
Universality and Forall-Exactness of Cost Register
Automata with Few Registers
Laure Daviaud #

School of Computing Sciences, University of East Anglia, Norwich, UK

Andrew Ryzhikov #

Department of Computer Science, University of Oxford, UK

Abstract
The universality problem asks whether a given finite state automaton accepts all the input words.
For quantitative models of automata, where input words are mapped to real values, this is naturally
extended to ask whether all the words are mapped to values above (or below) a given threshold.
This is known to be undecidable for commonly studied examples such as weighted automata over
the positive rational (plus-times) or the integer tropical (min-plus) semirings, or equivalently cost
register automata (CRAs) over these semirings. In this paper, we prove that when restricted to
CRAs with only three registers, the universality problem is still undecidable, even with additional
restrictions for the CRAs to be copyless linear with resets.

In contrast, we show that, assuming the unary encoding of updates, the ∀-exact problem (does the
CRA output zero on all the words?) for integer min-plus linear CRAs can be decided in polynomial
time if the number of registers is constant. Without the restriction on the number of registers this
problem is known to be PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Quantitative automata

Keywords and phrases cost register automata, universality, forall-exact problem, decidability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.40

Funding Laure Daviaud: supported by the EPSRC grant EP/T018313/1.
Andrew Ryzhikov: partially supported by the EPSRC grant EP/T018313/1 and by the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 852769, ARiAT).

1 Introduction

Cost register automata (CRAs), introduced by Alur et al. [3], are an extension of finite state
automata. Instead of just accepting or rejecting words, they assign each word a value, usually
from some semiring. This allows to reason about quantitative properties of systems, such as
costs, probabilities, or durations. A CRA is a deterministic finite automaton equipped with a
finite set of write-only registers which store values from a semiring, and which are combined
using the operations of this semiring. The transitions that a CRA takes thus depend only
on the input word, and not on the values of the registers, which makes them different to
automata with counters (such as Minsky machines), and allows more of their properties to
be decidable.

CRAs are tightly related to weighted automata (WAs), a classical computational model
which maps words to values from a fixed semiring. In general, WAs are less expressive than
CRAs [3]. However, WAs are equally expressive to linear CRAs, which are CRAs where the
updates of the registers are restricted to linear transformations. Hence linear CRAs can be
seen as a deterministic model for WAs. Transforming a linear CRA into an equivalent WA
and vice versa can be done in polynomial time.

© Laure Daviaud and Andrew Ryzhikov;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:L.Daviaud@uea.ac.uk
https://orcid.org/0000-0002-9220-7118
mailto:ryzhikov.andrew@gmail.com
https://orcid.org/0000-0002-2031-2488
https://doi.org/10.4230/LIPIcs.MFCS.2023.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Universality and Forall-Exactness of Cost Register Automata with Few Registers

WAs extend automata to a quantitative setting and have been extensively studied since
their introduction by Schützenberger in [21], see also surveys [11, 12]. Two widely studied
models are WAs over the tropical (or min-plus) semiring and probabilistic WAs, a restricted
case of WAs over the semiring of rational numbers with usual addition and multiplication
(plus-times semiring). They find their applications in such areas as language and speech
processing [19], verification [6], image processing [7], and analysis of on-line algorithms [4]
and probabilistic systems [23].

Most applications are algorithmic in their nature, that is, require checking some property
of the automaton which models a given system. Often these are classical automata-theoretic
properties such as universality, emptiness, boundedness, equivalence, etc., generalised to
the quantitative setting. For example, the universality problem for non-deterministic finite
state automata asks whether all the input words are accepted. It is PSPACE-complete
and is solvable in polynomial time for deterministic finite automata [22]. A natural way to
generalise this problem to the quantitative setting is to ask whether all the input words are
mapped to a value above (or below, depending on the semiring) a certain threshold. For the
min-plus semiring (Z∪ {+∞},min, +) (are all the values strictly below 0?), and the plus-times
semiring (Q, +,×) (are all the values strictly above 1?) this problem is undecidable, see [16, 1]
and [20] respectively.

It is thus important to try to find subclasses where this problem becomes decidable. A
WA is called linearly ambiguous (respectively, finitely ambiguous) if there is a constant 𝐶

such that for every word 𝑤 the number of accepting runs labelled by 𝑤 is bounded by 𝐶 |𝑤 |
(respectively, by 𝐶). In both cases (min-plus and plus-times), undecidability is retained even
for linearly ambiguous WAs, see [16, 1] and [9] respectively. For finitely ambiguous min-plus
WAs universality becomes decidable [24, 13].

Some syntactic restrictions on CRAs allow to introduce subclasses whose expressiveness
is incomparable to known classes of WAs. One natural restriction is to bound the number of
registers: there exist CRAs with only two registers that compute functions which cannot be
computed by a finitely ambiguous WA (Example 2 provides one such CRA). This means
that if universality is decidable for CRAs with only two registers, that would allow to decide
it for more WAs than it was possible before. We show that for three registers this is not the
case, even when restricted further to copyless linear CRAs with resets (see next section for a
formal definition), leaving the two-register case as the only remaining option. Undecidability
for five registers in the min-plus case follows from a construction in [2], which we use as a
starting idea in Subsection 3.1. We note that no characterisation of CRAs with bounded
number of registers (or any of its subclasses) in terms of WAs is known, so our results do not
follow from any results about WAs.

Informally, a CRA is called copyless if the value of each its registers can only be used
once for each transition. In [3], Alur et al. conjectured that universality is decidable for the
class of copyless CRAs over the min-plus semiring. In [2], Almagor et al. disproved this
conjecture and showed that universality is still undecidable for them. It is natural to ask the
same question for the plus-times semiring, but no such results have been known so far. In
this paper we show that this conjecture is not true for the plus-times case as well.

CRAs with a bounded number of registers were also studied in the context of register
complexity. The register complexity of a function is the minimum number of registers of
a CRA that computes it. The problem of computing the register complexity is known to
be decidable for unambiguous WA [10], but is open and highly challenging in general. This
problem can be seen as a generalisation of the classical determinisation problem, asking if
for a given WA there exists an equivalent deterministic one, which amounts to ask whether
there exists an equivalent linear CRA with one register [15, 14, 8].

L. Daviaud and A. Ryzhikov 40:3

Our contributions. In this paper we prove that for CRAs which are linear with resets,
copyless and have only 3 registers universality is still undecidable, both for the min-plus and
the plus-times semirings. Our approach gives in fact a more general result, encompassing
both semirings at the same time, and proves undecidability of universality under some specific
conditions on the semiring. This is an additional advantage of our technique, since usually
the proofs for the two mentioned semirings are very different.

Another natural decision problem we consider is the ∀-exact problem, which asks for a
given CRA or WA if it outputs zero on all the words. It is known to be PSPACE-complete
for WAs (and hence for linear CRAs) over the min-plus semiring [1]. It was also investigated
for polynomial automata, which can be seen as a generalisation of WAs over a field [5]. We
prove that for this problem bounding the number of registers does help: namely, the ∀-exact
problem is solvable in polynomial time for a linear CRA over the min-plus semiring when
the number of its registers is a constant, and the updates of registers are given in the unary
encoding.

Organisation of the paper. In Section 2, we introduce the model under consideration,
namely copyless linear cost-register automata with resets, and the decision problems we
study, the universality and the ∀-exact problems. In Sections 3 and 4, we give the proof
of undecidability for the universality problem. To make the content more understandable,
we do it in two steps: first we explain the main ideas on a specific sub-problem and on a
particular semiring in Section 3, and then extend these ideas to give the general proof in
Section 4.

2 Cost register automata and decision problems

2.1 Cost register automata
Cost register automata (CRAs) are defined in a general way as deterministic finite automata
equipped with so-called registers that can store values (numbers, words...) and be combined
with operations (addition, multiplication, minimum, discounted sum, concatenation...). In
this paper, we consider a quite restrictive class of CRAs. The undecidability results we
obtain for this specific class are then applicable to larger classes and CRAs in general.

▶ Definition 1. A linear cost register automaton with resets with 𝑘 registers over
a semiring (K, ⊕, ⊗) is a deterministic finite automaton (𝑄, Σ, 𝛿, 𝑠) equipped with registers
𝑟1, . . . , 𝑟𝑘 taking values in K, where 𝑄 is a finite set of states and 𝑠 the unique initial
state, Σ the alphabet and 𝛿 the transition function. The initial values of the registers
are specified by a vector 𝜆 ∈ K𝑘 and the output function at a state 𝑞 is specified as
(a linear transformation) ⊕𝑘

𝑗=1 (𝑚
(𝑞)
𝑗
⊗ 𝑟 𝑗) or (a constant) 𝑚 (𝑞) , where 𝑚

(𝑞)
1 , . . . , 𝑚

(𝑞)
𝑘

, 𝑚 (𝑞)

are elements of K. Finally, each transition of 𝛿 is equipped with 𝑘 transformations, one for
every register, each of one of the two forms:

𝑟𝑖 ←
𝑘⊕
𝑗=1

𝑚𝑖, 𝑗 ⊗ 𝑟 𝑗 (a linear transformation),

𝑟𝑖 ← 𝑚𝑖,𝑘+1 (a reset to a constant)

with 𝑚𝑖, 𝑗 ∈ K for all 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑘 + 1.
The semantics of a CRA is defined by means of valuations of the registers. A valuation 𝜎

of the registers is a function {𝑟1, . . . , 𝑟𝑘} → K. A run on a word 𝑎1𝑎2 . . . 𝑎𝑛, where 𝑎𝑖 ∈ Σ
for all 𝑖, is a sequence: 𝜌 = (𝑞1, 𝜎1)

𝑎1−−→ (𝑞2, 𝜎2)
𝑎2−−→ . . .

𝑎𝑛−−→ (𝑞𝑛+1, 𝜎𝑛+1) where 𝑞1
𝑎1−−→ 𝑞2

𝑎2−−→

MFCS 2023

40:4 Universality and Forall-Exactness of Cost Register Automata with Few Registers

𝑝 𝑞

0min{𝑥, 𝑦}

𝑎 :
{
𝑥 ← 𝑥 + 1
𝑦 ← 𝑦

:
{
𝑥 ← 0
𝑦 ←min{𝑥, 𝑦}

𝑎 :
{
𝑥 ← 𝑥 + 1
𝑦 ← 𝑦

:
{
𝑥 ← 0
𝑦 ←min{𝑥, 𝑦}

Figure 1 An example of CRA on the semiring (Z ∪ {+∞},min, +).

. . .
𝑎𝑛−−→ 𝑞𝑛+1 is a run in the underlying deterministic finite automaton, and the valuations

of the registers 𝜎1, . . . , 𝜎𝑛+1 are updated according to the transitions: for all 1 ≤ ℓ ≤ 𝑛,
𝜎ℓ+1 (𝑟𝑖) =

⊕𝑘

𝑗=1 𝑚𝑖, 𝑗 ⊗ 𝜎ℓ (𝑟 𝑗) if the transition update is given by a linear transformation and
𝜎ℓ+1 (𝑟𝑖) = 𝑚𝑖,𝑘+1 if it is given by a reset to a constant.

The run is accepting if additionally 𝑞1 = 𝑠 and 𝜎1 (𝑟𝑖) = 𝜆𝑖 for all 𝑖, and the output on
𝑎1𝑎2 . . . 𝑎𝑛 is given by the output function at state 𝑞𝑛+1, i.e. ⊕𝑘

𝑗=1𝑚
(𝑞𝑛+1)
𝑗

⊗ 𝜎𝑛+1 (𝑟 𝑗) if this is
given by a linear transformation and 𝑚 (𝑞𝑛+1) if this is given by a constant. Finally, a CRA
is called copyless if for each transition, every register appears at most once on the right
hand-side of the updates: for all 𝑗 , 𝑚𝑖, 𝑗 is the zero of K, except for at most one 𝑖.

All CRAs considered in this paper are from this restrictive class of copyless linear CRAs
with resets, so unless specified otherwise by CRAs we mean CRAs from this class. Given a
CRA A, we will use A to denote both the CRA itself and the function Σ∗ → K it computes.

▶ Example 2. In Figure 1, we give an example of a CRA over the semiring (Z∪{+∞},min, +)
and alphabet {𝑎,#}. It has two states 𝑝 (which is initial) and 𝑞, and two registers 𝑥 and 𝑦.
The output function at state 𝑝 (words ending with 𝑎 and the empty word) is min{𝑥, 𝑦} and
at state 𝑞 (words ending with #) is 0. Both registers are initialised with value 0.

If the input word ends with # or is empty, this CRA outputs 0. If it ends with 𝑎, the
CRA outputs the length of the shortest maximal blocks of consecutive 𝑎’s. Register 𝑥 stores
the number of 𝑎’s read in the current block, and 𝑦 stores the minimum length of the blocks
read so far. This CRA is copyless linear with resets.

For any semiring, copyless linear CRAs with resets are at most as expressive as linearly
ambiguous WAs, strictly less expressive than polynomially ambiguous WAs, and are incom-
parable to unambiguous WAs [8]. For the min-plus semiring specifically, they are strictly
less expressive than linearly ambiguous WAs [2], incomparable to unambiguous WAs [2] and,
at the same time, there exists a copyless CRA (but not linear with resets) with 3 registers
which is not equivalent to any polynomially ambiguous WA [17].

2.2 Decision problems
We are mainly interested in two classes of CRAs: CRAs over (Z ∪ {+∞},min, +), called
min-plus CRAs, and over (Q, +,×), called plus-times CRAs in this paper. Our main result is
that the universality problem for these two classes, where the number of registers is restricted
to 3, is undecidable. We define this problem as follows:

Universality problem for 3-register CRAs
Input: A min-plus (respectively, plus-times) CRA A with 3 registers.
Output: Yes if and only if for all words 𝑤, we have A(𝑤) < 0 (respectively, A(𝑤) > 1).

L. Daviaud and A. Ryzhikov 40:5

▶ Theorem 3. The universality problem for 3-register CRAs is undecidable both for min-plus
CRAs and for plus-times CRAs.

To prove this result we give a reduction from the halting problem for Minsky machines
with 2 counters, which is known to be undecidable. This leads us to prove a slightly more
general result, encompassing both the min-plus and plus-times cases at the same time.

To simulate the behaviour of a Minsky machine with a CRA, we encode the run of the
Minsky machine into a specific word and use the CRA to check that a given word corresponds
to a correct encoding of the halting run. This boils down to checking some regular properties
and verifying that the counters are updated accordingly to the transitions. To explain our
approach of this later part, we start by looking at a simpler problem in Section 3: checking
that 𝑛1 = 𝑛2 = . . . = 𝑛𝑝 for a word of the shape 𝑎𝑛1♯𝑎𝑛2♯ . . . ♯𝑎𝑛𝑝−1♯♯𝑎𝑛𝑝 . We explain how to
do this with only 3 registers in the min-plus case. In Section 4, we give the full proof of
Theorem 3 in a more general setting, allowing us to apply it to both min-plus and plus-times.

On the other hand, we also give a more positive result in the min-plus case: the ∀-
exact problem, as defined below, is known to be PSPACE-complete for linear CRAs with
a non-restricted number of registers [1, Theorem 6.13]. We show that it becomes solvable
in polynomial time when the number of registers is fixed (and is not a part of the input).
For a fixed number of registers, we assume that the size of a CRA is given by its number of
states plus the largest absolute value of an integer appearing in an update of a transition or
in the output function at a state. Hence, we assume the unary encoding of the numbers in
the input. Without the restriction on the number of registers the ∀-exact problem remains
PSPACE-complete in this case [1]. Note that for this results, and for this result only, we
consider the class of linear CRAs instead of the class of copyless linear CRAs with resets.

The ∀-exact problem for 𝑘-register min-plus linear CRAs
Input: A min-plus linear CRA A with 𝑘 registers.
Output: Yes if and only if for all words 𝑤, we have A(𝑤) = 0.

▶ Theorem 4. For a fixed 𝑘, the ∀-exact problem is decidable in polynomial time for 𝑘-register
min-plus linear CRAs, assuming that the numbers in the transformations are given in the
unary encoding.

This result comes from a variation of a pumping argument, showing that for all words to
have value 0, the (useful) values of the registers have to be bounded (below and above) by a
constant that is polynomial in the size of the CRA. One can then just keep track of these
values. The full proof of this result can be found in the full version of the paper.

Variants. The proofs given in this paper can be easily adapted to obtain the undecidability
of other variants of the universality problem: for plus-times, whether A(𝑤) > 𝑐 or A(𝑤) < 𝑐,
and for min-plus, whether A(𝑤) < 𝑐 for any constant 𝑐, and the polynomial-time complexity
of variants of the ∀-exact problem: for min-plus, whether A(𝑤) = 𝑐 for any given constant
𝑐. Note that in some cases (for min-plus), a direct translation between these problems is
possible and preserves the number of registers. In others (plus-times), the natural translation
between these problems would increase the number of registers by 1, but an adaptation of
the proofs given in this paper would maintain this number to 3.

MFCS 2023

40:6 Universality and Forall-Exactness of Cost Register Automata with Few Registers

3 Recognising equal-length blocks

To explain our approach, we first look at a simpler problem: given a word

𝑤 = 𝑎𝑛1♯𝑎𝑛2♯ . . . ♯𝑎𝑛𝑝−1♯𝑎𝑛𝑝 ,

check with a min-plus CRA if all 𝑛𝑖 are equal. We assume that the CRA knows that it is
going to read the last block of 𝑎’s. For example, that can be done by duplicating the last ♯

symbol in the word, but we omit this technical detail for now. More precisely:

▶ Proposition 5. There exist a min-plus CRA A over the alphabet {𝑎, ♯} with 3 registers
such that A(𝑤) ≤ 0 for all words 𝑤, and A(𝑤) = 0 if and only if 𝑤 = (𝑎𝑛♯)𝑚♯𝑎𝑛 for some
integers 𝑛, 𝑚.

We describe the solution to this problem in an incremental way, starting from a CRA
with 5 registers and then using more and more complex ideas to get to 4 and then finally to
only 3 registers. We call a maximal subword of consecutive 𝑎’s a block. For 1 ≤ 𝑖 ≤ 𝑝 − 1,
define 𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 .

3.1 Five registers

a a a a a # a a a a a # a a a a a # a a a a a # a a a a a

x1

x2

y1

y2

w1 w3

w2 w4

Figure 2 The computations of two pairs of registers processing 𝑤𝑖 , 1 ≤ 𝑖 ≤ 4. An increasing line
means that the register is incremented by 1 for each letter and a decreasing line that the register is
decremented by 1 for each letter.

The case of five registers is easy and uses the idea described in [2]. To test if for a word
𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 we have 𝑛𝑖 = 𝑛𝑖+1, we use two registers, call them 𝑥1 and 𝑥2, initialised to
zero. While reading the first of two blocks, 𝑥1 is incremented by one, and 𝑥2 is decremented
by one. While reading the second block, they do the opposite. Thus, after reading 𝑤𝑖, the
value of 𝑥1 is 𝑛𝑖 − 𝑛𝑖+1, and the value of 𝑥2 is −𝑛𝑖 + 𝑛𝑖+1. Observe that 𝑛𝑖 = 𝑛𝑖+1 if and only
if min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1} = 0. Moreover, min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1} is always non-positive.
We introduce a new special register 𝑧. After reading 𝑤𝑖, we set 𝑧 ← min{𝑧, 𝑥1, 𝑥2} and reset
𝑥1 and 𝑥2 to zero. Hence the value of 𝑧 is then the minimum of its previous value and
min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1}.

After doing that, we have already read the second block of 𝑤𝑖, so we cannot do the same
for 𝑤𝑖+1 using the same registers. However, we can cover all words 𝑤𝑖 by using two pairs
of registers: one pair 𝑥1, 𝑥2 for 𝑤𝑖 with 𝑖 odd, and another pair 𝑦1, 𝑦2 for 𝑖 even, because
each pair is reset to zero at the end of reading 𝑤𝑖+1, and hence can be used for processing
𝑤𝑖+2. Register 𝑧 is shared between these two pairs. Figure 2 illustrates the computations
performed by the pairs 𝑥1, 𝑥2 and 𝑦1, 𝑦2.

L. Daviaud and A. Ryzhikov 40:7

The register 𝑧 is initialised with zero at the beginning, and changes its value as described
above. The output of the CRA is then defined as min{𝑧, 𝑥1, 𝑥2} if 𝑖 is odd, and min{𝑧, 𝑦1, 𝑦2}
if 𝑖 is even. This value is the minimum of the values {𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1 | 1 ≤ 𝑖 ≤ 𝑝 − 1}. It
is equal to zero if and only if all 𝑛𝑖 are equal, for 1 ≤ 𝑖 ≤ 𝑝, otherwise it is strictly negative.

3.2 Four registers
The case of four registers is handled similarly, but now we want to get rid of the register 𝑧,
and accumulate the non-positive value min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1} in one of the registers that
we use for its computation.

Once again, we use two pairs 𝑥1, 𝑥2 and 𝑦1, 𝑦2 of registers to separately process 𝑤𝑖 for
odd and even values of 𝑖, and before reading the input we initialise them all with zeros.
Assume that 𝑖 is odd, and hence we use 𝑥1, 𝑥2 to process the word 𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 . When
processing 𝑤𝑖, the registers 𝑥1 and 𝑥2 perform the same computations as in the case of five
registers, thus computing 𝑛𝑖 − 𝑛𝑖+1 and −𝑛𝑖 + 𝑛𝑖+1 respectively. However, after that, instead of
sending these values to 𝑧 and resetting both registers to zero, we reset to zero only 𝑥1, and set
𝑥2 ← min{𝑥1, 𝑥2}. Let 𝑚𝑖 be the value of 𝑥2 after processing 𝑤𝑖 if 𝑖 ≥ 1, and zero otherwise.
We can show by induction that 𝑚𝑖 is always non-positive and 0 if and only if 𝑛 𝑗 = 𝑛 𝑗+1 for all
odd 𝑗 < 𝑖. Indeed, after processing 𝑤𝑖 the value of 𝑥2 is min{𝑛𝑖−𝑛𝑖+1,−𝑛𝑖+𝑛𝑖+1+𝑚𝑖−2}. By the
induction hypothesis, it is always non-positive, and is 0 if and only if 𝑛𝑖 − 𝑛𝑖+1 = −𝑛𝑖 + 𝑛𝑖+1 = 0
and 𝑚𝑖−2 = 0, which concludes the argument. For even 𝑖, we do similarly for 𝑦1, 𝑦2.

After reading 𝑤, the CRA then outputs the value min{𝑥1, 𝑥2, 𝑦1, 𝑦2}. As explained above,
this value is zero if and only if for all 𝑖 we have 𝑛𝑖 = 𝑛𝑖+1, which means that all blocks have
the same length. Otherwise this value is strictly negative.

3.3 Three registers
Idea. For the case of three registers we use the idea described for four registers, but now
we only leave the first register of each pair (call these registers 𝑥 and 𝑦), and use the third
register (call it 𝑧) to act simultaneously as the second register from both pairs. Since in the
case of four registers the computations performed by two pairs overlap, this will require some
adjustments for the behaviour of 𝑥 and 𝑦 to deal with the overlapping parts.

We use register 𝑥 to process 𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 for odd values of 𝑖, and 𝑦 for even values of
𝑖. Assume for example that 𝑖 is odd. The idea remains the same: we want 𝑥 to compute
𝑛𝑖 − 𝑛𝑖+1, and 𝑧 to compute −𝑛𝑖 + 𝑛𝑖+1. However, if we want 𝑧 to perform such computations
for all 𝑤𝑖, then 𝑧 is also involved first in processing 𝑤𝑖−1 and then in processing 𝑤𝑖+1. The
solution is to consider this unwanted change for 𝑧 and to make the same change to 𝑥, which
then allows to meaningfully compare the values of 𝑥 and 𝑧 despite the overlaps. Refer to
Figure 3 for the symbolic depiction of these computations. The dashed lines illustrate the
additional decrements made by 𝑥 and 𝑦 to adjust for overlap with 𝑦 and 𝑥 respectively. After
processing each 𝑤𝑖, we set 𝑧 ← min{𝑧, 𝑥} if 𝑖 is odd, and 𝑧 ← min{𝑧, 𝑦} if 𝑖 is even.

The output of the CRA after reading 𝑤 is min{𝑧, 𝑥} if 𝑖 is odd, and min{𝑧, 𝑦} if 𝑖 is even.
Below we show how to construct the CRA implementing this idea.

Implementation. As mentioned above, we separate the cases of odd and even 𝑖, and process
each 𝑤𝑖 with only one register. At the beginning all registers are initialised with zeros.
When processing 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑝 − 2, we compute the value 𝑛𝑖 − 2𝑛𝑖+1 by incrementing the
corresponding register by one when reading each letter of 𝑎𝑛𝑖 , and decrementing it by two
when reading each letter of 𝑎𝑛𝑖+1 . After processing 𝑤𝑖, we set 𝑧 ← min{𝑧, 𝑥} if 𝑖 is odd, and
𝑧 ← min{𝑧, 𝑦} if 𝑖 is even. We reset to zero the corresponding used register 𝑥 or 𝑦. When
processing 𝑤𝑝−1 by 𝑥 or 𝑦, we compute the value 𝑛𝑝−1 − 𝑛𝑝 instead.

MFCS 2023

40:8 Universality and Forall-Exactness of Cost Register Automata with Few Registers

a a a a a # a a a a a # a a a a a # a a a a a # a a a a a

x

y

z

w1 w3

w2 w4

Figure 3 The computations of the registers processing 𝑤𝑖 , 1 ≤ 𝑖 ≤ 4. An increasing line means
that the register is incremented by 1 for each letter and a decreasing line – whether plain or dash
– that the register is decremented by 1 for each letter. When both a plain and a dashed line are
present it means that the increment/decrement is by 2. The two last lines are for register 𝑧, and
hence 𝑧 is only incremented/decremented in the first and last block – the increasing and decreasing
lines cancel each other but we show them to explain the idea used for the general construction. Note
that additionally after reading each block the value of the register 𝑧 is changed (not shown in the
picture). The dotted sides of the boxes represent that the corresponding boxes from Figure 2 were
cut in halves and reassigned to different registers.

The description of the computation is almost done. While reading 𝑎𝑛1 , we decrement 𝑧

by one for each letter 𝑎, and while reading 𝑎𝑛𝑝 we increment it by one for each reading of 𝑎
(we use here the fact that we know in advance when we are going to read the last block).
The output of the CRA is defined as the minimum of the values of the register processing
𝑤𝑝−1 (which has the value 𝑛𝑝−1 − 𝑛𝑝 at the end) and 𝑧. Figure 4 illustrates the computations
of thus constructed CRA.

a a a a a # a a a a a # a a a a a # a a a a a # a a a a a

x← x+ 1
y ← y
z ← z − 1

x← x− 2
y ← y + 1
z ← z

x← x+ 1
y ← y − 2
z ← z

x← x− 2
y ← y + 1
z ← z

x← x
y ← y − 1
z ← z + 1

x← x
y ← y
z ← z

x← 0
y ← y
z ← min{x, z}

x← x
y ← 0
z ← min{y, z}

x← 0
y ← y
z ← min{x, z}

Figure 4 The output value is min{𝑦, 𝑧}.

▶ Lemma 6. The output of thus constructed CRA is zero if and only if all blocks of 𝑤 have
the same length, otherwise it is strictly negative.

Proof. After processing 𝑤1, register 𝑥 has value 𝑛1 − 2𝑛2, and register 𝑧 has value −𝑛1. Then
𝑥 is reset to 0, and its value is passed to 𝑧, hence the value of 𝑧 is min{−𝑛1, 𝑛1 − 2𝑛2} =
−𝑛2 +min{−𝑛1 + 𝑛2, 𝑛1 − 𝑛2} = −𝑛2 + 𝐶1, where we define 𝐶1 = min{𝑛1 − 𝑛2,−𝑛1 + 𝑛2}.

L. Daviaud and A. Ryzhikov 40:9

For 2 ≤ 𝑖 ≤ 𝑝 − 2, define 𝐶𝑖 = min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1 + 𝐶𝑖−1}. Then inductively after
reading 𝑎𝑛𝑖+1 for 2 ≤ 𝑖 ≤ 𝑝 − 2 the corresponding register finishes processing 𝑤𝑖 and passes its
value to 𝑧, which then has value

min{𝑛𝑖 − 2𝑛𝑖+1,−𝑛𝑖 + 𝐶𝑖−1} = −𝑛𝑖+1 +min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1 + 𝐶𝑖−1} = −𝑛𝑖+1 + 𝐶𝑖 .

Moreover, after reading 𝑎𝑛𝑝 the output of the CRA is min{𝑛𝑝−1 − 𝑛𝑝 ,−𝑛𝑝−1 + 𝑛𝑝 +𝐶𝑝−2},
which we accordingly denote by 𝐶𝑝−1. Note that even though the shape of the formula for
𝐶𝑝−1 is the same as for 𝐶𝑖 with 𝑖 ≤ 𝑝 − 2, the way this value is computed by the CRA is
different, since while reading 𝑎𝑛𝑝 both 𝑧 and the register processing 𝑤𝑝−1 behave differently
than before.

To show that the constructed CRA satisfies the requirements, we inductively analyse
the values 𝐶1, . . . , 𝐶𝑝−1. As noted above, 𝐶1 = 0 if and only if 𝑛1 = 𝑛2, otherwise 𝐶1 < 0.
Moreover, 𝐶𝑖 = 0 if and only if 𝑛𝑖 = 𝑛𝑖+1 and 𝐶𝑖−1 = 0, otherwise 𝐶𝑖 < 0. Hence the output
𝐶𝑝−1 = 0 if and only if all blocks have the same length, and 𝐶𝑝−1 < 0 otherwise. ◀

With a similar proof, we can show that the same result applies to plus-times CRA (see
end of Section 4 for a general scheme).

4 Simulating a Minsky machine with a CRA with 3 registers

In this section, we show how to, given a Minsky machine M with two counters, construct
a CRA A with three registers which simulates M. For min-plus, this will mean that A
outputs 0 on the (unique) word encoding the halting run of M if it exists, and outputs a
strictly negative value for all other words. For plus-times, A outputs 1 on the (unique) word
encoding the halting run of M if it exists, and outputs a value strictly greater than 1 for all
other words. This will prove Theorem 3 as the halting problem for Minsky machine with
two counters is undecidable. We will in fact prove a more general result, extending both the
min-plus and the plus-times cases. This result is given in Theorem 8.

4.1 Minsky machines
Let 𝑃 = ∪1≤𝑖≤2{inc𝑖 , dec𝑖 , test𝑖} be a set of operations (increments, decrements and tests
for zero of the 𝑖th counter) on two counters. A Minsky machine M with 2 counters is a
deterministic finite automaton over the alphabet 𝑃, such that there is a designated initial
state, and the transitions satisfy the following restrictions: for each state 𝑞, exactly one of
the following holds

𝑞 has exactly one outgoing transition, which is then labelled by inc𝑖 for some 𝑖 ∈ {1, 2},
𝑞 has exactly two outgoing transitions, which are then labelled respectively by dec𝑖 , test𝑖
for the same 𝑖 ∈ {1, 2},
𝑞 has no outgoing transition, in which case it is a unique state called the halting state.

Let M be a Minsky machine with 2 counters. Consider an alternating sequence

𝜌 = (𝑞1, v1)
𝑡1−→ (𝑞2, v2)

𝑡2−→ . . .
𝑡𝑝−1−−−→ (𝑞𝑝 , v𝑝)

of pairs (𝑞𝑖 , v𝑖), where each 𝑞𝑖 is a state and each v𝑖 is a pair of non-negative integers, and of
operations 𝑡𝑖 ∈ 𝑃. The pairs v𝑖 represent the values of the two counters, and we denote by v𝑖 [𝑗]
its 𝑗th component. Such sequence 𝜌 is called a halting run ofM if 𝑞1

𝑡1−→ 𝑞2
𝑡2−→ . . .

𝑡𝑝−1−−−→ 𝑞𝑝 is
a run in the underlying DFA of M, 𝑞1 is the initial state, 𝑞𝑝 is the halting state, v1 = (0, 0),
and for each 𝑖, 1 ≤ 𝑖 ≤ 𝑝 − 1, we have the following (where e1 = (1, 0) and e2 = (0, 1)):

MFCS 2023

40:10 Universality and Forall-Exactness of Cost Register Automata with Few Registers

if 𝑡𝑖 = inc 𝑗 , then v𝑖+1 = v𝑖 + e 𝑗 ;
if 𝑡𝑖 = test 𝑗 , then v𝑖 [𝑗] = 0 and v𝑖+1 = v𝑖;
if 𝑡𝑖 = dec 𝑗 , then v𝑖 [𝑗] is positive and v𝑖+1 = v𝑖 − e 𝑗 .

▶ Theorem 7 ([18], Theorem 14.1-1). The problem whether a given Minsky machine with
two counters has a halting run is undecidable.

4.2 Encoding a run of a Minsky machine

To construct a CRA simulating a given Minsky machine with two counters, we first specify
how to represent a run of a Minsky machine by a finite word. For now on, fix a Minsky
machine M.

Encoding the values of two counters as one number. If v is a vector of two components
which are non-negative integer numbers, define 𝜈(v) = 2v[1] ×3v[2] . We use 𝜈(v) to encode the
values of two counters ofM in a given moment of time. Note that since 2 and 3 are coprime,
there is at most one vector 𝜈−1 (𝑥) for a natural number 𝑥, so this encoding is injective.

Encoding the runs. Given a halting run 𝜌 = (𝑞1, v1)
𝑡1−→ . . .

𝑡𝑝−1−−−→ (𝑞𝑝 , v𝑝) of M, we
construct the word 𝑊 (𝜌) over the alphabet Σ = 𝑃 ∪ {𝑎, ♯}, where

𝑊 (𝜌) = 𝑡1𝑎
𝜈 (v1) 𝑡2𝑎

𝜈 (v2) 𝑡3 . . . 𝑡𝑝−1𝑎
𝜈 (v𝑝−1)♯𝑎𝜈 (v𝑝)

We say that the word 𝑊 (𝜌) encodes the halting run 𝜌. Note that each letter 𝑡𝑖 appears
before the blocks encoding the values of v𝑖 (the argument of 𝑡𝑖) and v𝑖+1 (the result of 𝑡𝑖), so
that the CRA knows which operation to expect before starting to check that this operation
was applied correctly. Note also that the new symbol ♯ announces the last block of 𝑎’s. We
call the word 𝑤 over Σ encoding the halting run of M the run word.

Regular tests for run words. To test if a given word 𝑤 over Σ is a run word, we first check
if this word has shape

𝑡1𝑎
𝑛1 𝑡2𝑎

𝑛2 𝑡3 . . . 𝑡𝑝−1𝑎
𝑛𝑝−1♯𝑎𝑛𝑝

for some positive integers 𝑝, 𝑛1, . . . , 𝑛𝑝, and for some 𝑡1, 𝑡2, . . . , 𝑡𝑝−1 in 𝑃. We then check that
there exist states 𝑞1, 𝑞2, . . . , 𝑞𝑝 of M such that for each 1 ≤ 𝑖 ≤ 𝑝 − 1 there is a transition
𝑞𝑖

𝑡𝑖−→ 𝑞𝑖+1 in M, and also that 𝑞1 is the initial and 𝑞𝑝 is the halting state of M.
Next, we check that if 𝑡𝑖 = testℓ for ℓ ∈ {1, 2}, we have that the ℓth component of 𝜈−1 (𝑎𝑛𝑖)

is 0. To do so, we simply check that 𝑛𝑖, the length of 𝑎𝑛𝑖 , is not divisible by 2 (respectively, 3)
if ℓ = 1 (respectively, ℓ = 2). Finally, to test that the values of the counters in the beginning
are 0, we simply check that 𝑛1 = 1.

It is easy to see all these checks are regular, hence they can be performed by the underlying
deterministic finite automaton of a CRA, that is, without using any registers. We call a
word satisfying these regular properties a pre-run word.

What remains to check is that the values of the counters (encoded by 𝜈) change according
to the corresponding operations ofM. This check is the main challenge if we want to perform
it by a CRA with a small number of registers. The next section describes how to deal with it.

L. Daviaud and A. Ryzhikov 40:11

4.3 Handling operations
LetM be a Minsky machine, and 𝑤 be a pre-run word. We now describe how to construct a
CRA A with three registers which checks that 𝑤 is a run word. The idea of this construction
is similar to the idea described in Section 3. The main difference is that now instead of
testing that all blocks of 𝑎’s have the same length, we need to test that these lengths are
changed according to the corresponding operations.

We give a general construction, that we will be able to apply later on to min-plus and
plus-times CRAs and prove the following result, where all the notions will be introduced in
due course:

▶ Theorem 8. Let M be a Minsky machine and let (K, ⊕, ⊗, ≼) be an ordered semiring with
a multiplicative group, such that:

there exists a linear transformation which is a 1-peak (where 1 is the identity element
of ⊗), and
there exists an element with no finite order.

Then one can construct a CRA A over (K, ⊕, ⊗) such that:
A(𝑤) ≼ 1 for all words 𝑤, and
A(𝑤) = 1 if and only if 𝑤 encodes the halting run of M.

We consider a semiring (K, ⊕, ⊗). It is said to have a multiplicative group if (K − {0}, ⊗)
is a group, where 0 is the identity element of ⊕. We denote by 1 the identity element of this
group. We also denote, for an element 𝑑 of the group and some positive integer ℓ, by 𝑑ℓ the
product of 𝑑 by itself ℓ times, and by 𝑑−ℓ its inverse. By convention 𝑑0 = 1. We also fix a
linear transformation 𝜑 : K2 → K, i.e. 𝜑(𝑥, 𝑦) = (𝑐 ⊗ 𝑥) ⊕ (𝑑 ⊗ 𝑦) for some 𝑐, 𝑑 in K, and we
fix an element 𝛼 of K.

We will now construct a CRA over the semiring (K, ⊕, ⊗) using 𝛼 and 𝜑.
Let 𝑤 = 𝑡1𝑎

𝑛1 𝑡2𝑎
𝑛2 𝑡3 . . . 𝑡𝑝−1𝑎

𝑛𝑝−1♯𝑎𝑛𝑝 be a pre-run input word. For convenience of the
presentation, we denote 𝑡𝑝 = ♯. As before, we call a maximal continuous subword of 𝑤

consisting of 𝑎’s a block. Denote 𝑤𝑖 = 𝑡𝑖𝑎
𝑛𝑖 𝑡𝑖+1𝑎𝑛𝑖+1 . Call 𝑥, 𝑦, 𝑧 the three registers of A. We

process 𝑤𝑖 with 𝑥 for odd values of 𝑖, and with 𝑦 for even values of 𝑖, and send the results
to 𝑧.

First we describe what A does when reading 𝑎𝑛𝑖 for 1 < 𝑖 < 𝑝. The word 𝑎𝑛𝑖 is the
second block in 𝑤𝑖−1 and the first block in 𝑤𝑖. Assume without loss of generality that 𝑖 is odd
(otherwise switch 𝑥 and 𝑦 in the further description). Then 𝑤𝑖 is processed by 𝑥, and 𝑤𝑖−1 is
processed by 𝑦. The computations performed by 𝑥 depend only on 𝑡𝑖: for each occurrence
of 𝑎, we set

𝑥 ← 𝑥 ⊗ 𝛼 if 𝑡𝑖 ∈ {testℓ , decℓ } for ℓ ∈ {1, 2},
𝑥 ← 𝑥 ⊗ 𝛼2 if 𝑡𝑖 = inc1,
𝑥 ← 𝑥 ⊗ 𝛼3 if 𝑡𝑖 = inc2.

The computations performed by 𝑦 depend on both 𝑡𝑖−1 and 𝑡𝑖. Let 𝑐 be the value (1, 2
or 3) used above in the transformation 𝑥 ← 𝑥 ⊗ 𝛼𝑐 depending on 𝑡𝑖. Then for each occurrence
of 𝑎 we set:

𝑦 ← 𝑦 ⊗ 𝛼−1 ⊗ 𝛼−𝑐 if 𝑡𝑖−1 ∈ {testℓ , incℓ } for ℓ ∈ {1, 2},
𝑦 ← 𝑦 ⊗ 𝛼−2 ⊗ 𝛼−𝑐 if 𝑡𝑖−1 = dec1,
𝑦 ← 𝑦 ⊗ 𝛼−3 ⊗ 𝛼−𝑐 if 𝑡𝑖−1 = dec2.

Furthermore, if, for each letter of 𝑎𝑛𝑖 , register 𝑥 is multiplied by 𝛼𝑐 and 𝑦 is multiplied
by 𝛼−𝑑 ⊗ 𝛼−𝑐, then we set 𝑧 ← 𝑧 ⊗ 𝛼−𝑐 ⊗ 𝛼𝑑 for each letter of 𝑎𝑛𝑖 . After reading 𝑡𝑖+2, the
next letter after 𝑎𝑛𝑖 , we set 𝑧 ← 𝜑(𝑦, 𝑧), and reset 𝑦 to 1.

MFCS 2023

40:12 Universality and Forall-Exactness of Cost Register Automata with Few Registers

It remains to describe the transformations of the registers for 𝑎𝑛1 and 𝑎𝑛𝑝 . For each letter
of 𝑎𝑛1 , 𝑥 performs the same update as described above, and 𝑧 is updated by the inverse of
that value. Assume without loss of generality that 𝑝 − 1 is even (otherwise use 𝑥 instead of 𝑦
in the further description). Then 𝑤𝑝−1 is processed by 𝑦. For each letter in 𝑎𝑛𝑝 we set

𝑦 ← 𝑦 ⊗ 𝛼−1, 𝑧 ← 𝑧 ⊗ 𝛼 if 𝑡𝑝−1 ∈ {testℓ , incℓ } for ℓ ∈ {1, 2},
𝑦 ← 𝑦 ⊗ 𝛼−2, 𝑧 ← 𝑧 ⊗ 𝛼2 if 𝑡𝑝−1 = dec1,
𝑦 ← 𝑦 ⊗ 𝛼−3, 𝑧 ← 𝑧 ⊗ 𝛼3 if 𝑡𝑝−1 = dec2.

Finally, we set the output of A to be 𝜑(𝑦, 𝑧). Note that in this construction, the CRA is
linear with resets and copyless.

▶ Example 9. Consider the following halting run:

𝜌 = (𝑞1, (0, 0))
inc2−−−→ (𝑞1, (0, 1))

inc1−−−→ (𝑞1, (1, 1))
dec1−−−−→ (𝑞1, (0, 1))

test1−−−−→ (𝑞1, (0, 1))

We abbreviate by 𝑡1, 𝑡2, 𝑡3, 𝑡4 the operations along this run and by 𝑡5 the ♯ symbol
indicating that we are going to read the last block. Note again that in 𝑤 the operation is
written before its argument, hence for example 𝑡1 = inc2 is applied to the first block, and its
result is the second block. The computations of A for the word encoding 𝜌 are shown in
Figure 5. The CRA outputs 𝜑(𝑦, 𝑧) in this example.

t1 a t2 a a a t3 a a a a a a t4 a a a t5 a a a

x← x⊗ α3

y ← y
z ← z ⊗ α−3

x← x⊗ α−3

y ← y ⊗ α2

z ← z ⊗ α−1

x← x⊗ α
y ← y ⊗ α−2

z ← z

x← x⊗ α−3

y ← y ⊗ α
z ← z ⊗ α

x← x
y ← y ⊗ α−1

z ← z ⊗ α

x← x
y ← y
z ← z

x← 1
y ← y
z ← φ(x, z)

x← x
y ← 1
z ← φ(y, z)

x← 1
y ← y
z ← φ(x, z)

Figure 5 The computations of A on the word encoding the halting run 𝜌.

Suppose now that K is equipped with a linear order ≼, and denote by ≺ the associated
strict order (we call such K an ordered semiring). We say that 𝛼 has no finite order if 𝛼ℓ = 1
implies ℓ = 0 and that 𝜑 is a 1-peak if, for all 𝑑, 𝑒 in K such that 𝑑 ⊗ 𝑒 ≼ 1, we have 𝜑(𝑑, 𝑒) = 1
if and only if 𝑑 = 𝑒 = 1, and otherwise 𝜑(𝑑, 𝑒) ≺ 1.

▶ Lemma 10. Suppose that 𝜑 is a 1-peak and that 𝛼 has no finite order. Then, for a pre-run
word 𝑤, we have A(𝑤) = 1 if and only if 𝑤 is a run word, otherwise A(𝑤) ≺ 1.

Proof. We adapt the proof of Lemma 6. Define 𝐶0 = 1 and for 1 ≤ 𝑖 ≤ 𝑝 − 1 define

𝐶𝑖 =

𝜑(𝛼𝑛𝑖−𝑛𝑖+1 , 𝛼−𝑛𝑖+𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = testℓ for ℓ = 1, 2
𝜑(𝛼2𝑛𝑖−𝑛𝑖+1 , 𝛼−2𝑛𝑖+𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = inc1

𝜑(𝛼3𝑛𝑖−𝑛𝑖+1 , 𝛼−3𝑛𝑖+𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = inc2

𝜑(𝛼𝑛𝑖−2𝑛𝑖+1 , 𝛼−𝑛𝑖+2𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = dec1

𝜑(𝛼𝑛𝑖−3𝑛𝑖+1 , 𝛼−𝑛𝑖+3𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = dec2

L. Daviaud and A. Ryzhikov 40:13

Observe that by construction after a register (𝑥 or 𝑦) processes 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑝 − 2, and
passes its value to 𝑧, the value of 𝑧 is

𝛼−𝑛𝑖+1 ⊗ 𝐶𝑖 if 𝑡𝑖+1 = testℓ or 𝑡𝑖+1 = incℓ for ℓ ∈ {1, 2}
𝛼−2𝑛𝑖+1 ⊗ 𝐶𝑖 if 𝑡𝑖+1 = dec1

𝛼−3𝑛𝑖+1 ⊗ 𝐶𝑖 if 𝑡𝑖+1 = dec2

Moreover, the output of A equals 𝐶𝑝−1.
Observe that using the definition of 𝐶𝑖 and by induction, one can prove that 𝐶𝑖 = 1 if and

only if 𝑡𝑖 is performed correctly (that is, the result of 𝑡𝑖 on the pair 𝜈−1 (𝑎𝑛𝑖) is 𝜈−1 (𝑎𝑛𝑖+1))
and 𝐶𝑖−1 = 1, otherwise 𝐶𝑖 ≺ 1, since 𝜑 is 1-peak and 𝛼 has no finite order. Hence the output
𝐶𝑝−1 equals 1 if and only if the input is a run word, otherwise it is ≺ 1. ◀

By combining this proposition with the checks for pre-run words described in Section 4.2,
we get a CRA which outputs 1 if and only if the input encodes a halting run of M. Indeed,
if a word is not a pre-run word (which is checked by the underlying DFA of the CRA), the
run labelled by it will end in a state which outputs a constant value 𝑓 ≺ 1. All runs ending
in other states are thus labelled by pre-run words, and for each such word the computations
described in this section output the desired value depending on whether this word encodes
a halting run or not. This means that all runs in the CRA are considered, concluding the
proof of Theorem 8.

Min-plus and plus-times cases. To finish the proof of Theorem 3, it is enough to instantiate
(K, ⊕, ⊗, ≼), 𝛼 and 𝜑 to suitable elements. For min-plus, we take (K, ⊕, ⊗, ≼) = (Z ∪
{+∞},min, +, ≤), 𝛼 = 1 and 𝜑 = min. For plus-times, we take (K, ⊕, ⊗, ≼) = (Q+, +,×, ≥),
𝛼 = 2 and 𝜑(𝑐, 𝑑) = 2−1 (𝑐 + 𝑑), where Q+ is the set of positive rational numbers. It is easy to
check that in both cases, 𝜑 is 1-peak and 𝛼 has no finite order.

5 Conclusions

In this paper, we prove the undecidability of the universality problem for models of CRAs
where the number of registers is limited to 3. Our main result holds for min-plus and
plus-times CRAs, but we give a slightly more general construction and it would be interesting
to see if our techniques can be applied to other cases, and in particular to see its link to
infinitary groups that have already been studied in conjunction to the register complexity [10].

The main open question that remains is whether this is still true when considering CRAs
with only 2 registers. Our proof cannot be adapted easily to the 2-register case. One approach
is to understand whether with only 2 registers, one can recognise the language with equal
length blocks as defined in Section 3. Even this is difficult.

Finally, we proved that the ∀-exact problem is solvable in polynomial time when the
number of registers of a min-plus linear CRA is fixed. The same question can be asked
for the boundedness problem over the (N ∪ {+∞},min, +) semiring, which is known to be
PSPACE-complete for WAs (and hence linear CRAs) [1].

References
1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted automata?

Information and Computation, 282:104651, 2022. doi:10.1016/j.ic.2020.104651.
2 Shaull Almagor, Michaël Cadilhac, Filip Mazowiecki, and Guillermo A. Pérez. Weak cost

register automata are still powerful. International Journal of Foundations of Computer Science,
31(6):689–709, 2020. doi:10.1142/S0129054120410026.

MFCS 2023

https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1142/S0129054120410026

40:14 Universality and Forall-Exactness of Cost Register Automata with Few Registers

3 Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei Yuan.
Regular functions and cost register automata. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2013), pages 13–22, 2013. doi:10.1109/LICS.2013.65.

4 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms
with weighted automata. ACM Transactions on Algorithms, 6(2):28:1–28:36, 2010. doi:
10.1145/1721837.1721844.

5 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2017), pages 1–12, 2017. doi:10.1109/LICS.2017.8005101.

6 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic, 11(4):23:1–23:38, 2010. doi:10.1145/1805950.
1805953.

7 Karel Culík and Jarkko Kari. Digital images and formal languages. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages
599–616. Springer, 1997. doi:10.1007/978-3-642-59126-6_10.

8 Laure Daviaud. Register complexity and determinisation of max-plus automata. ACM SIGLOG
News, 7(2):4–14, 2020. doi:10.1145/3397619.3397621.

9 Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and
James Worrell. When are emptiness and containment decidable for probabilistic automata?
Journal of Computer and System Sciences, 119:78–96, 2021. doi:10.1016/j.jcss.2021.01.
006.

10 Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A generalised twinning property
for minimisation of cost register automata. In 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, (LICS 2016), pages 857–866, 2016. doi:10.1145/2933575.2934549.

11 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer
Berlin, Heidelberg, 1st edition, 2009. doi:10.1007/978-3-642-01492-5.

12 Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-Éric Pin, editor, Handbook
of Automata Theory, pages 113–150. European Mathematical Society Publishing House, Zürich,
Switzerland, 2021. doi:10.4171/Automata-1/4.

13 Kosaburo Hashiguchi, Kenichi Ishiguro, and Shuji Jimbo. Decisability of the equivalence
problem for finitely ambiguous automata. International Journal of Algebra and Computation,
12(03):445–461, 2002. doi:10.1142/S0218196702000845.

14 Daniel Kirsten and Sylvain Lombardy. Deciding Unambiguity and Sequentiality of Polynomially
Ambiguous Min-Plus Automata. In 26th International Symposium on Theoretical Aspects of
Computer Science (STACS 2009), volume 3 of LIPIcs, pages 589–600, 2009. doi:10.4230/
LIPIcs.STACS.2009.1850.

15 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, 2004. doi:10.1016/j.tcs.2004.02.049.

16 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. International Journal of Algebra and Computation, 4(3):405–426,
1994. doi:10.1142/S0218196794000063.

17 Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express-
iveness, and closure properties. Journal of Computer and System Sciences, 100:1–29, 2019.
doi:10.1016/j.jcss.2018.07.002.

18 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, USA, 1967.
19 Mehryar Mohri. Finite-state transducers in language and speech processing. Computational

Linguistics, 23(2):269–311, 1997. URL: https://aclanthology.org/J97-2003.
20 Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.
21 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and

Control, 4(2):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

https://doi.org/10.1109/LICS.2013.65
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-59126-6_10
https://doi.org/10.1145/3397619.3397621
https://doi.org/10.1016/j.jcss.2021.01.006
https://doi.org/10.1016/j.jcss.2021.01.006
https://doi.org/10.1145/2933575.2934549
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.4171/Automata-1/4
https://doi.org/10.1142/S0218196702000845
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1142/S0218196794000063
https://doi.org/10.1016/j.jcss.2018.07.002
https://aclanthology.org/J97-2003
https://doi.org/10.1016/S0019-9958(61)80020-X

L. Daviaud and A. Ryzhikov 40:15

22 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In 5th Annual ACM Symposium on Theory of Computing (STOC 1973),
pages 1–9, 1973. doi:10.1145/800125.804029.

23 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
26th Annual Symposium on Foundations of Computer Science (FOCS 1985), pages 327–338,
1985. doi:10.1109/SFCS.1985.12.

24 Andreas Weber. Finite-valued distance automata. Theoretical Computer Science, 134(1):225–
251, 1994. doi:10.1016/0304-3975(94)90287-9.

MFCS 2023

https://doi.org/10.1145/800125.804029
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1016/0304-3975(94)90287-9

	1 Introduction
	2 Cost register automata and decision problems
	2.1 Cost register automata
	2.2 Decision problems

	3 Recognising equal-length blocks
	3.1 Five registers
	3.2 Four registers
	3.3 Three registers

	4 Simulating a Minsky machine with a CRA with 3 registers
	4.1 Minsky machines
	4.2 Encoding a run of a Minsky machine
	4.3 Handling operations

	5 Conclusions

