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Abstract
The Hunters and Rabbit game is played on a graph G where the Hunter player shoots at k

vertices in every round while the Rabbit player occupies an unknown vertex and, if it is not shot,
must move to a neighbouring vertex after each round. The Rabbit player wins if it can ensure
that its position is never shot. The Hunter player wins otherwise. The hunter number h(G) of a
graph G is the minimum integer k such that the Hunter player has a winning strategy (i.e., allowing
him to win whatever be the strategy of the Rabbit player). This game has been studied in several
graph classes, in particular in bipartite graphs (grids, trees, hypercubes...), but the computational
complexity of computing h(G) remains open in general graphs and even in more restricted graph
classes such as trees. To progress further in this study, we propose a notion of monotonicity (a
well-studied and useful property in classical pursuit-evasion games such as Graph Searching games)
for the Hunters and Rabbit game imposing that, roughly, a vertex that has already been shot
“must not host the rabbit anymore”. This allows us to obtain new results in various graph classes.

More precisely, let the monotone hunter number mh(G) of a graph G be the minimum integer k

such that the Hunter player has a monotone winning strategy. We show that pw(G) ≤ mh(G) ≤
pw(G) + 1 for any graph G with pathwidth pw(G), which implies that computing mh(G), or even
approximating mh(G) up to an additive constant, is NP-hard. Then, we show that mh(G) can be
computed in polynomial time in split graphs, interval graphs, cographs and trees. These results go
through structural characterisations which allow us to relate the monotone hunter number with the
pathwidth in some of these graph classes. In all cases, this allows us to specify the hunter number or
to show that there may be an arbitrary gap between h and mh, i.e., that monotonicity does not help.
In particular, we show that, for every k ≥ 3, there exists a tree T with h(T ) = 2 and mh(T ) = k.
We conclude by proving that computing h (resp., mh) is FPT parameterised by the minimum size of
a vertex cover.
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42:2 Recontamination Helps a Lot to Hunt a Rabbit

1 Introduction

The Hunters and Rabbit game is played on a graph G and with a positive integer k (the
number of hunters), where the Hunter player shoots at k vertices in every round while the
Rabbit player occupies an unknown vertex and, if it is not shot, must move to a neighbouring
vertex after each round. The Rabbit player wins if he can ensure that its position is never shot.
The Hunter player wins otherwise. The Hunters and Rabbit game was first introduced
in [7], in the case k = 1, where it was shown that the Hunter player wins in a tree T if
and only if T does not contain as subgraph any tree obtained from a star with 3 leaves by
subdividing each edges twice. This result was also observed in [19], where the authors also
consider the minimum number of rounds needed for the Hunter player to win. The version
where k > 1 was first considered in [1]. Observe that, if k = |V (G)| − 1, the Hunter player
can win in any graph G (in two rounds) by shooting twice a subset of k vertices of G. Hence,
let the hunter number of G, denoted by h(G), be the minimum integer k such that k hunters
can win in G whatever be the rabbit strategy.

In [1], it is shown that the hunter number is closed under taking subgraphs. Moreover,
this result trivially extends to the case when the starting positions of the rabbit are restricted.
The exact value of h(G) has been determined for several specific families of graphs G. For
any n ≥ 2, h(Pn) = 1 where Pn is the path with n vertices [7] (because the rabbit is forced
to move at every round, h(P1) = 0). For any n ≥ 3, h(Cn) = 2 and h(Kn) = n − 1, where
Cn and Kn are the cycle and complete graph on n vertices respectively [1]. Moreover,
h(Gn×m) = ⌊ min{n,m}

2 ⌋ + 1 [1] and h(Qn) = 1 + Σn−2
i=0

(
i

⌊i/2⌋
)

[5], where Gn×m is the n × m

grid and Qn is the hypercube with dimension n. The case of bipartite graphs has been
particularly studied because it was proved in [1] that we may constrain the rabbit to start in
a fixed part of the bipartition, without decreasing the hunter number. By taking advantage
of the bipartiteness of trees, it was proved that, for any tree T , h(T ) ≤ ⌈ 1

2 log2(|V (T )|)⌉ [17].
Surprisingly, the computational complexity of the problem that takes a graph G and an
integer k as inputs and aims at deciding whether h(G) ≤ k is still open, even if G is restricted
to be a tree.

In this paper, we progress further in this research direction by exhibiting new classes of
graphs G where h(G) can be determined in polynomial time.

Graph Searching games. The Hunters and Rabbit game takes place in the larger class
of Graph Searching games initially introduced in [6, 26]. In these pursuit-evasion games,
one player plays with a team of searchers (or hunters, etc.) that must track a fugitive (or
robber, rabbit, etc.) moving in a graph. Multiple games fall under this framework, each one
specifying its own rules on, for example, the available moves of the searchers, the speed of
the fugitive, whether the fugitive is visible or not, etc. Several variations of Graph Searching
games have been studied in the literature due to their numerous applications in artificial
intelligence [21], robot motion planning [9], constraint satisfaction problems and database
theory [16], and distributed computing [25]. The study of such games also leads to significant
implications in graph theory and algorithms. Indeed, many variants of these games provide
algorithmic interpretations of width measures of graphs like treewidth [27], pathwidth [26],
tree-depth [15], hypertree-width [2], cycle-rank [15], and directed tree-width [22]. Central
to the connection between Graph Searching games and such structural parameters is the
notion of monotonicity [3, 27, 24, 20]. In short, a searchers’ strategy is monotone if it
ensures that the fugitive can never “recontaminate” a vertex, i.e., it can never access a vertex
that has already been “visited” by a searcher. The main question is then, given a game,
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whether “recontamination does not help in this game” [23], i.e., whether there always exists,
in this game, an optimal (in terms of number of searchers) monotone winning strategy for the
searchers. In particular, the monotonicity played a central role in the proof that the minimum
number of searchers to capture an invisible (resp., visible) fugitive in the node-searching
game played in a graph G equals its pathwidth plus one [3] (resp., treewidth plus one [27]).

Unsurprisingly, the Hunters and Rabbit game also has a close relationship with the
pathwidth of graphs. Precisely, the hunter number of any graph is at most its pathwidth
plus one [1]. In this paper, we investigate further this relationship and, for this purpose, we
define, and study, a notion of monotonicity adapted to the Hunters and Rabbit game.

Our contribution. In Section 2, we give the main notations used throughout this paper.
In Section 3, we introduce the notion of monotonicity for the Hunters and Rabbit game
which is not straightforward; let mh(G) denote the monotone hunter number of G. Then,
we prove that mh(G) ∈ {pw(G), pw(G) + 1} in any graph G. Along with implying that it is
NP-complete to compute mh(G) for a graph G, this result also implies that it is NP-hard to
approximate mh(G) up to an additive error of |V (G)|ε, for 0 < ε < 1. On the positive side, in
Section 4, we give polynomial time algorithms to determine h(G) and/or mh(G) in cographs,
split and interval graphs. In Section 5, we adapt the Parsons’ Lemma [26] to the case of
the monotone Hunters and Rabbit game which leads to a polynomial time algorithm
that computes mh(T ) for any tree T . Then, we investigate the monotonicity property in
the case of the “bipartite” variant of the Hunters and Rabbit game (see [1, 17]) in trees.
In particular, we show that, for any k ∈ N, there exist trees T such that h(T ) = 2 and
mh(T ) ≥ k. That is, “recontamination helps a lot” in the Hunters and Rabbit game.
Finally, in Section 6, we show as a general positive result that the problem of deciding
if h(G) ≤ k or mh(G) ≤ k, for some given integer k, is in FPT when parameterized by
the vertex cover number of G. This is done through kernelization. We close our study by
providing directions for further research in Section 7.

2 Preliminaries

Unless mentioned otherwise, in this paper we will always deal with graphs G = (V, E) that
are non empty, finite, undirected, connected and simple. For any two adjacent vertices
x, y ∈ V , let xy ∈ E denote the edge between x and y. Given a set S ⊆ V , let G[S] denote
the subgraph of G induced by (the vertices in) S and let G \ S denote the subgraph G[V \ S].
For any v ∈ V and X ⊆ V , let NX(v) = {u ∈ X | uv ∈ E} be the open neighbourhood of v

in X and let the closed neighbourhood of v in X be NX [v] = (NX(v) ∪ {v}) ∩ X. If X = V ,
we simply write N(v) and N [v] respectively. For any S ⊆ V , let N(S) =

⋃
v∈S N(v) \ S

and N [S] = N(S) ∪ S. The degree d(v) = |N(v)| is the number of neighbours of v and let
δ(G) = min

v∈V
d(v). An independent set of a graph G = (V, E) is a subset I of V such that,

for every u, v ∈ I, uv /∈ E. A graph is bipartite if its vertex-set can be partitioned into two
independent sets.

Hunters and Rabbit game. The Hunters and Rabbit game is played between two
players, Hunter and Rabbit, on a graph. Let k ∈ N∗. The Hunter player controls k hunters
and the Rabbit player controls a single rabbit. First, the Rabbit player places the rabbit at
a vertex r0 ∈ V . The rabbit is invisible, i.e., the position of the rabbit is not known to the
hunters. Then, the game proceeds in rounds. In each round i ≥ 1, first, the Hunter player
selects a non empty subset Si ⊆ V of at most k vertices of G (we say that the vertices in Si
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42:4 Recontamination Helps a Lot to Hunt a Rabbit

are shot at round i). If the current position ri−1 of the rabbit is shot, i.e., if ri−1 ∈ Si (we
say that the rabbit is shot), then the Hunter player wins, and the game stops. Otherwise,
the rabbit must move from its current position ri−1 to a vertex ri ∈ N(ri−1), and the next
round starts. The Rabbit player wins if the rabbit avoids being shot forever.

A hunter strategy in G = (V, E) is a finite sequence S = (S1, . . . , Sℓ) of non empty subsets
of vertices of G. Let h(S) := max1≤i≤ℓ |Si| and let us say that S uses h(S) hunters. A
rabbit trajectory in G starting from W ⊆ V (W will always be assumed non empty) is any
walk (r0, . . . , rℓ) such that r0 ∈ W and ri ∈ N(ri−1) for every 1 ≤ i ≤ ℓ. A hunter strategy
is winning with respect to W if, for every rabbit trajectory (r0, . . . , rℓ) starting from W ,
there exists 0 ≤ j < ℓ such that rj ∈ Sj+1, i.e, the rabbit is eventually shot whatever be its
trajectory starting from W . Given a hunter strategy S = (S1, . . . , Sℓ), a rabbit trajectory
(r0, . . . , rℓ) starting from W is winning against S if ri /∈ Si+1 for every 0 ≤ i < ℓ. A winning
hunter strategy is any winning hunter strategy with respect to V and a rabbit trajectory is
any rabbit trajectory starting from V .

The hunter number of G = (V, E) with respect to W ⊆ V , denoted by hW (G), is the
minimum integer k such that there exists a winning hunter strategy with respect to W and
using k hunters. Let h(G) = hV (G) be the hunter number of G. The Rabbit player has a
strategy R starting from W ⊆ V against k ≥ 1 hunters if, for every hunter strategy S using
k hunters, there exists a rabbit trajectory R(S) that is winning against S. If such a strategy
R exists, then hW (G) > k.

For any hunter strategy S = (S1, . . . , Sℓ), it will be convenient to identify the potential
positions of a rabbit (starting in W ⊆ V ) after each round. Precisely, let ZW (S) =
(ZW

0 (S), . . . , ZW
ℓ (S)) be defined as follows. Let ZW

0 (S) = W and, for every 0 < i ≤ ℓ, let
ZW

i (S) be the set of vertices v such that there exists a rabbit trajectory (r0, r1, . . . , ri = v)
such that r0 ∈ W and, for every 0 ≤ j < i, rj /∈ Sj+1. Formally, for any 1 ≤ i ≤ ℓ, let
ZW

i (S) = {x ∈ V (G) | ∃y ∈ (ZW
i−1(S) \ Si) ∧ (xy ∈ E(G))}. Intuitively, ZW

i (S) is the set
of vertices that the rabbit (starting from some vertex in W ) can have reached at the end
of the ith round without having been shot. We will refer to the vertices in ZW

i (S) as the
contaminated vertices after round i. Note that, if S is winning, then ZW

ℓ (S) = ∅. In what
follows, we write Zi (resp., Zi(S)) instead of ZW

i (S) when S and W (resp., when W ) are
clear from the context.

To reduce the search space for the possible hunter strategies, we establish that we can
have winning hunter strategies that shoot only on a subset of contaminated vertices in each
round, without increasing the number of hunters required. More precisely, a hunter strategy
S = (S1, . . . , Sℓ) is said to be parsimonious if, for every 1 ≤ i ≤ ℓ, Si ⊆ Zi−1(S).

3 Monotonicity

In classical graph pursuit-evasion games, an important notion is that of monotonicity. On a
high level, a strategy is monotone if the area reachable by the fugitive never increases. In
the particular case of Graph Searching games, a strategy is monotone if, once a searcher is
removed from some vertex, it is never necessary to occupy this vertex during a subsequent
round. Monotone strategies have been widely studied [3, 29, 24] because it is generally easier
to design them and because they have length polynomial in the size of the graph and, so,
corresponding decision problems can be proven to be in NP.

It is clear that such a definition is not suitable to the Hunters and Rabbit game. Indeed,
consider the graph that consists of a single edge uv: the hunter must shoot at some vertex,
say u, and, if the rabbit was at v, it will move to u, i.e., the vertex u is “recontaminated”.



T. Dissaux, F. Fioravantes, H. Gahlawat, and N. Nisse 42:5

a

b

c

d

e

f

g

(a) Z0 = {a, c, e, g}.
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✗

(b) S1 = {c},
Z1 = {b, d, f}.
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(c) S2 = {d},
Z2 = {a, c, g}.
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(d) S3 = {c},
Z3 = {b, f}.
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g

✗

(e) S4 = {f},
Z4 = {c, a}.

a
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e

f

g

✗

(f) S5 = {c},
Z5 = {b}.

a

b

c

d

e

f

g

✗

(g) S6 = {b},
Z6 = ∅.

Figure 1 Example of a bipartite graph (where Vr = {a, c, e, g} corresponds to the red part of the
bipartition, illustrated by the red vertices in the figures) and of a parsimonious winning strategy with
respect to Vr, such that no vertex in {a, e, g} is ever shot. Each subfigure depicts the situation at
the end of the corresponding round. The cross indicates the shot of the hunter, and all the possible
positions of the rabbit are shown by a rabbit next to the corresponding vertex.

Therefore, we propose to define monotonicity in the Hunters and Rabbit game as follows
(see the formal definition below): once a vertex has been “cleared”, if the rabbit can access it
in a subsequent round, then the vertex must be shot immediately.

In classical Graph Searching games, a vertex being cleared at some round means that
the searcher’s strategy ensures that the fugitive cannot occupy this vertex at this round.
A recontaminated vertex can be intuitively defined as a vertex that can be reached by the
fugitive while having been cleared in a previous round. This intuitive definition does not
make any sense in the Hunters and Rabbit game. For example, it is shown in [1] that,
in bipartite graphs, h(G) = hVr (G) = hVw (G), where (Vr, Vw) denotes the bipartition of V .
In other words, it is sufficient to consider winning hunter strategies with respect to one of
the independent sets of the bipartition; we call this the red variant of the game. In this
case, every vertex of Vr is cleared at every odd round (since the rabbit can only occupy
vertices of Vw at odd rounds) and so looking for a strategy without recontamination would
be meaningless.

A related difficulty comes from the fact that, contrary to classical Graph Searching
games, a vertex may be “cleared” without having been shot during the game. As a concrete
example, consider a star with three leaves whose edges have been subdivided once each.
Then, assuming that the leaves and the centre are red, in the red variant, it is possible for one
hunter to win without shooting any of the leaves. Indeed, consider the strategy illustrated in
Figure 1.

To overcome these difficulties, we propose to define the clearing of a vertex at some round
by the fact that the actions of the hunters ensure that this vertex cannot be occupied by
the rabbit at this round. Precisely, two actions of the hunters may clear a vertex: either a

MFCS 2023



42:6 Recontamination Helps a Lot to Hunt a Rabbit

hunter shoots a vertex v at round i and does not shoot the rabbit (meaning that v ≠ ri−1),
or the hunters shoot on every contaminated vertex in the neighbourhood of v. In this case,
either v was occupied and the rabbit has to leave v, or v was not occupied and cannot be
occupied after the move of the rabbit. In both cases, v /∈ Zi. This discussion motivates the
following definition for the monotonicity of hunter strategies.

▶ Definition 1 (Monotone strategy). Let G be a graph and S be a winning hunter strategy
with respect to W ⊆ V (G). We say that a vertex v is cleared at round i if either v ∈ Si or,
N(v) ∩ Zi−1 ̸= ∅ and N(v) ∩ Zi−1 ⊆ Si. A strategy S = (S1, . . . , Sℓ) is monotone if, for
every vertex v ∈ V , if there exists an i such that v is cleared at round i, then for every j > i

such that v ∈ Zj, the strategy ensures that v ∈ Sj+1. A vertex v is recontaminated at round
j if there exists i ≤ j such that v is cleared at round i and v ∈ Zj \ Sj+1.

The monotone hunter number of a graph G with respect to W ⊆ V (G), denoted by mhW (G),
is the minimum number k such that k hunters have a monotone winning hunter strategy in
G with respect to W . Let us denote the monotone hunter number mhV (G) of G by mh(G).
Note that, by definition, hW (G) ≤ mhW (G) ≤ mh(G).

We can prove that monotone strategies have many interesting properties that are used
in most of the proofs of our results. The proofs of these properties, which are omitted due
to lack of space, are not trivial. The most intuitive one, is that, when the hunters follow a
monotone strategy S, the set of possible positions of the rabbit cannot increase. That is,
Zℓ(S) ⊆ · · · ⊆ Z1(S). Moreover, mh(G) is closed under taking subgraphs. A crucial property
is that there exists an optimal (using mh(G) hunter) parsimonious monotone strategy in any
graph G. Finally, in any monotone strategy, once a vertex is shot, it has to be continuously
shot until the rabbit can no longer reach it. In particular, this last property is used in the
proof of upcoming Theorem 2 and it implies that the problem of computing mh is in NP.

3.1 Monotone hunter number and pathwidth
Here, we relate the monotone hunter number of a graph to its pathwidth. Our result might
be surprising since the pathwidth of a graph G is equivalent to the number of searchers
required to (monotonously) capture an arbitrary fast invisible fugitive [3] while, in our case,
the invisible rabbit seems much weaker than the fugitive: the rabbit is “slow” (it moves only
to neighbours) and constrained to move at every round. In this view, one might guess that
the monotone hunter number of a graph could be arbitrary smaller than its pathwidth. On
the contrary, we show that these parameters differ by at most one.

A path-decomposition of a graph G = (V, E) is a sequence P = (X1, . . . , Xp) of subsets
of vertices, called bags, such that (1)

⋃
i≤p Xi = V ; (2) for every uv ∈ E, there exists i ≤ p

with {u, v} ⊆ Xi; and (3): for every 1 ≤ i ≤ j ≤ q ≤ p, Xi ∩ Xq ⊆ Xj . The width w(P ) of
P is the size of a largest bag of P minus one, i.e., w(P ) = maxi≤p |Xi| − 1. The pathwidth
pw(G) of G is the minimum width of its path-decompositions. A path-decomposition of G

of width pw(G) is said to be optimal.

▶ Theorem 2. For any graph G = (V, E), pw(G) ≤ mh(G) ≤ pw(G) + 1.

Sketch of proof. Let P = (X1, . . . , Xℓ) be a path-decomposition of G with width k. Then,
P is a monotone hunter strategy in G using k + 1 hunters.

To show the other inequality, let S = (S1, . . . , Sℓ) be a parsimonious winning monotone
hunter strategy in G using at most k ≥ mh(G) hunters. Observe that S is almost a path-
decomposition due to the fact that it is parsimonious and monotone. Indeed, any vertex v

that is shot by S, will be shot during some consecutive rounds (will belong to consecutive
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bags of the decomposition). It remains to take care of unshot vertices. Such vertices are
cleared by shooting at all of their neighbours during a round of S. So, starting from S, we
build a path-decomposition P of G as follows: we start with a bag Bi corresponding to Si,
for each i. Then, for each vertex u that has never been shot, all the neighbours of which are
shot during the round i + 1 for the first time, we create an intermediate bag, between Bi

and Bi+1, containing all the vertices of Bi and the vertex u. ◀

Theorem 2 has important consequences, following from the inapproximability of the
pathwidth of a graph [4]. Moreover, using a result in [17], this implies that recontamination
may help in the Hunters and Rabbit game.

▶ Corollary 3. Given an n-node graph G and k ∈ N, it is NP-complete to decide whether
mh(G) ≤ k. Moreover, it is NP-hard to approximate mh(G) up to an additive error of nε,
for 0 < ε < 1.

▶ Corollary 4. There exists ε > 0 such that, for any k ∈ N, there exists a tree T with
h(T ) ≥ k and mh(T ) ≥ (1 + ε)h(T ).

4 (Monotone) hunter number of some graph classes

In this section, we characterise the (monotone) hunter number of several graph classes such
as cographs, split and interval graphs. In all these cases, our results lead to a polynomial
time algorithm to compute the monotone hunter number.

4.1 Split and interval graphs
A graph G = (V, E) is a split graph if V = C ∪ I can be partitioned into two sets C and I,
inducing an inclusion-maximal clique and an independent set, respectively. Given a split
graph G, a partition (C, I) of V (G) can be computed in linear time [18]. The following
theorem fully characterises the hunter number of split graphs. It also allows us to show that
the hunter number and the pathwidth of split graphs coincide.

▶ Theorem 5. Let G = (C ∪ I, E) be a split graph. Then, h(G) = |C| if and only if for
every two distinct vertices x, y ∈ C, there exists a vertex z ∈ NI(x) ∩ NI(y). Otherwise,
h(G) = |C| − 1.

Sketch of proof. If every two vertices of C have a common neighbour in I, there exists
a rabbit strategy against |C| − 1 hunters. The idea is to take advantage of the fact that
not all the vertices of C can be shot during a same round. Thus, the rabbit will remain
as much as possible on C, and if it is unable to do so, it will go to I and then return to
C, which is possible due to the hypothesis. For the reverse direction, let x and y be two
vertices of C without common neighbour in I. The strategy S = (S1, S2, S3, S4, S5), where
S1 = S2 = S5 = C \ {y} and S3 = S4 = C \ {x}, is a winning hunter strategy using |C| − 1
hunters. ◀

Recall that a vertex in a graph G is simplicial if its neighbourhood induces a clique.
Recall also that an interval graph is the intersection graph of a set of intervals in the real
line. Let ω(G) denote the maximum size of a clique of G.

▶ Theorem 6. Let G be a interval (resp. split) graph. Then, h(G) = mh(G) = ω(G) − 1
(resp. mh(G) = ω(G) − 1) if every maximum clique has a simplicial vertex. Otherwise,
mh(G) = ω(G).

MFCS 2023



42:8 Recontamination Helps a Lot to Hunt a Rabbit

Sketch of proof. For the first direction, in case G = (C ∪ I, E) is a split graph with v being
a simplicial vertex of C, S = (C \ v, C \ v) is a monotone winning hunter strategy using
|C| − 1 hunters. In case G is an interval graph, recall that pw(G) = ω(G) − 1 and G admits
an optimal path-decomposition where each bag induces a complete graph. We adapt such an
optimal path-decomposition, to a hunter strategy using ω(G) − 1 hunters, by removing a
simplicial vertex from each bag containing a maximum clique and shooting twice at each of
these bags.

For the reverse direction, let C be any maximum clique of G without simplicial vertex.
Assume that there exists a monotone hunter strategy S using |C| − 1 hunters. Then there
exists at least one round such that C hunters shoot on vertices of C (otherwise the rabbit
can survive by staying on C). Consider the first such round and let u be the vertex of C

that is not shot. Using the fact that C has no simplicial vertex, we prove that there exists
w ∈ N(u)\C such that both u and w have never been shot until this round. Thus, the rabbit
can oscillate between u and w either until the end, or until the first round where at least one
of u or w is shot, where it recontaminates a vertex of C. This is a contradiction. ◀

From the above, we can show that there exist split and interval graphs G for which
mh(G) ̸= h(G), i.e., recontamination helps in these graph families. Note also that, even
knowing that ω(G) − 1 ≤ h(G) ≤ ω(G) for interval graphs, computing h(G) when some
maximum clique has no simplicial vertex is challenging.

4.2 Cographs

The class of cographs can be defined recursively as follows [10]. One vertex is a cograph.
Given two cographs A and B, their disjoint union A ∪ B is a cograph, and their join A ⋊⋉ B

(where all edges between A and B are added) is a cograph. A decomposition of a cograph
(i.e., a building sequence of unions and joins performed from single vertices) can be computed
in linear time [10].

▶ Theorem 7. mh(G) can be computed in linear time in the class of cographs.

Sketch of proof. It suffices to calculate mh(G) in the case where G = A ⋊⋉ B. It is easy
to see that mh(A ⋊⋉ B) ≤ m = min(mh(A) + |V (B)|, |V (A)| + mh(B)). Assume that there
exists a winning monotone hunter strategy S = (S1, . . . , Sℓ) using at most m − 1 hunters.
Let v be the first vertex that is no longer available for the rabbit and assume, w.l.o.g., that
v ∈ V (A). Then, all the vertices in NB(v) = V (B) were shot. Thus, V (B) must be shot
during every subsequent round. This means that S can clear A using m−|V (B)|−1 < mh(A)
hunters, a contradiction. ◀

Once again, the case of the hunter number seems more challenging. In particular, the
following lemma shows that recontamination may help in cographs.

▶ Lemma 8. For every k ≥ 1, there exists a cograph G such that h(G) ≥ k and mh(G) ≥
3
2 h(G) − 1.

Sketch of proof. Let A and B be two (isomorphic) cographs consisting of the disjoint union
of a complete graph with a ≥ 3 vertices and a independent vertices. The graph G = A ⋊⋉ B

verifies that mh(G) = 3a − 1 and h(G) = 2a. ◀
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5 (Monotone) hunter number of trees

This section is devoted to showing that mh can be computed in polynomial-time in the class
of trees. Then, we show that recontamination helps a lot in trees.

5.1 Monotone hunter number in trees

Let T be a tree and v ∈ V (T ). A branch at v is any connected component of T − v. A
star is any tree with at least two vertices and at most one vertex with degree at least three.
Roughly, Parsons’ Lemma [26] states that, for any tree T and k ∈ N, pw(T ) ≥ k + 1 if and
only if there exists a vertex v such that at least three branches at v have pathwidth at least
k. Here, we adapt this lemma in the case of the monotone hunter number of trees.

▶ Lemma 9 (Parsons’ like lemma). Let T = (V, E) be any tree.
mh(T ) = 0 if and only if |V | = 1;
mh(T ) = 1 if and only if T is a star;
mh(T ) = 2 if and only if T is not a star and contains a path P such that T \ P is a forest
of stars and isolated vertices;
For every k ≥ 3, mh(T ) ≥ k if and only if there exists a vertex v ∈ V such that at least
three branches at v have monotone hunter number at least k − 1.

Taking advantage of Lemma 9, we design a dynamic programming algorithm to compute
mh(T ) of a given tree T . Our algorithm is heavily inspired by the polynomial time algorithm
computing the pathwidth of T [13].

▶ Theorem 10. For a tree T , mh(T ) can be computed in polynomial time.

5.2 Monotone hunter number in the red variant in trees

So far, we have investigated the monotone Hunters and Rabbit, since monotone strategies
are often easier to deal with. Previous works on the Hunters and Rabbit game in bipartite
graphs G = (Vr ∪ Vw, E) have shown that studying the red variant of the Hunters and
Rabbit game, i.e., when the rabbit is constrained to start in a vertex in Vr, could be very
fruitful. For instance, h(G) = hVr

(G) holds for every bipartite graph G = (Vr ∪ Vw, E),
which helped to get many results on the Hunters and Rabbit game [1, 5, 17]. Therefore,
it is interesting to consider the monotonicity constraint when restricted to the red variant
of the Hunters and Rabbit game. We now focus on investigating the difference between
hVr

(T ) and mhVr
(T ), for any tree T . Thankfully, all the useful properties we observed for

the monotone version can be adapted for the monotone red variant as well.
By Corollary 4, there exists ε > 0 such that, for any k ∈ N, there exists a tree T with

h(T ) ≥ k and mh(T ) ≥ (1 + ε)h(T ). In the following theorem we improve this, by showing
that there exists an infinite family of trees T such that the difference between mh(T ) and
h(T ) is arbitrarily large. This follows from the next theorem since hVr

(T ) = h(T ) and
mh(T ) ≥ mhVr

(T ) for any tree T . Its proof follows from Lemmas 12 and 13, presented
below.

▶ Theorem 11. For every i ≥ 3, there exists a tree T such that mhVr
(T ) ≥ i and hVr

(T ) = 2.

MFCS 2023
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Figure 2 The graph Ti,6. The labels on the edges are used to represent their respective lengths.
In particular, for every 2 ≤ j ≤ 6, we have that pj

i >
∑

1≤k≤j−1 pk
i + ℓi−1, where p1

i = 2 and ℓi−1 is
equal to the number of turns needed to clear any copy of the Ti−1,6 graph.

The construction of the tree Ti,q. Let Sk,q be the rooted tree obtained from q ≥ 6 paths
of length k ≥ 3 (with k edges) by identifying an endpoint of each path into a common vertex
called the root of Sk,q and denoted by c. From now on, let (Vr, Vw) be the bipartition of V (Sk,q)
and assume that c ∈ Vr. Let S1 be a winning hunter strategy such that mhVr

(S3,q) = 2 [7],
and let ℓ1 be the smallest even integer greater or equal to the length of S1.

For every i ≥ 2 and q ≥ 6, let Ti,q be the tree recursively built as follows (see Figure 2).
First, T1,q = S3,q. Then, for i > 1, we assume that Ti−1,q has been defined recursively and
that there exists a winning hunter strategy, of length ℓi−1, using 2 hunters in the red variant
in Ti−1,q. Ti,q is obtained from q vertex disjoint copies T 1

i , . . . , T q
i of Ti−1,q and from a vertex

ci, the root of Ti,q. Then, for every 1 ≤ j ≤ q, add a path P j
i of length pj

i between the root
cj

i of T j
i and ci (that is, ci and cj

i are at distance pi
j in Ti,q). The lengths pj

i are defined
recursively as follows. Let p1

i = 2 and, for every 1 < j ≤ q, let pj
i be the minimum even

integer greater or equal to ℓi−1 +
∑

1≤k<j pk
i . Finally, let us assume that ci ∈ Vr and note

that, since pj
i is even, this implies that ci, c1

i , . . . , cq
i all belong to Vr.

▶ Lemma 12. For any i ∈ N∗ and q ≥ 6, hVr
(Ti,q) = 2.

Sketch of proof. It suffices to give a winning hunter strategy using 2 hunters. The strategy
Si is defined recursively, and consists of q phases. During the jth phase, for 1 ≤ j ≤ q, one
hunter shoots at ci, while the other “pushes” the rabbit toward the subtrees T q

i , then T q−1
i ,

and so on, until T j
i . Then, the two hunters clear the subtree T j

i , following the strategy Si−1

(without the rabbit being able to leave T j
i if it was there). The lengths of the paths linking

the roots of the subtrees to ci guarantee that the rabbit cannot reach ci before T j
i has been

cleared. ◀

As a consequence, the hunter number is not closed under taking a minor.

▶ Lemma 13. For i ≥ 3 and q ≥ 2i, mhVr
(T2i,q) ≥ i.
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Figure 3 A representation of the tree T2i,d. Wiggly edges represent paths whose internal vertices
have degree 2.

Sketch of proof. Let γ2i denote the root of T2i,q (see Figure 3) and assume that
mhVr

(T2i,q) ≤ i − 1. Let B2i
1 , . . . , B2i

q denote the branches of γ2i. The main ingredient
of our proof is that q is large enough so that when, say during round j2i, the first branch
of γ2i, say B2i

1 , is definitively cleared according to any monotone hunter strategy (i.e. the
hunters will never shoot a vertex in B2i

1 for the remaining of the game), then there are at
least two other branches of γ2i, say B2i

2 and B2i
3 , whose vertices have never been shot. Note

that γ2i must be shot during the round j2i or j2i + 1. Then, the same arguments can be
stated recursively on the tree T2i−1,q, contained in the first branch among B2i

2 and B2i
3 that

will be definitively cleared. In addition, we prove that j2i < · · · < j1 and every γq (or some
vertex of Bq

2 or Bq
3), for 1 ≤ q ≤ 2i, must be shot during the round j1 or j1 + 1. Thus, we

obtain that at least i vertices are shot during the round j1 or j1 + 1, a contradiction. ◀

6 Kernelization by vertex cover

Two instances I and I ′ are equivalent when I is a Yes-instance if and only if I ′ is a Yes-
instance. A kernelization algorithm of a parameterized problem Π is a polynomial time
algorithm that maps each instance (I, k) of Π to an equivalent instance (I ′, k′) of Π such
that the size of (I ′, k′) is bounded by g(k) for some computable function g(·). Here, (I ′, k′)
is said to be a kernel. It is well-known that a parameterized problem Π is FPT if and only
if it admits a kernel. We refer to the book [11] for details on parameterized complexity.
We remark that similar techniques were used to obtain kernelization algorithms for several
variants of Cops and Robber game parameterized by vc(G) [14].

Recall that a set U is a vertex cover of a graph G = (V, E) if G[V \ U ] is an independent
set. For the rest of this section, let U be a vertex cover of size t and I be the independent
set G[V \ U ]. If no such vertex cover is given, we can compute a vertex cover using a
2-approximation algorithm [28].

MFCS 2023
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▶ Theorem 14. Let G be a graph having a vertex cover U of size t, and let k ∈ N. Deciding
whether h(G) ≤ k (resp., mh(G) ≤ k) is FPT parameterized by t. More specifically, these
problems admit a kernel with at most 4t(t + 1) + 2t vertices.

Sketch of proof. First, observe that mh(G) ≤ t since the hunters have a monotone winning
strategy by shooting the vertices of U twice. Second, we argue that the standard rule of
removing twins from I leads to an exponential kernel for these questions. More specifically,
we have the following reduction rule along with the rule that if k ≤ t, return a Yes-instance:
If there is some I ′ ⊂ I such that |I ′| > k + 1 and for any two vertices x, y ∈ I ′, N(x) = N(y),
then delete an arbitrary vertex, say v, from I ′ to get G′ and let k′ = k. It is not difficult to
see that this will give us a kernel with at most 2t(t + 1) + t vertices.

Next, we give an intuition regarding the safeness of our reduction rule. It is easy to see
that if (G, k) is a Yes-instance, then (G′, k) is also a Yes-instance as both h(G) and mh(G)
are closed under taking subgraphs. For the reverse direction, and towards a contradiction,
we will assume that (G, k) is a no-instance but (G′, k) is a yes-instance. Since (G′, k) is a
yes instance, there exists a winning hunter strategy S ′ using at most k hunters in G′. Since
(G, k) is a no-instance, there exists a rabbit strategy R winning against S ′ in G. From R, we
can design R′, an equivalent rabbit strategy winning against S ′ in G′, contradicting that
(G′, k) was a yes-instance. ◀

7 Some Future Directions

In this paper, we studied the Hunters and Rabbit game by defining the notion of
monotonicity for this game. Using this notion of monotonicity, we characterised the monotone
hunter number for various classes of graphs. Moreover, we established that, unlike several
Graph Searching games, the monotonicity helps in this game, i.e., h(G) can be arbitrary
smaller than mh(G).

There are still several challenging open questions in this area. The most important among
them is the computational complexity of Hunters and Rabbit. Although our results estab-
lish that computing mh(G) is NP-hard, the computational complexity of computing/deciding
h(G) remains open, even if G is restricted to be a tree.

We also established that both Hunters and Rabbit, as well as its monotone variant,
are FPT parameterised by vc(G) by designing exponential kernels. It is not difficult to see
that both of these variants admit AND Composition parameterised by the solution size
(by taking the disjoint union of the instances). Thus, since computing mh(G) is NP-hard
and pw(G) ≤ mh(G) ≤ pw(G) + 1, it is unlikely for Monotone Hunters and Rabbit
parameterized by k + pw(G) to admit a polynomial compression. Note that the same cannot
be argued about Hunters and Rabbit since it is not yet proved to be NP-hard. Moreover,
since mh(G) is closely related to pw(G) and pathwidth admits a polynomial kernel with
respect to vc(G) [8], it might be interesting to see if deciding mh(G) ≤ k (resp., h(G) ≤ k)
also admits a polynomial kernel when parameterised by vc(G). Moreover, another interesting
research direction is to study the parameterised complexity of both these games by considering
parameters such as solution size, treewidth, and pathwidth.

Finally, we propose some open questions concerning the computation of h(G) for various
graph classes including trees, cographs, and interval graphs. Specifically, it will be interesting
to design a polynomial time algorithm to compute h(T ) for a tree T , a challenge that was
already proposed in [1]. The natural way that one could tackle this question is through
the notion of monotonicity, which we defined and studied in this paper. Unfortunately,
Theorem 11 implies that such an approach will not work. This means that a positive answer
to this question (if any) would require the introduction of new tools and techniques. Moreover,
it would be interesting to know the monotone hunter number of grids.
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