 ∈ V2} we denote the set of edges between V1 and V2. For a set S of
edges in a graph H, by V (S) we denote the set of vertices incident with the edges in S.

MFCS 2023



35:4 Tight Algorithmic Applications of Clique-Width Generalizations

A k-labeled graph is a pair (H, labH) where labH : V (H) → [k] is a labeling function of H.
Sometimes to simplify the notation in our proofs we will allow the labeling function to map
to some set of cardinality k instead of the set [k]. In the following, if the number k of labels
does not matter, or it is clear from the context, we omit k from the notions (e.g., a labeled
graph instead of a k-labeled graph). Also, if the labeling function is clear from the context,
then we simply call H a labeled graph as well. Also we sometimes omit the subscript H of
the labeling function labH for simplicity. For i ∈ [k], by UH

i = lab−1
H (i) we denote the set of

vertices of H with label i. We consider the following four operations on k-labeled graphs.
1. Introduce: For i ∈ [k], the operator v⟨i⟩ creates a graph with a single vertex v that has

label i. We call v the title of the vertex.
2. Union: The operator ⊕ takes two vertex-disjoint k-labeled graphs and creates their

disjoint union. The labels are preserved.
3. Join: For i ̸= j ∈ [k], the operator ηi,j takes a k-labeled graph H and creates the

supergraph H ′ on the same vertex set with E(H ′) = E(H) ∪ {{u, v} | labH(u) =
i, labH(v) = j}. The labels are preserved.

4. Relabel: For i ̸= j, the operator ρi→j takes a k-labeled graph H and creates the same
k-labeled graph H ′ apart from the fact that every vertex that with label i in H instead
has label j in H ′.

A well-formed sequence of such operations is called a k-expression or a clique-expression.
With a k-expression ϕ one can associate a rooted tree such that every node corresponds
to an operator, this tree is called a parse tree of ϕ. With a slight abuse of notation, we
denote it by ϕ as well. By Gϕ we denote the labeled graph arising in ϕ. And for a node t

of ϕ by Gϕ
t we denote the labeled graph arising in the subtree (sometimes also called a

sub-expression) rooted at t, this subtree is denoted by ϕt. The graph Gϕ
t is then a subgraph

of Gϕ. A graph H has clique-width of at most k if there is a labeling function labH of H

and a k-expression ϕ such that Gϕ is equal to (H, labH). By cw(H) we denote the smallest
integer k such that H has clique-width at most k. Fürer has studied two generalizations of
k-expressions [19, 20].

Fuse: For i ∈ [k], the operator θi takes a k-labeled graph H with lab−1
H (i) ̸= ∅ and fuses

the vertices with label i, i.e., the arising graph H ′ has vertex set (V (H) − lab−1
H (i))∪̇{v},

the edge relation in V (H) − lab−1
H (i) is preserved, and NH′(v) = NH(lab−1

H (i)). The labels
of vertices in V (H ′) − v are preserved, and vertex v has label i. A fuse-k-expression is a
well-formed expression that additionally to the above four operations is allowed to use fuses.
We adopt the above notations from k-expressions to fuse-k-expressions. Let us only remark
that for a node t of a fuse-k-expression ϕ, the graph Gϕ

t is not necessarily a subgraph of Gϕ

since some vertices of Gϕ
t might be fused later in ϕ.

▶ Remark 4. Originally, Fürer allows that a single introduce-node creates multiple, say q,
vertices with the same label. However, we can eliminate such operations from a fuse-
expression ϕ as follows. If the vertices introduced at some node participate in some fuse later
in the expression, then it suffices to introduce only one of them. Otherwise, we can replace
this introduce-node by q nodes introducing single vertices combined using union-nodes. These
vertices are then also the vertices of Gϕ. So in total, replacing all such introduce-nodes
would increase the number of nodes of the parse tree by at most O(|V (Gϕ)|), which is not a
problem for our algorithmic applications.

Another generalization of clique-width introduced by Fürer [20] is multi-clique-width
(mcw). A multi-k-labeled graph is a pair (H, labH) where labH : V (H) → 2[k] is a multi-
labeling function. We consider the following four operations of multi-k-labeled graphs.
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1. Introduce: For q ∈ [k] and i1, . . . iq ∈ [k], the operator v⟨i1, . . . , iq⟩ creates a multi-k-
labeled graph with a single vertex that has label set {i1, . . . , iq}.

2. Union: The operator ⊕ takes two vertex-disjoint multi-k-labeled graphs and creates their
disjoint union. The labels are preserved.

3. Join: For i ̸= j ∈ [k], the operator ηi,j takes a multi-k-labeled graph H and creates its
supergraph H ′ on the same vertex set with E(H ′) = E(H) ∪ {{u, v} | i ∈ labH(u), j ∈
labH(v)}. This operation is only allowed when there is no vertex in H with labels i and j

simultaneously, i.e., for every vertex v of H we have {i, j} ̸⊆ labH(v). The labels are
preserved.

4. Relabel: For i ∈ [k] and S ⊆ [k], the operator ρi→S takes a multi-k-labeled graph H and
creates the same multi-labeled graph apart from the fact that every vertex with label
set L ⊆ [k] such that i ∈ L in H instead has label set (L \ {i}) ∪ S in H ′. Note that S = ∅
is allowed.

A well-formed sequence of these four operations is called a multi-k-expression. As for fuse-
expressions, Fürer allows introduce-nodes to create multiple vertices but we can eliminate
this by increasing the number of nodes in the expression by at most O(|V (Gϕ)|). We adopt
the analogous notations from k-expressions to multi-k-expressions.

Complexity. To the best of our knowledge, the only known way to approximate multi-
clique-width and fusion-width is via clique-width, i.e., to employ the relation (1). The only
known way to approximate clique-width is, in turn, via rank-width. This way we obtain
a 22k -approximation of multi-clique-width and fusion-width running in FPT time. For this
reason, to obtain tight running times in our algorithms we always assume that a fuse- or
multi-k-expression is provided. Let us emphasize that this is also the case for all tight results
for clique-width in the literature (see e.g., [1, 27]). In this work, we will show that if a
graph admits a multi-k-expression resp. a fuse-k-expression, then it also admits one whose
size is polynomial in the size of the graph. Moreover, such a “compression” can be carried
out in time polynomial in the size of the original expression. Therefore, we delegate this
compression to a black-box algorithm computing or approximating multi-clique-width or
fusion-width and assume that provided expressions have size polynomial in the graph size.

(Strong) Exponential Time Hypothesis. The algorithms in this work are tight under one
of the following conjectures formulated by Impagliazzo et al. [23]. The Exponential Time
Hypothesis (ETH) states that there is 0 < ε < 1 such that 3-Sat with n variables and m

clauses cannot be solved in time O∗(2εn). The Strong Exponential Time Hypothesis (SETH)
states that for every 0 < ε < 1 there is an integer q such that q-Sat cannot be solved in
time O∗(2εn). In this work, O∗ hides factors polynomial in the input size.

Simplifications. If the graph is clear from the context, by n we denote the number of its
vertices. If not stated otherwise, the number of labels is denoted by k and a label is a number
from [k].

3 Relation Between Fusion-Width and Multi-Clique-Width

In this section, we show that the multi-clique-width of a graph is at most as large as its
fusion-width plus one. Fürer [20] has proven the following relation:

▶ Theorem 5 ([20]). For every graph H, it holds that cw(H) ≤ fw(H) · 2fw(H).

MFCS 2023



35:6 Tight Algorithmic Applications of Clique-Width Generalizations

The proof is constructive: given a fuse-k-expression it creates a k · 2k-expression of the same
graph. We use ideas from this proof to prove our result.
▶ Theorem 6. For every graph H, it holds that mcw(H) ≤ fw(H) + 1. Moreover, given a
fuse-k-expression ϕ of H, a multi-(k + 1)-expression of H can be created in time polynomial
in |ϕ| and k.
Proof. Here we sketch the intuition behind the proof and for all formalities we refer to the
full version. We start by showing that mcw(H) ≤ 2 · fw(H) holds. To prove this, we will
consider a fuse-k-expression of H and from it, we will construct a multi-2k-expression of H

using labels {1, . . . , k, 1̂, . . . , k̂}. For simplicity, let [̂k] = {1̂, . . . , k̂}. For this first step, we
follow the construction of Fürer in his proof of Theorem 5. There he uses k ·2k labels from the
set [k]×2[k] so the second component of such a label is a subset of [k]. Multi-expressions allow
vertices to hold multiple labels and we model the second component of a label via subsets
of [̂k]. After that, we show that the labels i and î can be almost unified for every i ∈ [k].
Using just one additional label ⋆, we then obtain a multi-(k + 1)-expression of H.

For simplicity of representation, in this proof sketch we assume that our fuse-expression
contains no relabel-nodes (we refer to the full version for the complete proof). We may
assume that our fuse-expression does not contain nodes that do not change the arising
labeled graph. Also if a vertex arising in some fuse-operation participates in some later
fuse-operation, then the earlier fuse can be removed. Now we assume that any vertex arising
in a fuse-operation does not participate in later fuses. We say that v is a fuse-vertex at a
node x of the expression if v participates in some fuse-operation above x. For the label i

of v we then also say that i is a fuse-label at x. Instead of first creating the fuse-vertices via
introduce-nodes and then fusing them, we will introduce only one vertex representing the
result of the fusion. The creation of the edges incident with such a new vertex (originally
incident with fuse-vertices) then needs to be postponed until the moment where this vertex is
introduced. To remember that some vertex v is missing an edge to a new vertex with label i,
we will add a label î to the label set of v. After the creation of this vertex, the edge will be
reconstructed using a corresponding join.

Now we provide more details. First, we cut off every leaf of the expression introducing a
fuse-vertex. Second, we replace every fuse-node θi by a new introduce-node 1⟨i⟩. Since for
every fuse-vertex we have kept only the latest fuse-node it participates in, the vertex set of
the graph arising in the current expression is V (H), and the edges incident with new vertices
need to be created. For this, let x be a ηi,j-node. If both i and j are not fuse-labels at x,
no additional work needs to be done. Next, assume that exactly one of the labels i and j,
say i, is a fuse-label at x. The information about the created edges is stored in vertices of
label j: for this, we replace this join with a relabel ρ

j→{j,̂i}. Now assume that both i and j

are fuse-labels at x. Then x creates only one edge of H since all vertices of label i (resp. j)
are fused into one vertex later. We may assume that in the original expression, the fuse
of vertices with label j happens before the fuse of label i. We store the information about
the postponed edge in j as follows. Let xj be the new introduce-node that replaced the
fuse-node for label j. And let S denote the set of labels of the new vertex created in this
node: in the beginning, S consists of j only but after processing some join-nodes, it might
contain further labels from [̂k]. Then we replace xj with a 1⟨S ∪ {̂i}⟩-node. Finally, we create
the remembered edges as follows. Let x be a new 1⟨S⟩-node for some set S of labels. By
construction, there exists a unique i ∈ S ∩ [k]: this is the label of vertices originally fused at
this node while S \ i ⊆ [̂k] remembers the edges to be created later in the expression. So
right after x, we first add a η

i,̂i
-node and second, a ρ̂

i→∅-node to reflect that the missing
edges have been created.
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This concludes the construction of a multi-2k-expression of H. The crucial observation is
that the labels i and î are almost never used at the same time. Indeed, if label î occurs in
some vertex created by some sub-expression, then all leaves introducing the vertices of label i

have been cut off from this sub-expression. So there are no vertices with label i now. The
only moment to which both labels i and î occur simultaneously is right after a new 1⟨S⟩-node
with i ∈ S: now the label î is used to create the postponed edges incident with the new
vertex and then î is removed. So apart from these two operations, we can unify i and î:
one additional label ⋆ suffices to distinguish them during these operations. This results in a
multi-(k + 1)-expression of H. ◀

4 Reduced Glue-Expressions

▶ Definition 7. A glue-k-expression is a well-formed expression constructed from introduce-,
join-, relabel-, and glue-operations on k-labeled graphs. A glue-operation takes as input
two k-labeled graphs (H1, lab1) and (H2, lab2) satisfying the following two properties:

For every v ∈ V (H1) ∩ V (H2), the vertex v has the same label in H1 and H2, i.e., we
have lab1(v) = lab2(v).
For every v ∈ V (H1) ∩ V (H2) and every j ∈ [2], the vertex v is the unique vertex with its
label in Hj, i.e., we have | lab−1

1 (lab1(v))| = | lab−1
2 (lab2(v))| = 1.

In this case, we call the graphs H1 and H2 glueable. The output of this operation is then
the graph H1 ⊔ H2 with V (H1 ⊔ H2) = V (H1) ∪ V (H2) and E(H1 ⊔ H2) = E(H1) ∪ E(H2)
where the labels are preserved. The vertices in V (H1) ∩ V (H2) are called glue-vertices.

Note that if H1 and H2 satisfy these properties, then the gluing is equivalent to a union
followed by a sequence of fuses θi where i is a label of a vertex shared by H1 and H2.

▶ Definition 8. A glue-k-expression ξ is called reduced if the following properties hold:
1. Let i, j ∈ [k], let t be a ηi,j-node in ξ, and let t′ be the child of t in ξ. Then Gξ

t′ contains
no edge {v, w} with labξ

t′(v) = i and labξ
t′(w) = j.

2. Let t be a glue-node in ξ and let t1 and t2 be its children. Then the graphs Gξ
t1

and Gξ
t2

are edge-disjoint.
3. Let t be a glue-node in ξ, let t1 and t2 be its children, and let v be a glue-vertex. Then

for every j ∈ [2], the vertex v has an incident edge in Gξ
tj

.
As we will see in Section 5, such expressions are very useful for algorithmic applications.

In this section we sketch how to transform a fuse-k-expression into a reduced glue-k-
expression of the same graph in polynomial time. Although the idea behind the construction
of such expressions is quite natural, the realization is rather technical. For this reason, here
we only provide a high-level idea of the required steps and refer to the full version for the
extensive description.

In the first phase, we transform a fuse-k-expression into a (not necessarily reduced)
glue-k-expression as follows. As the first step, we want to achieve that every fuse-node t is
right above some union-node, i.e., there are only fuse-nodes on the path between t and the
topmost union-node below t. For this, we shift every fuse-node down to the closest union-node
(see Figure 1 (a)). We emphasize that this cannot be achieved simply by repetitive swapping
of the fuse-node with its child: e.g., swapping θi with ρj→i would change the arising graph.
In the second step, we want to achieve that every fuse-node t fuses exactly two vertices and
these vertices come from different sides of the union right below it. In other words, we want
that any two vertices, that are ever fused, are fused as early as possible. So if there is a
node t fusing at least two vertices coming from the same side of the topmost union-node t⊕

MFCS 2023
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θ

θ

⊕

θ

θ
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(a)

θ

⊕
θ

⊕
θ θ

(b)

⊕ ⊕
⊕ ⊕

θ

⊕

θ

⊕ ⊕
θ

(c)

Figure 1 The steps to transform a fuse-expression into a glue-expression. (a) Shifting fuse-nodes
to union-nodes. (b) Creating copies of fuse-nodes to fuse vertices as early as possible. (c) Shifting
the copied fuse-nodes to union-nodes.

below it, these vertices can actually be fused before t⊕ already. To accomplish this, we add
a new fuse-node t′ below t⊕ (see Figure 1 (b)). After that, t′ is shifted down to the next
union-node as in the first step (see Figure 1 (c)). In this second step, one needs to be careful
in order to ensure that the process terminates at all and that it takes only polynomial time.
For this, we choose an appropriate order for processing the fuse-nodes. After these two
steps, we replace every sequence consisting of a union-node and following fuse-nodes with a
glue-node to obtain a glue-expression.

In the second phase, we make our glue-expression reduced as follows (see Definition 8).
First, given two join-nodes creating the same edge, we can show that at least of them can be
safely removed. Second, if a glue-vertex of two glued graphs has no incident edge in one of
them, then we can remove this vertex from that graph without changing the result of the
gluing. We refer to the full version for details. Altogether, we prove the following:

▶ Theorem 9. Let ϕ be a fuse-k-expression of a graph H on n vertices and m edges. Then
in time polynomial in |ϕ| and k we can compute a reduced glue-k-expression ζ of H such that
the parse tree of ζ contains O(k2(m + n)) nodes.

Let us remark, that unlike clique-expressions (whose leaves are in bijection with the vertices
of the arising graph), the number of leaves in a fuse-expression can be unbounded in general.
This is due to fuse-nodes reducing the number of vertices in the constructed graph. So
Theorem 9 in particular shows that a polynomial number of introduce-nodes suffices.

5 Algorithms Parameterized by Fusion-Width

In this section we show how to employ reduced glue-expressions to obtain algorithms
parameterized by fusion-width (given a fuse-expression of corresponding width). In the
previous section, we showed that every fuse-k-expression can be transformed into a reduced
glue-k-expression of small size in polynomial time. So for the remainder of this section we
assume that a glue-k-expression ϕ of an input graph G is given. Recall that in particular,
two graphs glued at any glue-node of ϕ are edge-disjoint.

All algorithms in this section have running time f(fw)nO(fw). For each of the problems
considered here, in the literature there is a lower bound stating that under ETH, the problem
cannot be solved in time f(cw)no(cw) even if a clique-expression of corresponding width is
provided [17, 18]. Since fusion-width is at most as large as clique-width, these lower bounds
hold for fusion-width as well implying the tightness of our results. Fürer observed that
there exist graphs whose clique-width is exponential in their fusion-width [19]. Therefore,
in addition to solving these problems for a larger class of graphs, we obtain an exponential
improvement in the running time for some families of graphs. The only difference between
glue- and clique-expressions is the possibility of using glue-nodes so it will suffice to extend
existing dynamic-programming algorithms from the literature to glue-nodes.
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5.1 Max Cut
In this problem, given a graph G = (V, E) we are asked about the maximum cardinality
of EG(V1, V2) over all partitions (V1, V2) of V . Fomin et al. have developed an nO(cw)

algorithm [17], which we now extend to reduced glue-expressions by showing how to deal with
glue-nodes. Before this, a small remark: the correctness of their algorithm for a join-node t

requires that none of edges created by t is already present in the graph. A reduced glue-
expression satisfies this property so the procedures for all node types other than glue-nodes
can indeed be adopted.

Their dynamic-programming tables are defined as follows. For a graph H, the table TH

contains all vectors h = (s1, . . . , sk, r) with 0 ≤ si ≤ |UH
i | for every i ∈ [k] and 0 ≤ r ≤ |E(H)|

for which there exists a partition (V1, V2) of V (H) such that |V1 ∩ UH
i | = si for every i ∈ [k]

and there are at least r edges between V1 and V2 in H. We say that the partition (V1, V2)
witnesses the vector h. Then the output of the algorithm is the largest integer r such that TG

contains an entry (s1, . . . , sk, r) for some s1, . . . , sk ∈ N0. Processing a fuse-operation θi

applied to some subgraph H seems to be problematic in this setting for the following reason.
Some vertices of label i might have common neighbors so after the application of the fuse-
operator, multiple edges fall together. Given the table TH only we cannot deduce how many
of those edges were running across the partition and it is unclear how to update the table
correctly. To avoid such issues, we replace fuse-nodes with glue-nodes.

Now we provide a way to compute the table TH if H = H1 ⊔ H2 for two glue-
able edge-disjoint k-labeled graphs H1 and H2 if the tables TH1 and TH2 are provided.
Let {v1, . . . , vq} = V (H1)∩V (H2) for some q ∈ N0 and let i1, . . . , iq be the labels of v1, . . . , vq

in H1, respectively. Glueability implies that for every j ∈ [q], it holds that |UH1

ij
| = |UH2

ij
| = 1.

Hence, for every entry (s1, . . . , sk, r) of TH1 and every j ∈ [q], it also holds that sij ∈ {0, 1}
with sij

= 1 if and only if vj is put into V1 in the partition witnessing this entry. The same
holds for the entries in TH2 . This gives the following way to compute the table TH . We initial-
ize this table to be empty. Then we iterate through all pairs of vectors h1 = (s1

1, . . . , s1
k, r1)

from TH1 and h2 = (s2
1, . . . , s2

k, r2) from TH2 . If there is an index j ∈ [q] such that s1
ij

̸= s2
ij

,
then we skip this pair. Otherwise, for every 0 ≤ r ≤ r1 + r2, we add to TH the vec-
tor h = (s1, . . . , sk, r) where for all i ∈ [k]

si =
{

s1
i + s2

i i /∈ {i1, . . . , iq}
s1

i · s2
i i ∈ {i1, . . . , iq}

.

Note that for i ∈ {i1, . . . , iq}, the above definition simply states that we have si = 1 iff
both s1

i and s2
i are equal to 1, and si = 0 iff both s1

i and s2
i are equal to 0. It is not difficult

to verify the correctness of this procedure. If there are no glue-vertices, then our approach
coincides with the one for union-nodes by Fomin et al. If there is a glue-vertex, say v, then
we consider partitions (V 1

1 , V 1
2 ) and (V 2

1 , V 2
2 ) of H1 and H2, respectively, putting v on the

same side. Then a partition of H naturally arises as a union (V 1
1 ∪ V 2

1 , V 2
1 ∪ V 2

2 ). Since
the graphs are edge-disjoint, every edge crossing this partition crosses exactly one of the
partitions (V 1

1 , V 1
2 ) and (V 2

1 , V 2
2 ) implying that the choice of r is correct. We refer to the

full version for a formal proof.
Recall that every graph constructed from any sub-expression of ϕ is a subgraph of G so

the tables for graphs H1 and H2 contain nO(k) entries. Thus, the procedure for glue-nodes
runs in time nO(k). By Theorem 9 we may assume that ϕ contains a polynomial number
of nodes. Altogether, we obtain an algorithm solving Max Cut in time nO(fw). Fomin
et al. have also proven that under ETH, it cannot be solved in time f(cw)no(cw) for any
computable function f (see [17] Theorem 4.1) so our result is tight.

MFCS 2023



35:10 Tight Algorithmic Applications of Clique-Width Generalizations

5.2 Edge Dominating Set
In this problem, given a graph G = (V, E) we are asked about the cardinality of a minimum
set X ⊆ E such that every edge in E either belongs to X itself or it has an incident edge
in X. Fomin et al. have developed an nO(cw) algorithm solving this problem [17], which
we now extend to reduced glue-expressions. As for Max Cut, the algorithm requires that
for any join-node, the edges created by this node are not yet present in the graph. A
reduced glue-expression satisfies this property so their procedures for introduce-, join-, and
relabel-nodes can be adopted.

For a k-labeled graph H, the table TH contains all vectors (s1, . . . , sk, r1, . . . , rk, ℓ) of
non-negative integers such that there exists a set S ⊆ E(H) and a set R ⊆ V (H) \ V (S)
with the following properties:

|S| ≤ ℓ ≤ |E(H)|;
for every i ∈ [k], exactly si vertices of UH

i are incident with edges in S;
for every i ∈ [k], we have |R ∩ UH

i | = ri;
every edge of H undominated by S has an end-vertex in R.

We say that the pair (S, R) witnesses the vector (s1, . . . , sk, r1, . . . , rk, ℓ) in H. The last
property reflects that it is possible to attach a pendant edge to every vertex in R so that the
set S together with these pendant edges dominates all edges of H. The size of the minimum
edge dominating set of G is then the smallest integer ℓ such that the table TG contains an
entry (s1, . . . , sk, 0, . . . , 0, ℓ) for some s1, . . . , sk ∈ N0.

To complete the algorithm for the fusion-width parameterization, we provide a way to
compute the table TH if H = H1 ⊔ H2 for two glueable edge-disjoint k-labeled graphs H1

and H2 if the tables TH1 and TH2 are provided. Let {v1, . . . , vq} = V (H1) ∩ V (H2) for
some q ∈ N0 and let i1, . . . , iq be the labels of v1, . . . , vq in H1, respectively. Then for
every j ∈ [q], it holds that |UH1

ij
| = |UH2

ij
| = 1. Hence, for every entry (s1, . . . , sk, r1, . . . , rk, ℓ)

of TH1 and every j ∈ [q], it holds that sij
+ rij

≤ 1. The same holds for the entries in TH2 .
This motivates the following way to compute the table TH . We initialize this table to be
empty. Then we iterate through all pairs of vectors h1 = (s1

1, . . . , s1
k, r1

1, . . . , r1
k, ℓ1) from TH1

and h2 = (s2
1, . . . , s2

k, r2
1, . . . , r2

k, ℓ2) from TH2 and for every ℓ1+ℓ2 ≤ ℓ ≤ |E(H)|, we add to TH

the vector h = (s1, . . . , sk, r1, . . . , rk, ℓ) defined as follows. For every i ∈ [k] \ {i1, . . . , iq}, it
holds that si = s1

i +s2
i and ri = r1

i +r2
i . And for every i ∈ {i1, . . . , iq}, it holds that si = s1

i ∨s2
i

and ri = ¬s1
i ∧ ¬s2

i ∧ (r1
i ∨ r2

i ).
To argue the correctness, we sketch only one direction here. The other is similar and for

all details refer to the full version. We now show that if h1 and h2 belong to TH1 and TH2 ,
respectively, then the vector h indeed belongs to TH . So let (S1, R1) witness h1 in H1 and
let (S2, R2) witness h2 in H2. Then we set S = S1 ∪ S2 and construct R from R1 ∪ R2

by removing all vertices incident with S. Recall that every vertex in R1 has no incident
edge in S1. So a vertex v ∈ R1 \ R must have an incident edge in S2 by construction and
therefore, the vertex v must be a glue-vertex. The analogous is true for R2 \ R. With this,
one can verify that R complies with r1, . . . , rk. Also it is straight-forward to verify that
this is true for S and s1, . . . , sk. The bound ℓ1 + ℓ2 ≤ ℓ implies that the size of S is at
most ℓ (when proving the other direction, we use that H1 and H2 are edge-disjoint). So
it remains to show that every edge of H undominated by S has an end-point in R. Recall
that E(H) = E(H1) ∪ E(H2). Let e be an edge of E(H1) undominated by S = S1 ∪ S2.
Since it is not dominated by S1, it has an end-point, say v, in R1. By construction of R,
either v still belongs to R or it has an incident edge in S2. We have assumed that e is not
dominated by S1 ∪ S2 so v belongs to R as desired. A symmetric argument applies to edges
of H2. This concludes the proof that h is an entry of TH .
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As in the previous subsection, for any subgraph H of G constructed in some sub-
expression of ϕ, the table TH contains nO(k) entries and we obtain an algorithm solving
Edge Dominating Set in time nO(fw). Fomin et al. have also proven that under ETH, it
cannot be solved in time f(cw)no(cw) for any computable function f (see [17] Theorem 5.1)
so our result is tight.

5.3 Hamiltonian Cycle
In this problem, given a graph G = (V, E) we are asked about the existence of a cycle visiting
each vertex exactly once. Our algorithm relies on the algorithm by Bergougnoux et al. [1]
running in time f(cw)nO(cw). A partial solution for this problem is usually a path packing,
that is, a set of paths containing every vertex of the graph (constructed by the current
sub-expression) exactly once. The earlier f(cw)nO(cw2) algorithm by Espelage et al. stores
for every pair of labels i and j, the number of paths in the path packing between a vertex
with label i and a vertex with label j [14]. This naturally defines a graph on k vertices in
which there is an edge for every path in the path packing. Bergougnoux et al. [1] show that
instead of keeping track of all edges, it suffices to remember the degree sequence and the set
of connected components of this graph. To obtain an algorithm relying on this idea they
employ the technique of so-called representative sets: they define what does it mean for a set
of partial solutions to be representative and then show that their procedures for nodes of a
clique-expression maintain representativity.

To extend this algorithm to the parameterization by fusion-width, we describe how to
handle glue-nodes. Let H1 and H2 be two edge-disjoint glueable graphs and let P1 and P2
be path packings of H1 and H2, respectively. Then a natural combination of these partial
solutions is the gluing P := P1 ⊔ P2 (a subgraph of H1 ⊔ H2). Unlike a union-node (as
handled in [1]), the subgraph P is not necessarily a path packing: first, glue-vertices might
have degree larger than 2 in P and second, cycles might occur (e.g., if two paths with the
same end-vertices are glued). We can show that if we iterate over all P1 and P2 and filter out
combinations P1 ⊔ P2 that are not path packings, then we obtain exactly the set of all partial
solutions of H1 ⊔ H2. After that, we show that this approach maintains representativity.
This part is very technical and we refer to the full version for all details. Let us remark that
although we follow the idea by Bergougnoux et al. [1], our proof of correctness gets more
involved than the one for union-nodes from their work: when gluing two graphs, the partial
solutions are combined in a less trivial way than when forming a disjoint union of two graphs.
The tightness is implied by [18].

6 Algorithms Parameterized by Multi-Clique-Width

In this section, we consider algorithms for problems parameterized by multi-clique-width.
For all of these problems, SETH-tight (and for Chromatic Number even an ETH-tight)
algorithms for clique-width are known, we refer to [18, 25, 27, 21] for the corresponding lower
bounds. We show that algorithms with the same running time exist relative to multi-clique-
width. The clique-width lower bounds then transfer and imply the tightness of our results.
As for fusion-width, Fürer observed that there exist graphs whose clique-width is exponential
in their multi-clique-width [20]. So we obtain exponentially faster algorithms for some graph
classes.

For our results, we rely on existing algorithms for the parameterization by clique-width
and show that these (almost) do not use the fact that every vertex holds exactly one
label: Some of the algorithms use clique-expressions with certain properties (e.g., so-called
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irredundancy) though, so we need to either show that such a property holds for multi-clique-
width expressions or provide an alternative way to keep the algorithm correct. Now we
will sketch for each of the problems what changes need to be carried out and refer to the
full version of the paper for all details. Using simple transformations we may assume that
every introduce-node has form 1⟨i⟩ and every relabel-node has form ρi→∅ or ρi→{i,j} for
some i ̸= j ∈ [k]. Also we may assume that a multi-k-expression contains at most O(k2n)
nodes.

For Dominating Set, the algorithm by Bodlaender et al. runs in time O∗(4cw) [4] and
never uses the fact that every vertex holds exactly one label. So using a straight-forward
procedure to handle new relabel-nodes (of form ρi→∅ and ρi→{i,j}) we obtain a O∗(4mcw)
algorithm for this problem.

The situation is similar for the Chromatic Number algorithm by Kobler and Rotics [26].
The only minor thing one needs to handle is that the algorithm assumes that every color
used by a graph coloring appears on some label: in a multi-expression, it might occur that
all labels are removed from a vertex. To avoid this issue, we increase the number of labels in
the expression by 1 and ensure that every vertex holds the new label at all times. Also we
provide a procedure for the new relabel-nodes. Apart from that, the algorithm remains the
same.

In his work, Fürer presents an algorithm for q-Coloring parameterized by multi-clique-
width but it is not tight yet. For the q-Coloring problem, a naive O∗((2q)cw) algorithm
tracks for every label the set of colors used on this label. Lampis improves this running time
to O∗((2q − 2)cw) by observing that the empty set of colors can only be used by an empty
label, while all colors can only occur if the label does not participate in any join later (such
a label is called dead): otherwise, a monochromatic edge would occur [27]. Hegerfeld and
Kratsch employ the same idea to obtain an O∗(6cw) algorithm for Connected Vertex
Cover [21]. To define dead labels, they rely on the existence of so-called irredundant
clique-expression whose existence is unknown for multi-clique-width. We show that one
can still make these two algorithms work for multi-clique-width by using a slightly different
definition of dead and their counterpart, namely active, labels. Finally, for Connected
Dominating Set, to extend the O∗(5cw) algorithm by Hegerfeld and Kratsch [21], there
slightly more work is needed to adapt their inclusion-exclusion technique to a multi-label
setting.

7 Conclusion

In this work, we studied two generalizations of clique-width, namely fusion-width and multi-
clique-width, both introduced by Fürer [19, 20]. First, we showed that the fusion-width of a
graph is an upper bound for its multi-clique-width. For the other direction, the best upper
bound we are aware of is fw ≤ 2mcw and we leave open whether this is tight. By extending
existing algorithms for clique-width, we have obtained tight algorithms parameterized by
multi-clique-width for Dominating Set, Chromatic Number, q-Coloring, Connected
Vertex Cover, and Connected Dominating Set. The running times are the same as
for (S)ETH-optimal algorithms parameterized by clique-width.

For Hamiltonian Cycle, MaxCut, and Edge Dominating Set, we were not able to
achieve analogous results and these complexities remain open. Instead, we have introduced
glue-expressions equivalent to fuse-expressions and then we employed them for these three
problems to obtain tight algorithms parameterized by fusion-width with the same running
times as ETH-optimal algorithms for clique-width.
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Finally, in all algorithms we assume that a multi-k-expression / fuse-k-expression is
provided. However, the complexity of computing these parameters is unknown. To the best
of our knowledge, the best approximation would proceed via clique-width, have FPT running
time, and a double-exponential approximation ratio.
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