
Inductive Continuity via Brouwer Trees
Liron Cohen # Ñ

Ben-Gurion University, Beer-Sheva, Israel

Bruno da Rocha Paiva # Ñ

University of Birmingham, UK

Vincent Rahli # Ñ

University of Birmingham, UK

Ayberk Tosun #Ñ

University of Birmingham, UK

Abstract
Continuity is a key principle of intuitionistic logic that is generally accepted by constructivists but
is inconsistent with classical logic. Most commonly, continuity states that a function from the Baire
space to numbers, only needs approximations of the points in the Baire space to compute. More
recently, another formulation of the continuity principle was put forward. It states that for any
function F from the Baire space to numbers, there exists a (dialogue) tree that contains the values
of F at its leaves and such that the modulus of F at each point of the Baire space is given by the
length of the corresponding branch in the tree. In this paper we provide the first internalization of
this “inductive” continuity principle within a computational setting. Concretely, we present a class
of intuitionistic theories that validate this formulation of continuity thanks to computations that
construct such dialogue trees internally to the theories using effectful computations. We further
demonstrate that this inductive continuity principle implies other forms of continuity principles.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Constructive mathematics

Keywords and phrases Continuity, Dialogue trees, Stateful computations, Intuitionistic Logic,
Extensional Type Theory, Constructive Type Theory, Realizability, Theorem proving, Agda

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.37

Supplementary Material Software: https://github.com/vrahli/opentt
archived at swh:1:dir:a40178de24063c6bef43e49eb5478ec063a93c90

Funding Liron Cohen: This research was partially supported by Grant No. 2020145 from the United
States-Israel Binational Science Foundation (BSF).

Acknowledgements We would like to thank Martin Escardo, Martin Baillon, and Yannick Forster
for useful discussions about continuity and dialogue trees.

1 Introduction

The continuity principle is a cornerstone in intuitionistic theories which is generally accepted
by constructivists but contradicts classical mathematics. In essence, the principle states
that functions on the Baire space (i.e., B :≡ Nat → Nat) only need finite inputs, i.e.,
initial segments of points of the Baire space, to produce outputs. Different variants of the
continuity principle have been developed to capture different levels of strictness in the notion
of continuity and different computational aspects. Perhaps the most common continuity
principle is the continuity principle for numbers, sometimes referred to as the weak continuity
principle (WCP) [24, 15, 4, 7, 36]. WCP states that given a function F ∈ B → Nat and an
point α of the Baire space B, F (α) can only depend on an initial segment of α, and the

© Liron Cohen, Bruno da Rocha Paiva, Vincent Rahli, and Ayberk Tosun;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 37; pp. 37:1–37:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cliron@cs.bgu.ac.il
https://www.cs.bgu.ac.il/~cliron/
https://orcid.org/0000-0002-6608-3000
mailto:bmd202@student.bham.ac.uk
https://brunorochapaiva.github.io/
https://orcid.org/0000-0002-2205-8815
mailto:V.Rahli@bham.ac.uk
https://vrahli.github.io/
https://orcid.org/0000-0002-5914-8224
mailto:axt978@student.bham.ac.uk
https://www.cs.bham.ac.uk/~axt978/
https://orcid.org/0000-0002-0190-3020
https://doi.org/10.4230/LIPIcs.MFCS.2023.37
https://github.com/vrahli/opentt
https://archive.softwareheritage.org/swh:1:dir:a40178de24063c6bef43e49eb5478ec063a93c90;origin=https://github.com/vrahli/opentt;visit=swh:1:snp:2791b91ad5904e4d4e9a49ad1c85d65d5dfe5cf0;anchor=swh:1:rev:28411caf445bae77833c51637070fb5e8f615aff
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Inductive Continuity via Brouwer Trees

length of the smallest such segment is the modulus of continuity of F at α. This is standardly
formalized as follows, where Bn :≡ {x : Nat | x < n} → Nat is the set of finite sequences of
length n:

WCP :≡ ΠF :B → Nat.Πα:B.∥Σn:Nat.Πβ:B.(α=β∈Bn) → (F (α)=F (β)∈Nat)∥

However, as shown, e.g., by Kreisel [25, p.154], Troelstra [38, Thm.IIA], and Escardó and
Xu [18, 40], continuity is not an extensional property in the sense that two (extensionally)
equal functions might have different moduli of continuity. Therefore, to computationally
realize continuity, the existence of a modulus of continuity has to be truncated as explained,
e.g., in [18, 40, 32, 33], which is what the ∥_∥ operator achieves in WCP’s definition above.

Brouwer used WCP, along with a consequence of Bar Induction called the Fan Theorem, to
derive the following uniform continuity principle (UCP) [7, p.113], which he then used to prove
that all real-valued function on the unit interval are uniformly continuous [24, 15, 4, 7, 36],
where C :≡ Nat → Bool is the Cantor space and Cn :≡ {x : Nat | x < n} → Bool:

UCP :≡ ΠF :C → Nat.Σn:Nat.Πα, β:C.(α=β∈Cn) → (F (α)=F (β)∈Nat)

Note that UCP does not need to be truncated as shown for example in [18].
Another version of the continuity principle, which originates from the completeness of

Brouwer’s bar thesis and implies both WCP and UCP, has been recently studied [20, 22, 21, 19].
This principle, referred to here as the Inductive Continuity Principle (ICP), relies on a notion
of dialogue trees related to Brouwer trees [36] and reminiscent of Kleene trees [23]. This
tree-based technique of capturing continuity information, pioneered in [20, 22, 21, 19], and
reused for example in [9, 35, 3], consists in computing a tree that, given a function F from a
subset of B to numbers, contains the values of F at its leaves, and such that the amount
of information needed to compute these values, i.e., the modulus of continuity of F at each
point, is given by its branches. This can be formalized as follows where BSNat :≡ Nat → SNat
for SNat a subtype of Nat (Bt and follow(d, α) are made formal in Sec. 3.2).1

ICP :≡ ΠF :BSNat → Nat.∥Σd:Bt.Πα:BSNat.follow(d, α)=F (α)∈Nat∥

A number of theories have been shown to satisfy Brouwer’s continuity principle, or uniform
variants, such as N-HAω by Troelstra [37, p.158], MLTT by Coquand and Jaber [12, 13],
System T by Escardó [19], MLTT by Xu [40], CTT by Rahli and Bickford [32], BTT by
Baillon, Mahboubi and Pedrot [3], among others (see Sec. 6 for details). These proofs often
rely on a semantic forcing-based approach [12, 13], where the forcing conditions capture the
amount of information needed when applying a function to a sequence in the Baire space, or
through suitable models that internalize (C-Spaces in [41]) or exhibit continuous behavior
(e.g., dialogue trees in [19, 3]).

Not only can functions on the Baire space be proved to be continuous, but using effectful
computations one can in fact compute their modulus of continuity [28]. The TT□

C family
of effectful extensional type theories, recalled in Sec. 2, was shown to be consistent with a
version of WCP using a family of realizability models that allow validating this principle using
effectful computations, and in particular using reference cells [11]. Building on this result, in
this paper we identify a family of effectful type theories that are consistent with a variant
of ICP, and prove this consistency result using effectful computations, namely references.

1 We use here Brouwer trees, which are equivalent to dialogue trees for functions on the Baire space [17].

L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun 37:3

v ∈ Value ::= vt (type) | λx.t (lambda) | ⋆ (constant)
| n (number) | inl(t) (left injection) | δ (choice name)
| ⟨t1, t2⟩ (pair) | inr(t) (right injection)

vt ∈ Type ::= Πx:t1.t2 (product) | {x : t1 | t2} (set) | t1+t2 (disjoint union)
| Σx:t1.t2 (sum) | t1=t2∈t (equality) | ∥t∥ (truncation)
| Ui (universe) | Nat (numbers) | pure (pure)
| t1 ∩ t2 (intersection)

t ∈ Term ::= x (variable) | !t (read) | t1 <? t2 (less than)
| v (value) | νx.t (fresh) | t1 =? t2 (equality)
| t1 t2 (application) | t1 ··= t2 (write) | let x = t1 in t2 (call-by-value)
| fix(t) (fixpoint) | t1 + t2 (addition) | let x, y = t1 in t2 (pair destructor)
| case t of inl(x) ⇒ t1 | inr(y) ⇒ t2 (injection destructor)

(λx.t) u w 7→w t[x\u]
fix(v) w 7→w v fix(v)
let x = v in t2 w 7→w t2[x\v]
let x, y = ⟨t1, t2⟩ in t w 7→w t[x\t1; y\t2]

n <? m w 7→w inl(⋆), if n < m
n <? m w 7→w inr(⋆), if n ̸< m
n =? m w 7→w inl(⋆), if n = m
n =? m w 7→w inr(⋆), if n ̸= m
n + m w 7→w n + m

!δ w 7→w read(w, δ)
δ ··= t w 7→write(w,δ,t) ⋆
νx.t w 7→startνC(w) t[x\νC(w)]

case inl(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 w 7→w t1[x\t]
case inr(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 w 7→w t2[y\t]

Figure 1 Core syntax (above) and small-step operational semantics (below).

Importantly, in addition to validating the continuity of TT□
C functions using dialogue

trees, our work provides the first internalization of the principle into a computational system
in the sense that we extend TT□

C with a variant of ICP in Sec. 3, and exhibit in Sec. 5 an
effectful TT□

C program that realizes this axiom. The most challenging aspect of internalizing
this dialogue-based technique is in proving termination of the computation of such trees.
We further show in Sec. 4 that ICP encompasses both weak and uniform continuity. It is
however still unknown whether ICP is in fact strictly stronger than the other principles.

2 Background

This section reviews TT□
C [10] – a family of extensional type theories parameterized by a

choice operator C and a metatheoretical modality □, which allows typing the choice operators.

2.1 Metatheory
Our metatheory is Agda’s type theory [2]. The results presented in this paper have been
formalized in Agda: https://github.com/vrahli/opentt/. We use ∀, ∃, ∧, ∨, →, ¬ in place
of Agda’s logical connectives in this paper, and use ⊤ for True and ⊥ for False. Agda
provides a hierarchy of types annotated with universe labels which we omit for simplicity.
Following Agda’s terminology, we refer to an Agda type as a set, and reserve the term type
for TT□

C ’s types. We use P as the type of sets that denote propositions; N for the set of
natural numbers; and B for the set of Booleans true and false. We use induction-recursion to
define the forcing interpretation in Sec. 2.3, where we use function extensionality to interpret
universes. We also use classical reasoning twice in the proof presented in Sec. 5.

2.2 TT□
C ’s Syntax and Operational Semantics

Fig. 1 recalls TT□
C ’s syntax and operational semantics, where the blue boxes highlight the

effecful components, and where x belongs to a set of variables Var. For simplicity, numbers
are considered to be primitive and the constant ⋆ is used in place of a term when the
particular term used is irrelevant. We use all letters as metavariables for terms and denote

MFCS 2023

https://github.com/vrahli/opentt/

37:4 Inductive Continuity via Brouwer Trees

by t[x\u] the capture-avoiding substitution of all the free occurrences of x in t by u. We
write if t1 then t2 else t3 for case t1 of inl(x) ⇒ t2 | inr(x) ⇒ t3, where x does not
occur in t2 or t3, and t1;t2 for let x = t1 in t2 where x does not occur free in t2.

Types are syntactic forms that are given semantics in Sec. 2.3 via a forcing interpretation.
The type system contains standard types such as dependent products of the form Πx:t1.t2
and dependent sums of the form Σx:t1.t2. We write t1 → t2 for the non-dependent Π type;
Unit for 0=0∈Nat; Void for 0=1∈Nat; ¬T for (T → Void); and Bool for Unit+Unit.

To capture the time progression notion which underlines choice operators, TT□
C is

parameterized by a Kripke frame [26, 27], consisting of a set of worlds W equipped with a
reflexive and transitive binary relation ⊑. Let w range over W . We sometimes write w′ ⊒ w
for w ⊑ w′. Let Pw be the collection of predicates on world extensions, i.e., functions in
∀w′ ⊒ w.P. Due to ⊑’s transitivity, if P ∈ Pw then for every w′ ⊒ w it naturally extends to
a predicate in Pw′ . Let ∀⊑

w (P) stand for the fact that P ∈ Pw is true for all extensions of w,
i.e., P w′ holds for all w′ ⊒ w. We sometime write ∀⊑

w (w′.P) instead of ∀⊑
w (λw′.P).

Fig. 1’s lower part presents TT□
C ’s small-step call-by-name operational semantics, where

t1 w1 7→w2 t2 expresses that t1 reduces to t2 in one step of computation from the world w1 and
potentially updating it so that the resulting world is w2. We omit the congruence rules such
as: if t1 w1 7→w2 t2 then t1(u) w1 7→w2 t2(u). We denote by 7→∗ the reflexive transitive closure
of 7→, i.e., a w1 7→∗

w2
b states that a computes to b in 0 or more steps. We write a 7→∗

w b for
∃(w′ : W).a w 7→∗

w′ b, and a Z⇒w b for ∀⊑
w (w′.a 7→∗

w′ b).
TT□

C includes effecful notions that rely on worlds to record choices and provides operators
to access and update choices. In this paper, for conciseness of presentation, we focus on
one instance of choice operators as mutable references to natural numbers. Reference cells,
which allow a program to indirectly access a particular object, are choice operators since
they can point to different objects over their lifetime. See [10] for the general notion of choice
operators. To define references to numbers2, we let the set of choices C ⊆ Term to be N. A
choice stored in a reference cell is referred to through the reference’s name. To this end,
TT□

C ’s computation system is parameterized by a set N of choice names, ranged over by δ,
equipped with a decidable equality, and an operator that given a list of names, returns a
name not in the list (N :≡ N for simplicity). This can be given by nominal sets [30]. We take
worlds to be lists of cells, where a cell is a pair of a choice name and a choice, and ⊑ is the
reflexive transitive closure of two operations that allow creating and updating reference cells.

As shown in Fig. 1, a choice name δ can be used in a computation to access choices
from a world using !δ w 7→w read(w, δ), where the partial function read ∈ W → N → C
accesses the content of the δ-cell in w if that cell exists.3 Choices can be made using
(δ ··= t) w 7→write(w,δ,t) ⋆, where write(w, δ, t) updates the reference δ with the choice t if δ

occurs in w, and otherwise returns w, and therefore w ⊑ write(w, δ, t). The computation
returns ⋆, which is reminiscent of reference updates in OCaml for example, which are of
type unit. Finally, new choice names can be generated using νx.t w 7→startνC(w) t[x\νC(w)],
where νC(w) returns a “fresh” name not occurring in the list w, which x gets replaced
with in the expression above, and startνC(w) returns the list w extended with the pair
⟨νC(w), 0⟩, where 0 is the default value with which reference cells are filled, and therefore
∀(w : W).w ⊑ startνC(w).4

2 Only relevant components of the choice operator are discussed. See worldInstanceRef.lagda for details.
3 In general, read, νC, startνC, and write are all parameters of TT□

C , as described in [10]. Here they too
are instantiated with references to numbers.

4 TT□
C also contains a quotienting type operator « used to assign types to computations that can compute

to different values in different worlds, such as choices !δ [11]. For readability, we elide it here.

https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda

L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun 37:5

Numbers: w ⊨ Nat≡Nat ⇐⇒ True
w ⊨ t≡t′∈Nat ⇐⇒ □w(w′.∃(n : N).t Z⇒w′ n ∧ t′ Z⇒w′ n)

Products: w ⊨ Πx:A1.B1≡Πx:A2.B2 ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)
w ⊨ f≡g∈Πx:A.B ⇐⇒ □w(w′.∀(a1, a2 : Term).w′ ⊨ a1≡a2∈A → w′ ⊨ f a1≡g a2∈B[x\a1])

Sums: w ⊨ Σx:A1.B1≡Σx:A2.B2 ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)
w ⊨ p1≡p2∈Σx:A.B ⇐⇒ □w(w′.∃(a1, a2, b1, b2 : Term).w′ ⊨ a1≡a2∈A ∧ w′ ⊨
b1≡b2∈B[x\a1] ∧ p1 Z⇒w′ ⟨a1, b1⟩ ∧ p2 Z⇒w′ ⟨a2, b2⟩)

Sets: w ⊨ {x : A1 | B1}≡{x : A2 | B2} ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)
w ⊨ a1≡a2∈{x : A | B} ⇐⇒ □w(w′.∃(b1, b2 : Term).w′ ⊨ a1≡a2∈A ∧ w′ ⊨ b1≡b2∈B[x\a1])

Disjoint unions: w ⊨ A1+B1≡A2+B2 ⇐⇒ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

w ⊨ a1≡a2∈A+B ⇐⇒ □w(w′.∃(u, v : Term).(a1 Z⇒w′ inl(u) ∧ a2 Z⇒w′ inl(v) ∧ w′ ⊨
u≡v∈A) ∨ (a1 Z⇒w′ inr(u) ∧ a2 Z⇒w′ inr(v) ∧ w′ ⊨ u≡v∈B))

Equalities: w ⊨ (a1=b1∈A)≡(a2=b2∈B) ⇐⇒ w ⊨ A≡B ∧ w ⊨ a1≡a2∈A ∧ w ⊨ b1≡b2∈B

w ⊨ a1≡a2∈(a=b∈A) ⇐⇒ □w(w′.w′ ⊨ a≡b∈A)
Subsingletons: w ⊨ ∥A∥≡∥B∥ ⇐⇒ w ⊨ A≡B

w ⊨ a≡b∈∥A∥ ⇐⇒ □w(w′.w′ ⊨ a≡a∈A ∧ w′ ⊨ b≡b∈A)
Purity: w ⊨ pure≡pure ⇐⇒ ⊤

w ⊨ a1≡a2∈pure ⇐⇒ namefree(a1) ∧ namefree(a2)
Binary intersections: w ⊨ A1 ∩ B1≡A2 ∩ B2 ⇐⇒ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

w ⊨ a1≡a2∈A ∩ B ⇐⇒ □w(w′.w′ ⊨ a1≡a2∈A ∧ w′ ⊨ a1≡a2∈B)
Modality closure: w ⊨ T1≡T2 ⇐⇒ □w(w′.∃(T ′

1, T ′
2 : Term).T1 Z⇒w′ T ′

1 ∧T2 Z⇒w′ T ′
2 ∧w′ ⊨ T ′

1≡T ′
2)

w ⊨ t1≡t2∈T ⇐⇒ □w(w′.∃(T ′ : Term).T Z⇒w′ T ′ ∧ w′ ⊨ t1≡t2∈T ′)

Figure 2 Forcing Interpretation.

2.3 Forcing Interpretation
TT□

C ’s semantics is similar to the one presented in [10], which we recall and extend in Fig. 2.
Types are interpreted via a forcing interpretation defined using induction-recursion [16]
as follows, where the forcing conditions are worlds: (1) the inductive relation w ⊨ T1≡T2
expresses type equality in the world w; (2) the recursive function w ⊨ t1≡t2∈T expresses
equality in a type. We also define a Z⇒!w b as ∀⊑

w (w′.a w′ 7→∗
w′ b), capturing the fact that the

computation can read using !δ but not write, and therefore does not change the initial world
(this is used in Thm. 1). Fig. 2 defines in particular the semantics of pure, which is inhabited by
name-free terms, where namefree(t) is defined recursively over t and returns false iff t contains
a choice name δ or a fresh operator of the form νx.t. We also write Famw(A1, A2, B1, B2) for
w ⊨ A1≡A2 ∧ ∀⊑

w (w′.∀(a1, a2 : Term).w′ ⊨ a1≡a2∈A1 → w′ ⊨ B1(a1)≡B2(a2)). This forcing
interpretation is parameterized by a family of abstract modalities □, which we sometimes
refer to simply as a modality, which is a function that takes a world w to its modality
□w ∈ Pw → P. We often write □w(w′.P) for □wλw′.P . To guarantee that this interpretation
yields a type system in the sense of Thm. 1, we require that the modalities satisfy certain
properties detailed in [10] and reminiscent of standard modal axiom schemata [14].

▶ Theorem 1 ([10]). TT□
C is a standard type system in the sense that its forcing interpreta-

tion induced by □ satisfies the following properties (free variables are universally quantified):

transitivity: w ⊨ T1≡T2 → w ⊨ T2≡T3 → w ⊨ T1≡T3 w ⊨ t1≡t2∈T → w ⊨ t2≡t3∈T → w ⊨ t1≡t3∈T
symmetry: w ⊨ T1≡T2 → w ⊨ T2≡T1 w ⊨ t1≡t2∈T → w ⊨ t2≡t1∈T
computation: w ⊨ T ≡T → T Z⇒!w T ′ → w ⊨ T ≡T ′ w ⊨ t≡t∈T → t Z⇒!w t′ → w ⊨ t≡t′∈T
monotonicity: w ⊨ T1≡T2 → w ⊑ w′ → w′ ⊨ T1≡T2 w ⊨ t1≡t2∈T → w ⊑ w′ → w′ ⊨ t1≡t2∈T
locality: □w(w′.w′ ⊨ T1≡T2) → w ⊨ T1≡T2 □w(w′.w′ ⊨ t1≡t2∈T) → w ⊨ t1≡t2∈T
consistency: ¬w ⊨ t≡t∈Void

MFCS 2023

37:6 Inductive Continuity via Brouwer Trees

Note that due to effects, types are not closed under all computations. For example, when
T :≡ Nat, t′ Z⇒w n does not necessarily follow from t Z⇒w t′ and t Z⇒w n. An example is
t :≡ (δ ··= 1;if !δ < 1 then 0 else 1), which reduces to t′ :≡ (if !δ < 1 then 0 else 1)
and also to 1 in all worlds, but t′ does not reduce to 1 in all worlds, because δ could be
initialized differently in different worlds. However, the following holds by transitivity of Z⇒w:
t′ Z⇒w t → w ⊨ t≡t∈Nat → w ⊨ t≡t′∈Nat. Similarly, the following also holds by transitivity
of Z⇒w: w ⊨ T ≡T → T ′ Z⇒w T → w ⊨ T ≡T ′. Finally, note that, as indicated in Thm. 1, this
semantics is closed under β-reduction, as β-reduction does not modify the current world.

2.4 TT□
C ’s Inference Rules

TT□
C ’s inference rules are standard and they reflect the semantics of the types, which is

given meaning through a forcing interpretation presented in Sec. 2.3. Concetely, sequents in
TT□

C are of the form h1, . . . , hn ⊢ t : T . Such a sequent denotes that, assuming h1, . . . , hn, T

is a type inhabited by t. An hypothesis h is of the form x:A, where the variable x stands
for the name of the hypothesis and A its type. We write a∈A for a=a∈A. To illustrate
the naturality of the typing rules and their correspondence to the forcing interpretation,
we provide examples of TT□

C ’s inference rules for Π types. The following rules are the
standard Π-elimination, Π-introduction, type equality for Π types, and λ-introduction rules,
respectively.

H , f :Πx:A.B, J ⊢ a∈A H , f :Πx:A.B, J, z:f(a)∈B[x\a] ⊢ e : C

H , f :Πx:A.B, J ⊢ e[z\⋆] : C

H , z:A ⊢ b : B[x\z] H ⊢ A∈Ui

H ⊢ λz.b : Πx:A.B

H ⊢ A1=A2∈Ui H , y:A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui

H ⊢ Πx1:A1.B1=Πx2:A2.B2∈Ui

H , z:A ⊢ t1[x1\z]=t2[x2\z]∈B[x\z] H ⊢ A∈Ui

H ⊢ λx1.t1=λx2.t2∈Πx:A.B

The following rules are the standard function extensionality and β-reduction rules, resp.:

H , z:A ⊢ f1(z)=f2(z)∈B[x\z] H ⊢ A∈Ui

H ⊢ f1=f2∈Πx:A.B

H ⊢ t[x\s]=u∈T

H ⊢ (λx.t) s=u∈T

3 Inductive Continuity via Brouwer Trees

This section states a dialogue tree-based continuity principle, referred to as the inductive
continuity principle, since it relies on trees to capture functions. As we show in Sec. 4, it
implies both Brouwer’s continuity principle for numbers and his uniform continuity principle
on the Cantor space. Furthermore, it is still unknown whether the inductive continuity
principle is strictly stronger than Brouwer’s continuity principle for numbers. Sec. 5 internally
validates this inductive principle. In particular, Thm. 4 shows that, given a pure function
F ∈ B → Nat, TT□

C provides a computation, introduced in Sec. 5.1, that builds a dialogue
tree capturing F ’s continuity.

As mentioned above, we rely here on Brouwer trees, which are a simple form of dialogue
trees. Let us provide an example of how dialogue and Brouwer trees work. Consider the
function F :≡ λα.α(2) ∈ B → Nat. Fig. 3 (left) shows its dialogue tree, where the internal
(root) node is labeled with the value α is applied to, and the leaves contain the values of
F for all possible inputs. For example if F is applied to α :≡ λx.x, then starting from the
root, we apply α to the node’s value, i.e., 2, which gives us 2, and we therefore follow the
2nd path, which leads to the leaf labeled 2, the value of F (α). If α :≡ λx.0, then α(2) is
now 0, and following the 0th path leads to the leaf labeled 0, which is the value of F (α).
Fig. 3 (right) shows F ’s Brouwer tree, where as opposed to dialogue trees, internal nodes are
not labeled, and as for dialogue trees, the leaves contain the values of F for all inputs. For

L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun 37:7

2

0 1 2

...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure 3 Examples of dialogue (left) and Brouwer (right) trees for λα.α(2).

example if F is applied to α :≡ λx.x, because α(0) is 0, we first follow the 0the branch; then
because α(1) is 1, we follow the 1st branch, and finally because α(2) is 2, we follow the 2nd
branch, leading to a leaf labeled 2 (following the green path in Fig. 3). If α :≡ λx.0, then we
instead always follow the 0th branch, leading to a leaf labeled with 0.

In the dialogue tree, the modulus of continuity of F at some point α is given by the
maximum value of the internal nodes followed using α, while in the Brouwer tree, the modulus
is the length of the branch followed using α. Note that, in general, the values of the internal
nodes of a dialogue tree of a function F ∈ B → Nat are used to “ask questions” to an
argument α ∈ B to decide what branch to take in the tree (by applying α to those values),
while in a Brouwer tree, “dialogues” happen by asking all the values of an initial segment
of α.

3.1 Extending TT□
C with (Co-)W Types and Infinite Sequences

In order to state the inductive continuity principle, we make use of the notion of a Brouwer tree,
which we define in TT□

C using W types [1, Sec.5.2], which is a standard way of representing
inductive types. Additionally, we use co-W types (also called M types) [1, Sec.5.2], the dual
notion to that of a W type, to prove the validity of the principle. Thus, we add W and
M types to TT□

C , using sup as a W type and M type constructor and wrec as a W type
recursor.

vt ∈ Type ::= · · · | W (t1, t2) | M(t1, t2)
t ∈ Term ::= · · · | sup(t1, t2) | wrec(t1, t2)
v ∈ Value ::= · · · | ⌈s⌋, where s is a metatheoretical function in N → N

where wrec(t1, t2) and ⌈s⌋ compute as follows:

wrec(sup(a, f), g) w 7→w g a f (λb.wrec(f(b), g)) ⌈s⌋ n w 7→w s(n)

In addition, the application operator is modified so that it evaluates its argument whenever
the function is of the form ⌈s⌋, i.e., ⌈s⌋ a reduces to ⌈s⌋ b when a reduces to b. Hence,
for any metatheoretical function s in N → N, ⌈s⌋ inhabits B. These sequences are used in
Sec. 5.5 to prove that the computation of Brouwer trees provided in Sec. 5.1 terminates.
They are similar to the sequences of the form λλx.Mx in [5], where the infinite sequence of
terms M1, M2, . . . does not have a computational purpose, but is used to prove termination
in their proof that some bar recursion operator realizes the negative translation of the axiom
of choice. Similar sequences have been used in [31] to validate versions of the axiom of choice,
and in [34] to validate variants of Brouwer’s Bar Induction principle [24].

W and M types are interpreted in a standard way:

MFCS 2023

37:8 Inductive Continuity via Brouwer Trees

W types: w ⊨ W (A1, B1)≡W (A2, B2) ⇐⇒ Famw(A1, A2, B1, B2)
w ⊨ s1≡s2∈W (A, B) ⇐⇒ □w(w′.µ(R.∃(a1, a2, f1, f2 : Term).w′ ⊨ a1≡a2∈A ∧
(∀(b1, b2 : Term).w′ ⊨ b1≡b2∈B(a1) → R f1(b1) f2(b2)) ∧ s1 Z⇒w′ sup(a1, f1) ∧ s2 Z⇒w′

sup(a2, f2)) s1 s2)
M types: w ⊨ M(A1, B1)≡M(A2, B2) ⇐⇒ Famw(A1, A2, B1, B2)

w ⊨ s1≡s2∈M(A, B) ⇐⇒ □w(w′.ν(R.∃(a1, a2, f1, f2 : Term).w′ ⊨ a1≡a2∈A ∧
(∀(b1, b2 : Term).w′ ⊨ b1≡b2∈B(a1) → R f1(b1) f2(b2)) ∧ s1 Z⇒w′ sup(a1, f1) ∧ s2 Z⇒w′

sup(a2, f2)) s1 s2)

Therefore, W (A, B) and M(A, B) are types in Ui whenever A ∈ Ui and B ∈ A → Ui.
Given a ∈ A and f ∈ B[a] → W (A, B), sup(a, f) ∈ W (A, B) is a W type constructor, and if
f ∈ B[a] → M(A, B) then sup(a, f) ∈ M(A, B) is an M type constructor. Given t ∈ W (A, B)
and g ∈ Πa:A.(B(a) → W (A, B)) → (B(a) → C) → C, wrec(t, g) ∈ C is a W type recursor.

▶ Example 2. Given A ∈ Ui and B ∈ A → Ui, W (A, B) denotes the type of inductive
definitions with inhabitants of A representing the constructors (as well as their non-inductive
parameters), and B(a) representing the indices of inductive parameters at a given con-
structor a. For example, the natural numbers have two constructors: zero and succ, the
latter having one inductive parameter. Therefore, natural numbers are encoded as:

W (Bool, λx.case x of inl(_) ⇒ Void | inr(_) ⇒ Unit),

where Void captures the lack of inductive parameters for zero and Unit captures succ’s single
inductive parameter. The constructors zero and succ are then be encoded as:

zero :≡ sup(inl(⋆), λx.⋆) and succ :≡ λn.sup(inr(⋆), λx.n)

3.2 Brouwer Tree-Based Inductive Continuity Principle
We can now state the inductive continuity principle that captures the moduli of continuity
of functions in BSNat → Nat using Brouwer trees, where BSNat :≡ Nat → SNat for SNat a
subtype of Nat (this principle is therefore a family of principles for all such SNats). This
continuity result, as well as the ones recalled in Sec. 4, are stated for pure functions only
using the following quantification: Πpa:A.B :≡ Πa:(A ∩ pure).B, which quantifies over pure
members of A. We also write Ap for A ∩ pure and A +p B for (A+B) ∩ pure. It remains to
be determined whether some effectful computations can be proved to be continuous.

We first define Brouwer trees (a class of dialogue trees where internal nodes are not
labeled) using W types as follows.

▶ Definition 3 (Brouwer Trees). A Brouwer tree is a member of Bt :≡ W (BtA, BtB), where
BtA :≡ Nat +p Unit and BtB :≡ λa.if a then Void else SNatp. Such trees have two
constructors: η(i) :≡ sup(inl(i), λx.⋆), which builds a leaf node with value i ∈ Nat; and
𭟋(f) :≡ sup(inr(⋆), f), which builds an internal node from a function f ∈ SNatp → Bt.

Using this definition, the Brouwer tree depicted in Fig. 3 is 𭟋(λi.𭟋(λj.𭟋(λk.η(k)))).

▶ Theorem 4 (Inductive Continuity Principle). The following continuity principle, referred to
as ICPp, is valid in TT□

C
5(see contDiagVal in barContP10.lagda for details):

ΠpF :BSNat → Nat.∥Σd:Bt.Πpα:BSNat.follow(d, α)=F (α)∈Nat∥ (ICPp)

where follow(d, α) extracts the value of the leaf encountered when following α in d as follows:

follow(d, α) :≡ wrec(d, λa.λf.λr.λk.case a of inl(i) ⇒ i | inr(_) ⇒ r (α k) (k + 1)) 0

5 “Valid in TT□
C ” here means that the principle is realizable in TT□

C , thus it is consistent with the theory.

https://github.com/vrahli/opentt/blob/master/barContP10.lagda

L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun 37:9

At a high-level, the proof goes as follows (the full proof is carried out in Sec. 5).
Step 1: Given a function in BSNat → Nat, we first build by coinduction a possibly infinite

co-Brouwer tree as an M type. This co-Brouwer tree contains the result of F applied to
the finite sequence s at the leaf ending the path following s whenever s contains enough
information to compute the result of F .

Step 2: Classically, this co-Brouwer tree is either finite or contains an infinite branch.
Step 3: If the co-Brouwer tree is finite, it is a Brouwere tree.
Step 4: If the co-Brouwer tree contains an infinite branch, then the branch gives rise to an

infinite sequence α, and since F is continuous, the path must be finite. As discussed in
Sec. 5.5, this step relies on a continuity argument similar to the one used to validate the
weak continuity principle WCPp recalled in Sec. 4.1.

Step 5: Finally, the obtained Brouwer tree is shown to contain the values of F at its leaves.

4 Relation with Other Continuity Principles

This section demonstrates that inductive continuity implies both Brouwer’s continuity
principle for numbers (referred to as weak continuity here) and uniform continuity.

4.1 Weak Continuity
TT□

C was shown to satisfy the following version of Brouwer’s continuity principle for numbers,
also called the weak continuity principle, which therefore can be added as an axiom [11].

ΠpF :B → Nat.Πpα:B.∥Σn:Nat.Πpβ:B.(α=β∈Bn) → (F (α)=F (β)∈Nat)∥ (WCPp)

WCPp is realized in every world by the term λF.λα.⟨mod(F, α), λβ.λe.⋆⟩, where mod(F, α)
computes the modulus of continuity of the function F ∈ B → Nat at α ∈ B. Roughly
speaking, mod(F, α) generates a reference cell δ initialized with 0, applies F to a modified
version of α (namely upd(δ, α)) that keeps track using δ of the highest number α gets applied
to, and then returns the value held by δ (plus one). Formally:

mod(F, α) :≡ νx.(x ··= 0;F (upd(x, α));!x + 1)
upd(δ, α) :≡ λx.(let y = x in ((if !δ < y then δ ··= y else ⋆);α(y)))

Note that the truncation in WCPp is necessary. It has been shown that a non-truncated
version of WCP is inconsistent with MLTT [18, 40], and the same applies to WCPp and TT□

C .
The main reason for this is the semantics of dependent functions given by TT□

C ’s realizability
model (see Fig. 2). Under this semantics, f ∈ Πx:A.B if f maps equal terms a1=a2∈A

to equal terms f(a1)=f(a2)∈B[x\a1]. As continuity is a non-extensional property [25],
extensionally equal functions in B might have different moduli of continuity, so WCPp’s
realizer cannot inhabit a non-truncated version of WCPp. However, when B is of the form ∥C∥,
it suffices that f(a1) and f(a2) are both members of C[x\a1], allowing WCPp’s validation.

▶ Theorem 5. WCPp is derivable from ICPp in TT□
C when SNat :≡ Nat.

Proof outline. Let F ∈ B → Nat a pure function and let α ∈ B. It follows from ICPp that:
∥Σd:Bt.Πpα:B.follow(d, α)=F (α)∈Nat∥. Because both principles are truncated, we can
assume the existence of a tree d ∈ Bt such that: Πpα:B.follow(d, α)=F (α)∈Nat. Because d

encodes the modulus of continuity of each sequence α ∈ B, as the length of the branch in d

that “follows” α, we instantiate the conclusion with: n :≡ lenBranch(d, α) ∈ Nat, where:

lenBranch(d, α) :≡ wrec(d, λa.λf.λr.λk.case a of inl(i) ⇒ k | inr(_) ⇒ r (α k) (k+1)) 0

MFCS 2023

37:10 Inductive Continuity via Brouwer Trees

It now remains to prove that F (α)=F (β)∈Nat, for any pure function β ∈ B such that
α=β∈Bn. From ICPp, we know that follow(d, α)=F (α)∈Nat and follow(d, β)=F (β)∈Nat.
Therefore, it is enough to prove follow(d, α)=follow(d, β)∈Nat, which follows from the
following fact: Πα, β:B.α=β∈BlenBranch(d,α) → follow(d, α)=follow(d, β)∈Nat. ◀

4.2 Uniform Continuity

The uniform continuity principle states that all functions on the Cantor space (C :≡ Nat →
Bool) are uniformly continuous, meaning that all points α ∈ C have the same modulus of
continuity. We consider here the following version:

ΠpF :C → Nat.∥Σn:Nat.Πpα, β:C.(α=β∈Cn) → (F (α)=F (β)∈Nat)∥ (UCPp)

Brouwer proved that all real-valued functions on the unit interval are uniformly continuous [8,
Thm.3] using WCP and the Fan Theorem [36, 15], which he derived from Bar Induction. While
it was shown that in the case of uniform continuity the truncation can be removed [18, 40],
we leave formalizing this in TT□

C for future work.

▶ Theorem 6. UCPp is derivable from ICPp in TT□
C when SNat :≡ {x : Nat | x < 2} or

equivalently SNat :≡ Bool (and therefore BSNat is C).

Proof outline. Let F ∈ C → Nat be a pure function. Because both principles are truncated,
we can assume the existence of a tree d ∈ Bt such that: Πpα:C.follow(d, α)=F (α)∈Nat. As
d is finitely branching and encodes the modulus of continuity of each α ∈ C as the length of
the branch in d that “follows” α, we compute the uniform modulus of continuity of F as d’s
depth as follows, where max(i, j) returns the maximum among the numbers i and j:

depth(d) :≡ wrec(d, λa.λf.λr.case a of inl(i) ⇒ 1 | inr(_) ⇒ max(r(0), r(1)) + 1)

We then instantiate our conclusion with n :≡ depth(d) ∈ Nat, and have to prove that
F (α)=F (β)∈Nat, for all pure functions α, β ∈ C such that α=β∈Cn. From ICPp, we know
that follow(d, α)=F (α)∈Nat and follow(d, β)=F (β)∈Nat. Therefore, it is enough to prove
follow(d, α)=follow(d, β)∈Nat, which follows from the following fact, which can be proved
by induction on d: Πα, β:C.α=β∈Cdepth(d) → follow(d, α)=follow(d, β)∈Nat. ◀

5 Validity of the Inductive Continuity Principle

This section sketches the proof of Thm. 4, which has been formalized in Agda. For simplicity
we focus here on functions in B → Nat, but as mentioned in Sec. 3, the principle holds for
all functions in BSNat → Nat where SNat is a subtype of Nat.

To validate ICPp we assume that TT□
C ’s □ modality is a Kripke-like modality, i.e.,

∀(w : W).□wf → ∀⊑
w(f). This is used to derive a co-Brouwer tree from an F ∈ B → Nat. In

short, when building a co-Brouwer tree in Step 1 by extending a node with branches for all
n ∈ Nat, if n does not compute to a number in the current world w (which a Kripke modality
enforces), it is unclear how this can result in a co-tree in w. It was proved in [10] that TT□

C
is inconsistent with classical logic when □ is a Kripke modality and C is instantiated using
references, which is expected because continuity contradicts classical logic [36, 39].

L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun 37:11

5.1 Computing Brouwer Trees
To show that ICPp is valid, we must exhibit a TT□

C computation that can compute a Brouwer
tree from a pure function in B → Nat. This computation is similar to the one provided
in [35, Sec.1.3], and proceeds as follows: given F ∈ B → Nat, loop(F) 0 α0 builds a tree in
Bt satisfying the condition in Thm. 4, where α0 :≡ λ_.0, and loop is defined as follows:

loop(F) :≡ fix(λR.λk.λα.νx.(x ··= 0);let i = F (upd(x, α)) in cases(x, R, k, α, i))
cases(δ, R, k, α, i) :≡ if !δ < k then η(i) else 𭟋(λx.R (k + 1) append(k, α, x))

The goal of this computation is to recursively build a Brouwer tree from the root, by
applying F to a finite sequence (essentially, the pair ⟨k, α⟩), which corresponds to a path in
the tree, and which is extended as long as it does not contain enough information for F to
compute a value, i.e., as long as F makes use of more than k values from α.

Note that a finite sequence, or a list, of elements of type A is encoded here as a pair of its
length k and a function in Nat → A where only its initial segment of length k is relevant. Given
a list l given by the pair k and f , the operator append(k, f, a) :≡ λx.if x = k then a else f(x)
returns a list of length k + 1 that appends a to l. Lists are defined like this instead of using
a W type because loop(F) applies F to a function with initial segment the list given as
argument. Therefore, instead of using an additional operator to turn an element of such a
W type into a function, with this encoding lists directly provide such functions.

The computation in [35] uses exceptions to test whether F requires more values than
the ones provided in the current finite sequence, while we use here references as in [11].
Exceptions are well-suited to test whether the modulus of continuity is reached, but not
to directly compute moduli of continuity. For example, the computation in [32] relies on
exceptions and a loop, while the computation in [11] makes use of references and does
not require an additional loop because a reference cell can be used to store the moduli of
continuity. Instead of using a reference to a Boolean, which would be similar to using an
exception, we use here a reference δ that points to a number, and apply F to upd(δ, α), as in
WCPp’s realizer, as it allows us to reuse some of the results used in [11] to validate WCPp.

5.2 Step 1: Building a co-W
First, we prove that from a function F ∈ B → Nat, we get loop(F) 0 α0 ∈ CoDiag, where
CoDiag :≡ M(Nat +p Unit, λa.if a then Void else Natp). We prove this by coinduction,
and by inspecting the computation of loop(F) (see coSem in barContP2.lagda). Given k ∈ Natp

and α ∈ B, (loop(F) k α) first evaluates F (upd(δ, α)) to i for some “fresh” δ, and then
returns η(i) if !δ < k, and otherwise returns 𭟋(λx.loop(F) (k + 1) append(k, α, x)). We now
prove loop(F) k α ∈ CoDiag by cases. If !δ < k then it remains to prove that η(i) ∈ CoDiag,
which is straightforward because F (upd(δ, α)) ∈ Nat, and therefore i too. If !δ ̸< k then it
remains to prove 𭟋(λx.loop(F) (k + 1) append(k, α, x)) ∈ CoDiag, which follows from the
fact that λx.loop(F) (k + 1) append(k, α, x) ∈ Natp → CoDiag, which follows by coinduction.

5.3 Step 2: Case analysis
Using classical logic we analyze two cases: given t ∈ M(A, B), either t’s branches are all
finite or there exists an infinite branch, where the type of branches w.r.t. the world w, type A,
and family B is defined as follows, a right injection capturing the termination of a branch:

Branch :≡ ∀(n : N).(∃(a, b : Term).w ⊨ a≡a∈A ∧ w ⊨ b≡b∈B(a)) ∨ ⊤

MFCS 2023

https://github.com/vrahli/opentt/blob/master/barContP2.lagda

37:12 Inductive Continuity via Brouwer Trees

Note that a branch can either be finite if it returns an element of the right disjunct (i.e., ⊤)
for some n ∈ N, or infinite if it always returns an element of the left disjunct for all n ∈ N.
Branches are defined w.r.t. a term t in W (A, B) or in M(A, B), and we say that a branch
p ∈ Branch is a branch of a term t if: ∀(n : N).p ∈n t, where p ∈n t is defined recursively as
follows (for shift(p) :≡ λk.p(k + 1)):

p ∈0 t :≡ ⊤ p ∈n+1 t :≡

∃(f : Term).t Z⇒w sup(a, f) ∧ shift(p) ∈n f b,

when p(0) is a left injection of (a, b, _, _)
⊤, otherwise

The tree t ∈ M(A, B) is loop(F) 0 α0. In case t’s branches are all finite, we show that
t ∈ W (A, B) (Sec. 5.4). In case t has an infinite branch, we derive a contradiction using an
argument similar to one used to validate weak continuity in [11] (Sec. 5.5).

5.4 Step 3: Building a W type
In case t’s branches are all finite, we prove that if t ∈ M(A, B) then t ∈ W (A, B). Again,
we use classical logic: assuming t ̸∈ W (A, B) and deriving a contradiction. Given that
t ∈ M(A, B) and t ̸∈ W (A, B), we extract, by coinduction, an infinite co-branch u from t,
where the type of co-branches u w.r.t. the world w, type A, and family B, is coinductively
defined as follows (see m2mb in barContP.lagda):

ν(R.∃(a, f, b : Term).u Z⇒w sup(a, f) ∧ w ⊨ b≡b∈B(a) ∧ R f(b))

In particular, such a co-branch provides a sequence of Bs. From this co-branch u, we build
an infinite branch p ∈ Branch (see mb2path in barContP.lagda), which is a function from
n ∈ N to (left injections of) Bs along with their corresponding As, derived by induction on n.
From the assumption that t’s branches are all finite we obtain that p must also be finite,
from which we derive a contradiction (see m2w in barContP.lagda).

5.5 Step 4: Termination
In case t, which is here loop(F) 0 α0, contains an infinite branch p, we derive a contradiction
from F ’s continuity. Because p is infinite, i.e., only returns left injections, we obtain a
metatheoretical function of the following type, which follows the branch p of loop(F) 0 α0:

N → ∃(a, b : Term).w ⊨ a≡a∈BtA ∧ w ⊨ b≡b∈BtB(a)

Therefore, for each n ∈ N, there are two cases: either (w ⊨ a≡a∈Nat and w ⊨ b≡b∈Void)
or (w ⊨ a≡a∈Unit and w ⊨ b≡b∈Natp). Since Void is not inhabited, it must be that
w ⊨ a≡a∈Unit and w ⊨ b≡b∈Natp. Hence, from this function, we obtain a metatheoretical
function of the following type, which follows the branch p of loop(F) 0 α0:

N → ∃(b : Term).w ⊨ b≡b∈Natp

From this function, since □ is a Kripke-like modality, we obtain a metatheoretical function
s ∈ N → N, which given n ∈ N returns the path taken in the nth 𭟋 along the branch p

following the computation loop(F) 0 α0. As explained in Sec. 3.1, TT□
C ’s calculus includes all

metatheoretical functions from N to N, which inhabit B. These sequences do not have any
computational purpose here, and are only used to prove termination. We have ⌈s⌋ ∈ B, so by
continuity of F we know that there is a k ∈ N such that the kth iteration of loop(F) 0 α0 runs
F (upd(δ, ⌈s⌋)) for some “fresh” δ such that δ’s value stays under k during the computation

https://github.com/vrahli/opentt/blob/master/barContP.lagda
https://github.com/vrahli/opentt/blob/master/barContP.lagda
https://github.com/vrahli/opentt/blob/master/barContP.lagda

L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun 37:13

of F (upd(δ, ⌈s⌋)). This result makes use of steps-sat-isHighestN in continuity3.lagda, which
was used to prove WCPp in [11], and in particular to prove that F (upd(δ, ⌈s⌋)) keeps track
in δ of the highest number that s is applied to in the computation it performs. The modulus
of continuity k of F at upd(δ, ⌈s⌋) is then the value stored by δ at the end of this computation.

Therefore, because the kth iteration of loop(F) 0 α0 runs F (upd(δ, ⌈s⌋)) such that δ’s
value stays under k, it returns η(i) for some i, which contradicts the assumption that the
branch is infinite, i.e., contains only 𭟋s (see noInfPath in barContP6.lagda for details).

Note that the kth iteration of loop(F) 0 α0 does not quite run F (upd(δ, ⌈s⌋)), but instead
F (upd(δ, α)), where as indicated in Sec. 5.1, α is built starting from α0 using the append
function, and therefore is equal to ⌈s⌋ up to k. We can interchangeably use F (upd(δ, ⌈s⌋))
or F (upd(δ, α)) thanks to Lem. 8 below (see updSeq-steps-NUM in barContP6.lagda).

▶ Definition 7. The simulation relation t1 ≈δ,s,n t2 holds iff

(t1 = upd(δ, s) ∧ t2 = upd(δ, s2l(s, n))) ∨ (t1 = upd(δ, s2l(s, n)) ∧ t2 = upd(δ, s))
∨ (t1 = x ∧ t2 = x) ∨ (t1 = n ∧ t2 = n) ∨ (t1 = λx.a ∧ t2 = λx.b ∧ a ≈δ,s,n b)
∨ (t1 = (a1 b1) ∧ t2 = (a2 b2) ∧ a1 ≈δ,s,n b1 ∧ a2 ≈δ,s,n b2) ∨ . . .

where s2l(s, 0) :≡ α0 and s2l(s, n + 1) :≡ append(n, s2l(s, n), s(n + 1)).

Most cases are omitted in this definition as they are similar to the ones presented above.
Crucially terms of the form δ or νx.t are not related, and those are the only expressions not
related, thereby ruling out names except when occurring inside upd through the first clause.

▶ Lemma 8. If a ≈δ,s,n b and a w1 7→∗
w2

k such that n is higher than any value held by δ

throughout this computation, then b w1 7→∗
w2

k.

5.6 Step 5: The Continuity Property
It now remains to prove that given F ∈ B → Nat, the tree d :≡ (loop(F) 0 α0) ∈ Bt satisfies
the property Πpα:B.follow(d, α)=F (α)∈Nat (see semCond in barContP9.lagda). For this
we need to prove that follow(d, α) computes to the same number that F (α) computes to,
and this for any pure sequence α ∈ B and tree d :≡ loop(F) k αk, where αk agrees with α

up to k (see follow-NUM in barContP9.lagda). We prove this by induction on d. Either d is
an η(i), which we discuss below, or a 𭟋(f), in which case we conclude by induction. In case d

is η(i), we must prove that F (α) computes to i. In that case, d runs F (upd(δ, αk)) for some
“fresh” δ, which computes to i for some αk that agrees with α up to k. Here αk is s2l(s, k),
for some s equal to α in B. We use again here a metatheoretical sequence s, which does not
have any computational purpose. We can then prove that F (α) and F (s) compute to the
same number, and appealing to Lem. 8, we prove that F (s) and F (upd(δ, αk)) compute to
the same number, and therefore that F (α) computes to i, which concludes our proof.

6 Conclusion and Related Works

The paper presents the first internalization of the inductive dialogue-based continuity principle
in a dependent type theory, namely TT□

C , which has been formalized in Agda. For this, we
construct Brouwer trees via effectful computations that use references. Proving the inductive
continuity principle internally entails new challenges, such as the termination proof which
requires maintaining a strict connection between a meta-theoretical generic element and
an internal computation. More generally, the class of effectful intuitionistic theories TT□

C ,

MFCS 2023

https://github.com/vrahli/opentt/blob/master/continuity3.lagda
https://github.com/vrahli/opentt/blob/master/barContP6.lagda
https://github.com/vrahli/opentt/blob/master/barContP6.lagda
https://github.com/vrahli/opentt/blob/master/barContP9.lagda
https://github.com/vrahli/opentt/blob/master/barContP9.lagda

37:14 Inductive Continuity via Brouwer Trees

which now internalizes several continuity principles, provides a computational framework for
further studying the relationship between these principles. WCP and ICP have been shown
to coincide in the presence of Bar Induction (under certain restrictions), or assuming classical
reasoning [6, 22, 9]. Bar Induction was shown to be consistent with a subsystem of TT□

C [34].
Thus, it seems that TT□

C provides an ideal framework in which one can formally verify
this implication internally, as well as produce a corresponding computation. An immediate
related question we leave for further study is then to establish the relation between the
two principles in a general setting, without assuming Bar Induction or resorting to classical
reasoning.

The technique of using dialogue trees to compute moduli of continuity originated in [20,
22, 21, 19], while the idea of recording the interaction of a function with an oracle to compute
continuity goes back to Longley [28], where exceptions and references were used as a probing
mechanism to compute moduli of continuity. In [19], Escardó defined a model of System T
where N is interpreted as the type of dialogue trees and function types as functions between
the interprations of the source and target types. This model contains a generic element of
type N → N, a function from dialogue trees to dialogue trees, that records queries to it in
the structure of the resulting dialogue tree. Then, a dialogue tree is built using this generic
element, from which the modulus of continuity can be calculated. Sterling [35] extended the
effectful forcing technique to prove that System T validates the realizable bar thesis, which
is equivalent to the inductive continuity principle considered here. System T was given a
call-by-name interpretation, where types are interpreted as algebras over a dialogue tree
monad. Although the carrier sets of this interpretation agree with those of Escardó, the
actions of the algebras allow for a compositional interpretation of the recursor on numbers.

In [3], the authors prove that all BTT [29] functions are continuous by generalizing the
method of [19]. However, their method does not allow internalizing the continuity principle,
which is the goal of the present work. As they work in the metatheory, they can induct
on the syntax of the F ∈ B → Nat when constructing the dialogue trees, allowing for a
constructive proof of continuity. In this work, we construct a program computing such trees
in the theory itself, where recursion on syntax of terms is not available. As a result we resort
to classical logic to prove finiteness of the computed trees and termination of this program.
It remains to be seen if this can also be done internally, without resorting to classical logic.

References
1 Michael Gordon Abbott. Categories of containers. PhD thesis, University of Leicester, England,

UK, 2003. URL: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401007.
2 Agda wiki. URL: http://wiki.portal.chalmers.se/agda/pmwiki.php.
3 Martin Baillon, Assia Mahboubi, and Pierre-Marie Pédrot. Gardening with the pythia A

model of continuity in a dependent setting. In CSL, volume 216 of LIPIcs, pages 5:1–5:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.5.

4 Michael J. Beeson. Foundations of Constructive Mathematics. Springer, 1985.
5 Stefano Berardi, Marc Bezem, and Thierry Coquand. On the computational content of the

axiom of choice. J. Symb. Log., 63(2):600–622, 1998. doi:10.2307/2586854.
6 Nuria Brede and Hugo Herbelin. On the logical structure of choice and bar induction principles.

In LICS, pages 1–13, 2021. doi:10.1109/LICS52264.2021.9470523.
7 Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London Mathem-

atical Society Lecture Notes Series. Cambridge University Press, 1987.
8 L.E.J. Brouwer. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931,

chapter On the Domains of Definition of Functions, pages 1923b, 1954, and 1954a. Harvard
University Press, 1927.

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401007
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.4230/LIPIcs.CSL.2022.5
https://doi.org/10.2307/2586854
https://doi.org/10.1109/LICS52264.2021.9470523

L. Cohen, B. da Rocha Paiva, V. Rahli, and A. Tosun 37:15

9 Venanzio Capretta and Tarmo Uustalu. A coalgebraic view of bar recursion and bar induction.
In Bart Jacobs and Christof Löding, editors, FOSSACS, volume 9634 of LNCS, pages 91–106.
Springer, 2016. doi:10.1007/978-3-662-49630-5_6.

10 Liron Cohen and Vincent Rahli. Constructing unprejudiced extensional type theories with
choices via modalities. In FSCD, volume 228 of LIPIcs, pages 10:1–10:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.FSCD.2022.10.

11 Liron Cohen and Vincent Rahli. Realizing continuity using stateful computations. In CSL,
volume 252 of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.CSL.2023.15.

12 Thierry Coquand and Guilhem Jaber. A note on forcing and type theory. Fundam. Inform.,
100(1-4):43–52, 2010. doi:10.3233/FI-2010-262.

13 Thierry Coquand and Guilhem Jaber. A computational interpretation of forcing in type theory.
In Epistemology versus Ontology, volume 27 of Logic, Epistemology, and the Unity of Science,
pages 203–213. Springer, 2012. doi:10.1007/978-94-007-4435-6_10.

14 M. J. Cresswell and G. E. Hughes. A New Introduction to Modal Logic. Routledge, 1996.
15 Michael A. E. Dummett. Elements of Intuitionism. Clarendon Press, second edition, 2000.
16 Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In

TLCA, volume 1581 of LNCS, pages 129–146. Springer, 1999. doi:10.1007/3-540-48959-2_
11.

17 Martín Escardó and Paulo Oliva. Dialogue to brouwer, 2017. URL: https://www.cs.bham.
ac.uk/~mhe/dialogue/dialogue-to-brouwer.html.

18 Martín H. Escardó and Chuangjie Xu. The inconsistency of a Brouwerian continuity principle
with the Curry-Howard interpretation. In TLCA, volume 38 of LIPIcs, pages 153–164. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.TLCA.2015.153.

19 Martín Hötzel Escardó. Continuity of Gödel’s system T definable functionals via effectful forcing.
Electr. Notes Theor. Comput. Sci., 298:119–141, 2013. doi:10.1016/j.entcs.2013.09.010.

20 Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Continuous functions on final coalgebras.
In CMCS, volume 164 of ENTCS, pages 141–155. Elsevier, 2006. doi:10.1016/j.entcs.2006.
06.009.

21 Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Continuous functions on final coalgebras.
In Samson Abramsky, Michael W. Mislove, and Catuscia Palamidessi, editors, MFPS, volume
249 of ENTCS, pages 3–18. Elsevier, 2009. doi:10.1016/j.entcs.2009.07.081.

22 Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Representations of stream processors
using nested fixed points. Log. Methods Comput. Sci., 5(3), 2009. URL: http://arxiv.org/
abs/0905.4813.

23 S.C. Kleene. Recursive functionals and quantifiers of finite types revisited i. In Generalized
Recursion Theory II, volume 94 of Studies in Logic and the Foundations of Mathematics, pages
185–222. Elsevier, 1978. doi:10.1016/S0049-237X(08)70933-9.

24 Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics,
especially in relation to recursive functions. North-Holland Publishing Company, 1965.

25 Georg Kreisel. On weak completeness of intuitionistic predicate logic. J. Symb. Log., 27(2):139–
158, 1962. doi:10.2307/2964110.

26 Saul A. Kripke. Semantical analysis of modal logic i. normal propositional calculi. Zeitschrift
fur mathematische Logik und Grundlagen der Mathematik, 9(5-6):67–96, 1963. doi:10.1002/
malq.19630090502.

27 Saul A. Kripke. Semantical analysis of intuitionistic logic i. In Formal Systems and Recursive
Functions, volume 40 of Studies in Logic and the Foundations of Mathematics, pages 92–130.
Elsevier, 1965. doi:10.1016/S0049-237X(08)71685-9.

28 John Longley. When is a functional program not a functional program? In ICFP, pages 1–7.
ACM, 1999. doi:10.1145/317636.317775.

MFCS 2023

https://doi.org/10.1007/978-3-662-49630-5_6
https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://doi.org/10.4230/LIPIcs.CSL.2023.15
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.1007/3-540-48959-2_11
https://doi.org/10.1007/3-540-48959-2_11
https://www.cs.bham.ac.uk/~mhe/dialogue/dialogue-to-brouwer.html
https://www.cs.bham.ac.uk/~mhe/dialogue/dialogue-to-brouwer.html
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.1016/j.entcs.2006.06.009
https://doi.org/10.1016/j.entcs.2006.06.009
https://doi.org/10.1016/j.entcs.2009.07.081
http://arxiv.org/abs/0905.4813
http://arxiv.org/abs/0905.4813
https://doi.org/10.1016/S0049-237X(08)70933-9
https://doi.org/10.2307/2964110
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1145/317636.317775

37:16 Inductive Continuity via Brouwer Trees

29 Pierre-Marie Pédrot and Nicolas Tabareau. An effectful way to eliminate addiction to
dependence. In LICS, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005113.

30 Andrew M Pitts. Nominal sets: Names and symmetry in computer science, volume 57 of
cambridge tracts in theoretical computer science, 2013.

31 Vincent Rahli. Exercising nuprl’s open-endedness. In ICMS, volume 9725 of LNCS, pages
18–27. Springer, 2016. doi:10.1007/978-3-319-42432-3_3.

32 Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. In Jeremy Avigad and
Adam Chlipala, editors, CPP, pages 130–141. ACM, 2016. doi:10.1145/2854065.2854077.

33 Vincent Rahli and Mark Bickford. Validating brouwer’s continuity principle for numbers using
named exceptions. MSCS, pages 1–49, 2017. doi:10.1017/S0960129517000172.

34 Vincent Rahli, Mark Bickford, Liron Cohen, and Robert L. Constable. Bar induction is
compatible with constructive type theory. J. ACM, 66(2):13:1–13:35, 2019. doi:10.1145/
3305261.

35 Jonathan Sterling. Higher order functions and brouwer’s thesis. J. Funct. Program., 31:e11,
2021. doi:10.1017/S0956796821000095.

36 Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics An Introduction,
volume 121 of Studies in Logic and the Foundations of Mathematics. Elsevier, 1988.

37 A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. New
York, Springer, 1973.

38 A.S. Troelstra. A note on non-extensional operations in connection with continuity and
recursiveness. Indagationes Mathematicae, 39(5):455–462, 1977. doi:10.1016/1385-7258(77)
90060-9.

39 Wim Veldman. Understanding and using Brouwer’s continuity principle. In Reuniting the
Antipodes — Constructive and Nonstandard Views of the Continuum, volume 306 of Synthese
Library, pages 285–302. Springer Netherlands, 2001. doi:10.1007/978-94-015-9757-9_24.

40 Chuangjie Xu. A continuous computational interpretation of type theories. PhD thesis,
University of Birmingham, UK, 2015. URL: http://etheses.bham.ac.uk/5967/.

41 Chuangjie Xu and Martín Hötzel Escardó. A constructive model of uniform continu-
ity. In TLCA, volume 7941 of LNCS, pages 236–249. Springer, 2013. doi:10.1007/
978-3-642-38946-7_18.

https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1007/978-3-319-42432-3_3
https://doi.org/10.1145/2854065.2854077
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1145/3305261
https://doi.org/10.1145/3305261
https://doi.org/10.1017/S0956796821000095
https://doi.org/10.1016/1385-7258(77)90060-9
https://doi.org/10.1016/1385-7258(77)90060-9
https://doi.org/10.1007/978-94-015-9757-9_24
http://etheses.bham.ac.uk/5967/
https://doi.org/10.1007/978-3-642-38946-7_18
https://doi.org/10.1007/978-3-642-38946-7_18

	1 Introduction
	2 Background
	2.1 Metatheory
	2.2 TT^{Box}_{C}'s Syntax and Operational Semantics
	2.3 Forcing Interpretation
	2.4 TT^{Box}_{C}'s Inference Rules

	3 Inductive Continuity via Brouwer Trees
	3.1 Extending TT^{Box}_{C} with (Co-)W Types and Infinite Sequences
	3.2 Brouwer Tree-Based Inductive Continuity Principle

	4 Relation with Other Continuity Principles
	4.1 Weak Continuity
	4.2 Uniform Continuity

	5 Validity of the Inductive Continuity Principle
	5.1 Computing Brouwer Trees
	5.2 Step 1: Building a co-W
	5.3 Step 2: Case analysis
	5.4 Step 3: Building a W type
	5.5 Step 4: Termination
	5.6 Step 5: The Continuity Property

	6 Conclusion and Related Works

