FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges

Fedor V. Fomin \square ()
University of Bergen, Norway
Petr A. Golovach \boxminus (
University of Bergen, Norway
Tanmay Inamdar \boxminus ©
University of Bergen, Norway
Tomohiro Koana \square (
Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Abstract

We study the α-Fixed Cardinality Graph Partitioning (α-FCGP) problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph G, two numbers k, p and $0 \leq \alpha \leq 1$, the question is whether there is a set $S \subseteq V$ of size k with a specified coverage function $\operatorname{cov}_{\alpha}(S)$ at least p (or at most p for the minimization version). The coverage function $\operatorname{cov}_{\alpha}(\cdot)$ counts edges with exactly one endpoint in S with weight α and edges with both endpoints in S with weight $1-\alpha$. α-FCGP generalizes a number of fundamental graph problems such as Densest k-Subgraph, Max k-Vertex Cover, and Max ($k, n-k$)-Cut.

A natural question in the study of α-FCGP is whether the algorithmic results known for its special cases, like Max k-Vertex Cover, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for Max k-Vertex Cover is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for $\alpha>0$ and the subexponential-time algorithms for the problem on apex-minor free graphs for maximization with $\alpha>1 / 3$ and minimization with $\alpha<1 / 3$.

2012 ACM Subject Classification Theory of computation \rightarrow Fixed parameter tractability; Theory of computation \rightarrow Approximation algorithms analysis

Keywords and phrases Partial Vertex Cover, Approximation Algorithms, Max Cut
Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.46
Funding Fedor V. Fomin: Supported by the Research Council of Norway via the project BWCA (grant no. 314528).
Petr A. Golovach: Supported by the Research Council of Norway via the project BWCA (grant no. 314528).

Tanmay Inamdar: Supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (LOPRE grant no. 819416).
Tomohiro Koana: Supported by the DFG project DiPa (NI 369/21).

1 Introduction

In this work, we study a broad class of problems called α-Fixed Cardinality Graph Partitioning (α-FCGP) , originally introduced by Bonnet et al. [2] ${ }^{1}$. The input is a graph $G=(V, E)$, two non-negative integers k, p, and a real number $0 \leq \alpha \leq 1$. The question is whether there is a set $S \subseteq V$ of size exactly k with $\operatorname{cov}_{\alpha}(S) \geq p\left(\operatorname{cov}_{\alpha}(S) \leq p\right.$ for the minimization variant), where

[^0]
© Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, and Tomohiro Koana;
$$
\operatorname{cov}_{\alpha}(S):=(1-\alpha) \cdot m(S)+\alpha \cdot m(S, V \backslash S)
$$

Here, $m(S)$ is the number of edges with both endpoints in S, and $m(S, V \backslash S)$ is the number of edges with one endpoint in S and other in $V \backslash S$. We will call the maximization and minimization problems Max α-FCGP and Min α-FCGP, respectively. This problem generalizes many problems, namely, Densest k-Subgraph (for $\alpha=0$), Max k-Vertex CovER^{2} (for $\alpha=1 / 2$), MAX $(k, n-k)$-CuT (for $\alpha=1$), and their minimization counterparts.

Although there are plethora of publications that study these special cases, the general α-FCGP has not received much attention, except for the work of Bonnet et al. [2], Koana et al. [19], and Schachnai and Zehavi [23]. In this paper, we aim to demonstrate the wider potential of the existing algorithms designed for specific cases, such as Max k-VERTEX Cover, by presenting an algorithm that can handle the more general problem of α-FCGP. Algorithms for these specific cases often rely on greedy vertex degree orderings. For instance, Manurangsi [20], showing that a (1- ε)-approximate solution can be found in the set of $\mathcal{O}(k / \varepsilon)$ vertices with the largest degrees, gave a $(1-\varepsilon)$-approximation algorithm for MAX k-VERTEX Cover that runs in time $(1 / \varepsilon)^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$. Fomin et al. [14] gave a $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$-time algorithm for MAX k-VERTEX COVER on apex-minor graphs via bidimensionality arguments, by showing that an optimal solution S is adjacent to every vertex of degree at least $d+1$, where d is the minimum degree over vertices in S. In this work, we will give approximation algorithms as well as subexponential-time algorithms for apex-minor free graphs exploiting the greedy vertex ordering.

For approximation algorithms, we will show that both MAx α-FCGP and Min α-FCGP admit FPT Approximation Schemes (FPT-AS) for $\alpha>0$, i.e., there is an algorithm running in time $f(k, \alpha, \varepsilon) \cdot n^{\mathcal{O}(1)}$ that finds a set S of size k with $\operatorname{cov}_{\alpha}(S) \geq(1-\varepsilon) \cdot$ OPT (or $\operatorname{cov}_{\alpha}(S) \leq(1+\varepsilon) \cdot$ OPT for the minimization variant), where OPT denotes the optimal value of p. Previously, the special cases were known to admit FPT approximation schemes; see [22, 16, 17, 20] for $\alpha=1 / 2$ and [2] for $\alpha=1$. In particular, the state-of-the-art running time for $\alpha=1 / 2$ is the aforementioned algorithm of Manurangsi that runs in time $(1 / \varepsilon)^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ for maximization (also for the minimization variant). For $\alpha=0$, the situation is more negative; MAx α-FCGP (namely, DEnsest k-Subgraph) does not admit any $o(k)$-approximation algorithm with running time $f(k) \cdot n^{\mathcal{O}(1)}$ under the Strongish Planted Clique Hypothesis [21]. Min α-FCGP is also hard to approximate when $\alpha=0$ since it encompasses Independent SET as a special case for $p=0$.

Next, we discuss the regime of subexponential-time algorithms. Amini et al. [1] showed that Max k-Vertex Cover is FPT on graphs of bounded degeneracy, including planar graphs, giving a $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$-time algorithm. They left it open whether it can be solved in time $2^{o(k)} \cdot n^{O(1)}$. This was answered in the affirmative by Fomin et al. [14], who showed that Max k-Vertex Cover on apex-minor free graphs can be solved in time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$ time. Generalizing this result, we give a $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$-time algorithm for Max α-FCGP with $\alpha>1 / 3$ and Min α-FCGP with $\alpha<1 / 3$. The complexity landscape of Max α-FCGP with $\alpha<1 / 3$ (and Min α-FCGP with $\alpha>1 / 3$) is not well understood. It is a long-standing open question whether Densest k-Subgraph on planar graphs is NP-hard [4]. Note that the special case Clique is trivially polynomial-time solvable on planar graphs because a clique on 5 vertices does not admit a planar embedding.

[^1]
Further related work

As mentioned, special cases of α-FCGP when $\alpha \in\{0,1 / 2,1\}$ have been extensively studied. For instance, the W[1]-hardness for the parameter k has been long known for these special cases $[3,11,15]$. Both MAx α-FCGP and Min α-FCGP are actually $\mathrm{W}[1]$-hard for every $\alpha \in[0,1]$ with the exception $\alpha \neq 1 / 3$, as can be seen from a parameterized reduction from Clique and Independent Set on regular graphs. Note that α-Fixed Cardinality Graph Partitioning becomes trivial when $\alpha=1 / 3$ because $\operatorname{cov}_{\alpha}(S)=\frac{1}{3} \cdot \sum_{v \in S} d(v)$ for any $S \subseteq V$ where $d(v)$ is the degree of v.

Bonnet et al. [2] gave a $(\Delta k)^{2 k} \cdot n^{\mathcal{O}(1)}$-time algorithm for α-FCGP where Δ is the maximum degree. They also gave an algorithm with running time $\Delta^{k} \cdot n^{\mathcal{O}(1)}$ for Max α-FCGP with $\alpha>1 / 3$ and Min α-FCGP with $\alpha<1 / 3$. This result was strengthened by Schachnai and Zehavi [23]; they gave a $4^{k+o(k)} \Delta^{k} \cdot n^{\mathcal{O}(1)}$-time algorithm for any value of α. Koana et al. [19] showed that MAX α-FCGP admits polynomial kernels on sparse families of graphs when $\alpha>1 / 3$. For instance, Max α-FCGP admits a $k^{\mathcal{O}(d)}$-sized kernel where d is the degeneracy of the input graph. They also showed analogous results for Min α-FCGP with $\alpha<1 / 3$.

Preliminaries

For an integer n, let $[n]$ denote the set $\{1, \cdots, n\}$.
We use the standard graph-theoretic notation and refer to the textbook of Diestel [10] for undefined notions. In this work, we assume that all graphs are simple and undirected. For a graph G and a vertex set S, let $G[S]$ be the subgraph of G induced by X. For a vertex v in G, let $d(v)$ be its degree, i.e., the number of its neighbors. For vertex sets X, Y, let $m(X):=|\{u v \in E \mid u, v \in X\}|$ and $m(X, Y):=|\{u v \in E \mid u \in X, v \in Y\}|$. In this work, an optimal solution for Max α-FCGP (and Min α-FCGP) is a vertex set S of size k such that $\operatorname{cov}_{\alpha}(S) \geq \operatorname{cov}_{\alpha}\left(S^{\prime}\right)\left(\right.$ resp., $\left.\operatorname{cov}_{\alpha}(S) \leq \operatorname{cov}_{\alpha}\left(S^{\prime}\right)\right)$ for every vertex set of size k. A graph H is a minor of G if a graph isomorphic to H can be obtained from G by vertex and edge removals and edge contractions. Given a graph H, a family of graph \mathcal{H} is said to be H-minor free if there is no $G \in \mathcal{H}$ having H as a minor. A graph H is an apex graph if H can be made planar by the removal of a single vertex.

We refer to the textbook of Cygan et al. [5] for an introduction to Parameterized Complexity and we refer to the paper of Marx [22] for an introduction to the area of parameterized approximation.

2 FPT Approximation Algorithms

In this section, we design an FPT Approximation Scheme for MAX α-FCGP as well as Min α-FCGP parameterized by k and α, assuming $\alpha>0$. More specifically, we prove the following theorem.

- Theorem 1. For any $0<\alpha \leq 1$ and $0<\epsilon \leq 1$, Max α-FCGP and Min α-FCGP each admits an FPT-AS parameterized by k, ϵ and α. More specifically, given a graph $G=(V, E)$ and an integer k, there exists an algorithm that runs in time $f(k, \alpha, \epsilon) \cdot n^{\mathcal{O}(1)}$, and finds a set $S \subseteq V$ such that $\operatorname{cov}_{\alpha}(S) \geq(1-\epsilon) \cdot \operatorname{cov}_{\alpha}(O)$ for MAX α-FCGP and $\operatorname{cov}_{\alpha}(S) \leq(1+\varepsilon) \cdot \operatorname{cov}_{\alpha}(O)$ for Min α-FCGP, where $O \subseteq V$ is an optimal solution.

For the case that OPT $:=\operatorname{cov}_{\alpha}(O)$ is large, the following greedy argument will be helpful.

- Lemma 2. For Max α-FCGP, let S be the set of k vertices with the largest degrees. Then, $\operatorname{cov}_{\alpha}(S) \geq$ OPT $-2 k^{2}$. For Min α-FCGP, let S be the set of k vertices with the smallest degrees. Then, $\operatorname{cov}_{\alpha}(S) \leq \mathrm{OPT}+2 k^{2}$.

Proof. Without loss of generality, we assume that $O \neq S$. Let $S \backslash O=\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$, and $O \backslash S=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$, where $1 \leq t \leq k$. Here, we index the vertices so that $d\left(y_{i}\right) \geq d\left(y_{j}\right)$ and $d\left(w_{i}\right) \geq d\left(w_{j}\right)$ (for Min α-FCGP, $d\left(y_{i}\right) \leq d\left(y_{j}\right)$ and $\left.d\left(w_{i}\right) \leq d\left(w_{j}\right)\right)$ for $i<j$. Note that due to the choice of S, it holds that $d\left(y_{i}\right) \geq d\left(w_{i}\right)\left(d\left(y_{i}\right) \leq d\left(w_{i}\right)\right.$ for Min α-FCGP) for each $1 \leq i \leq t$.

Now we define a sequence of solutions $O_{0}, O_{1}, \ldots, O_{t}$, where $O_{0}=O$, and for each $1 \leq i \leq t, O_{i}:=\left(O_{i-1} \backslash\left\{w_{i}\right\}\right) \cup\left\{y_{i}\right\}$. Note that $O_{t}=S$. We claim that for each $1 \leq i \leq t$, $\operatorname{cov}_{\alpha}\left(O_{i}\right) \geq \operatorname{cov}_{\alpha}\left(O_{i-1}\right)-2 k$ for MAx α-FCGP and $\operatorname{cov}_{\alpha}\left(O_{i}\right) \leq \operatorname{cov}_{\alpha}\left(O_{i-1}\right)+2 k$ for Min α-FCGP. To this end, we note that O_{i} is obtained from O_{i-1} by removing w_{i} and adding y_{i}. Thus, $\operatorname{cov}_{\alpha}\left(O_{i}\right)=\operatorname{cov}_{\alpha}\left(O_{i-1}\right)-\left(\alpha m_{1}+((1-\alpha)-\alpha) \cdot m_{2}\right)+\alpha m_{3}+((1-\alpha)-\alpha) \cdot m_{4}$, where

$$
\begin{array}{ll}
m_{1}:=m\left(\left\{w_{i}\right\}, V \backslash O_{i-1}\right), & m_{2}:=m\left(\left\{w_{i}\right\}, O_{i-1} \backslash\left\{w_{i}\right\}\right), \\
m_{3}:=m\left(\left\{y_{i}\right\}, V \backslash O_{i}\right), & m_{4}:=m\left(\left\{y_{i}\right\}, O_{i} \backslash\left\{w_{i}\right\}\right) .
\end{array}
$$

Observe that $d\left(w_{i}\right)-k \leq m_{1} \leq d\left(w_{i}\right), d\left(y_{i}\right)-k \leq m_{3} \leq d\left(y_{i}\right)$, and $0 \leq m_{2}, m_{4} \leq k$. We consider Max α-FCGP first. We have that

$$
\begin{aligned}
\operatorname{cov}_{\alpha}\left(O_{i}\right) & =\operatorname{cov}_{\alpha}\left(O_{i-1}\right)+\alpha\left(m_{3}-m_{1}\right)+(1-2 \alpha)\left(m_{4}-m_{2}\right) \\
& \geq \operatorname{cov}_{\alpha}\left(O_{i-1}\right)+\alpha\left(m_{3}-m_{1}\right)-\left|(1-2 \alpha)\left(m_{4}-m_{2}\right)\right| .
\end{aligned}
$$

Since $m_{3}-m_{1} \geq d\left(y_{i}\right)-d\left(w_{i}\right)-k \geq-k$ and $\left|(1-2 \alpha)\left(m_{4}-m_{2}\right)\right| \leq k$, we obtain $\operatorname{cov}_{\alpha}\left(O_{i}\right) \geq$ $\operatorname{cov}_{\alpha}\left(O_{i-1}\right)-2 k$, regardless of the value of α. We consider Min α-FCGP next. It holds that

$$
\begin{aligned}
\operatorname{cov}_{\alpha}\left(O_{i}\right) & =\operatorname{cov}_{\alpha}\left(O_{i-1}\right)+\alpha\left(m_{3}-m_{1}\right)+(1-2 \alpha)\left(m_{4}-m_{2}\right) \\
& \leq \operatorname{cov}_{\alpha}\left(O_{i-1}\right)+\alpha\left(m_{3}-m_{1}\right)+\left|(1-2 \alpha)\left(m_{4}-m_{2}\right)\right| .
\end{aligned}
$$

Since $m_{3}-m_{1} \leq d\left(y_{i}\right)-d\left(w_{i}\right)+k \leq k$ and $\left|(1-2 \alpha)\left(m_{4}-m_{2}\right)\right| \leq k$, we obtain $\operatorname{cov}_{\alpha}\left(O_{i}\right) \leq$ $\operatorname{cov}_{\alpha}\left(O_{i-1}\right)+2 k$, regardless of the value of α.

Therefore, $\operatorname{cov}_{\alpha}\left(O_{t}\right) \geq \operatorname{cov}_{\alpha}\left(O_{0}\right)-2 k t \geq$ OPT $-2 k^{2}$ for MAx α-FCGP and $\operatorname{cov}_{\alpha}\left(O_{t}\right) \leq$ $\operatorname{cov}_{\alpha}\left(O_{0}\right)+2 k t \leq \mathrm{OPT}+2 k^{2}$ for Min α-FCGP.

Lemma 2 allows us to find an approximate solution when OPT is sufficiently large. The case that OPT is small remains. We use different approaches for MAx α-FCGP and Min α-FCGP.

Algorithm for MAX α-FCGP

Let v_{1} be a vertex with the largest degree. Our algorithm considers two cases depending on whether $d\left(v_{1}\right)>\Delta:=\frac{2 k^{2}}{\epsilon \alpha}+k$. If $d\left(v_{1}\right)>\Delta$, we can argue that the set S from Lemma 2 a $(1-\epsilon)$-approximate solution. To that end, we make the following observation.

- Observation 3. If $d\left(v_{1}\right)>\Delta$, then $2 k^{2} \leq \epsilon \cdot \operatorname{cov}_{\alpha}(S)$.

Proof. Note that $m(S, V \backslash S)=\sum_{u \in S} m(\{u\}, V \backslash S) \geq m\left(\left\{v_{1}\right\}, V \backslash S\right) \geq d\left(v_{1}\right)-k$, where the inequality follows from the fact that at most k edges incident to v_{1} can have the other endpoint in S. This implies that

$$
\operatorname{cov}_{\alpha}(S) \geq \alpha \cdot m(S, V \backslash S) \geq \alpha \cdot\left(d\left(v_{1}\right)-k\right) \geq \frac{2 k^{2}}{\epsilon}
$$

Where we use the assumptions that $0<\alpha \leq 1$ and $d\left(v_{1}\right) \geq \Delta$.

Thus, for $d\left(v_{1}\right)>\Delta$, we have OPT $\leq \operatorname{cov}_{\alpha}(S)+2 k^{2} \leq(1+\varepsilon) \cdot \operatorname{cov}_{\alpha}(S)$, and thus $\operatorname{cov}_{\alpha}(S) \geq$ $(1-\varepsilon) \cdot$ OPT.

So assume that $d\left(v_{1}\right)<\Delta$. In this case, the maximum degree of the graph is bounded by Δ. Let $O \subseteq V$ be an optimal solution. Then the total number of edges contributing to $\operatorname{cov}_{\alpha}(O)$ is bounded by $k \Delta=\mathcal{O}\left(k^{3} / \alpha \epsilon\right)$. Let Q be the set of vertices in $V \backslash O$ that have a neighbor in O, and note that $|Q|=\mathcal{O}\left(k^{3} / \alpha \epsilon\right)$. Let $z=|O|+|Q|$, and note that $z=\mathcal{O}\left(k^{3} / \alpha \epsilon\right)$.

We first guess the structure of the subgraph $G^{\prime}=\left(O \cup Q, E^{\prime}\right)$, where E^{\prime} consists of all edges with at least one endpoint in O. For each guess for G^{\prime}, we check whether there exists a subgraph in G that is isomorphic to G^{\prime}. Over all guesses where we find an isomorphic subgraph, we return the solution maximizing the $\operatorname{cov}_{\alpha}(\cdot)$ value. Note that the number of guesses is bounded by $2^{z^{2}}=g(k, \alpha, \epsilon)$. Since the maximum degree of G is bounded by Δ, and the number of vertices in the subgraph corresponding to each guess is z, we can solve each instance of SUBGRaph Isomophism in time $2^{\mathcal{O}(z \Delta)} z!\cdot n^{\mathcal{O}(1)}=g^{\prime}(k, \alpha, \epsilon) \cdot n^{\mathcal{O}(1)}$ using random separation, e.g., Theorem 5.7 in [5]. Thus, overall, the running time of the algorithm is bounded by some $f(k, \alpha, \epsilon) \cdot n^{\mathcal{O}(1)}$. Combining both cases, we conclude the proof of Theorem 1 .

Algorithm for MIN α-FCGP

For Min α-FCGP, our algorithm considers two cases depending on the value of OPT. If OPT $\geq \frac{2 k^{2}}{\varepsilon}$, then our algorithm returns the set S from Lemma 2. Note that $\operatorname{cov}_{\alpha}(S) \leq$ OPT $+2 k^{2} \leq(1+\varepsilon) \cdot$ OPT.

Now suppose that OPT $<\frac{2 k^{2}}{\varepsilon}$. In this case, we know that O cannot contain a vertex of degree larger than $\Delta=\frac{2 k^{2}}{\alpha \epsilon}+k$, for otherwise, $\operatorname{cov}_{\alpha}(O)>\alpha(\Delta-k) \geq \mathrm{OPT}$, which is a contradiction.

In this case, we can guess the structure of $G^{\prime}=\left(O \cup N(O), E^{\prime}\right)$, where E^{\prime} consists of all edges with at least one endpoint in E^{\prime}. Then, we can find a subgraph isomorphic to G^{\prime} using an FPT algorithm (we can delete the edges between all vertices whose degree is larger than Δ). This takes FPT time.

Since the value of OPT is unknown to us, we cannot directly conclude which case is applicable. So we find a solution for each case and return a better one.

3 Subexponential FPT Algorithm for MAx α-FCGP on Apex-Minor Free Graphs

Fomin et al. [14] showed that Partial Vertex Cover on apex-minor free graphs can be solved in time $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$. In this section, we will prove its generalization to MaX α-FCGP as well as Min α-FCGP:

- Theorem 4. For an apex graph H, let \mathcal{H} be a family of H-minor free graphs.
- For any $\alpha \geq 1 / 3$, Max α-FCGP for \mathcal{H} can be solved in $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$ time.
- For any $\alpha \leq 1 / 3$, Min α-FCGP for \mathcal{H} can be solved in $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$ time.

We will give a proof for the maximization variant. The minimization variant follows analogously. Let $\sigma=v_{1}, v_{2}, \ldots, v_{n}$ be an ordering of vertices of V in the non-increasing order of degrees, with ties broken arbitrarily. That is, $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n-1}\right) \geq d\left(v_{n}\right)$. We will denote the graph by $G=\left(V_{\sigma}, E\right)$ to emphasize the fact that the vertex set is ordered w.r.t. σ. We also let $V_{\sigma}^{j}=\left\{v_{1}, \ldots, v_{j}\right\}$. We first prove the following lemma.

- Lemma 5. Let $G=\left(V_{\sigma}, E\right)$ be a yes-instance for MAx α-FCGP, where $1 / 3 \leq \alpha \leq 1$. Let $C=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right\}$ be the lexicographically smallest solution for MAX α-FCGP and $u_{i_{k}}=v_{j}$ for some j. Then C is a dominating set of size k for $G\left[V_{\sigma}^{j}\right]$.

Proof. Suppose for the contradiction that C is not a dominating set for $G\left[V_{\sigma}^{j}\right]$. Then, there exists a vertex v_{i} with $1 \leq i<j$ such that $N\left[v_{i}\right] \cap C=\emptyset$. Set $C^{\prime}=\left(C \backslash\left\{v_{j}\right\}\right) \cup\left\{v_{i}\right\}$. Note that $d\left(v_{i}\right) \geq d\left(v_{j}\right)$. Define the following:

$$
\begin{aligned}
& m_{1}=m\left(\left\{v_{j}\right\}, V \backslash C\right), \\
& m_{2}=m\left(\left\{v_{j}\right\}, C \backslash\left\{v_{j}\right\}\right), \\
& m_{3}=m\left(\left\{v_{i}\right\},(V \backslash C) \cup\left\{v_{j}\right\}\right)=d\left(v_{i}\right), \\
& m_{4}=m\left(\left\{v_{i}\right\}, C \backslash\left\{v_{j}\right\}\right)=0 .
\end{aligned}
$$

We will show that C^{\prime} is another solution for the MAx α-FCGP instance. Since $C^{\prime} \backslash\left\{v_{i}\right\}=$ $C \backslash\left\{v_{j}\right\}$, it suffices to show that

$$
\operatorname{cov}_{\alpha}\left(C^{\prime}\right)-\operatorname{cov}_{\alpha}(C)=\left(\operatorname{cov}_{\alpha}\left(C^{\prime}\right)-\operatorname{cov}_{\alpha}\left(C^{\prime} \backslash\left\{v_{i}\right\}\right)\right)-\left(\operatorname{cov}_{\alpha}(C)-\operatorname{cov}_{\alpha}\left(C \backslash\left\{v_{j}\right\}\right)\right)
$$

is nonnegative. By definition,

$$
\begin{align*}
& \operatorname{cov}_{\alpha}\left(C^{\prime}\right)-\operatorname{cov}_{\alpha}\left(C^{\prime} \backslash\left\{v_{i}\right\}\right)=\alpha \cdot m_{3}+((1-\alpha)-\alpha) \cdot m_{4}=\alpha \cdot d\left(v_{i}\right) \text { and } \\
& \operatorname{cov}_{\alpha}(C)-\operatorname{cov}_{\alpha}\left(C \backslash\left\{v_{j}\right\}\right)=\alpha \cdot m_{1}+((1-\alpha)-\alpha) \cdot m_{2} \leq \alpha \cdot\left(m_{1}+m_{2}\right)=\alpha \cdot d\left(v_{j}\right), \tag{1}
\end{align*}
$$

where the inequality is due to the assumption that $\alpha \geq 1 / 3$. Therefore,

$$
\operatorname{cov}_{\alpha}\left(C^{\prime}\right)-\operatorname{cov}_{\alpha}(C)=\alpha \cdot\left(d\left(v_{i}\right)-d\left(v_{j}\right)\right) \geq 0
$$

which is a contradiction to the assumption that C is the lexicographically smallest solution for Max α-FCGP.

In view of Lemma 5, we can use the following approach to search for the lexicographically smallest solution C. First, we guess the last vertex v_{j} of C in the ordering σ, i.e., we search for a solution C such that $v_{j} \in C$ and $C \subseteq V_{\sigma}^{j}$. If $G\left[V_{\sigma}^{j}\right]$ has no dominating set of size at most, say $2 k$, then we reject. This can be done in polynomial time, since Dominating Set admits a PTAS on apex-minor free graphs [7]. We thus may assume that there is a dominating set of size $2 k$ in $G\left[V_{\sigma}^{j}\right]$. It is known that an apex-minor free graph with a dominating set of size κ has treewidth $\mathcal{O}(\sqrt{\kappa})$, where \mathcal{O} hides a factor depending on the apex graph whose minors are excluded $[6,9,12]$. We can use a constant-factor approximation algorithm of Demaine [8] to find a tree decomposition \mathcal{T} of width $w \in \mathcal{O}(\sqrt{k})$. Finally, we solve the problem via dynamic programming over the tree decomposition. Bonnet et al. [2] gave a $\mathcal{O}^{*}\left(2^{w}\right)$-time algorithm that solves Max α-FCGP with a tree decomposition of width w given. We need to solve a slightly more general problem because \mathcal{T} is the tree decomposition is over V_{σ}^{j}. To remove $V \backslash V_{\sigma}^{j}$, we introduce a weight $\omega: V_{\sigma}^{j} \rightarrow \mathbb{N}$ defined by $\omega(v)=\left|N(v) \cap\left(V \backslash V_{\sigma}^{j}\right)\right|$. The objective is then to maximize $\operatorname{cov}_{\alpha}(C)+\alpha \sum_{v \in C} \omega(C)$. The dynamic programming algorithm of Bonnet et al. can be adapted to solve this weighted variant in the same running time. Thus, we obtain a $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$-time algorithm for MAx α-FCGP.

For Min α-FCGP, we can show the following lemma whose proof is omitted because it is almost analogous to the previous one. The only change is that, V_{σ} refers to the vertices in the non-decreasing order of degrees. Also, we consider the regime where $0 \leq \alpha \leq 1 / 3$, which implies $\alpha \leq 1-2 \alpha$, which would give the reverse inequality in (1).

- Lemma 6. Let $G=\left(V_{\sigma}, E\right)$ be a yes-instance for MAx α-FCGP, where $0 \leq \alpha \leq 1 / 3$. Let $C=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right\}$ be the lexicographically smallest solution for MAX α-FCGP and $u_{i_{k}}=v_{j}$ for some j. Then C is a dominating set of size k for $G\left[V_{\sigma}^{j}\right]$.

With this lemma at hand, an analogous algorithm solves Min α-FCGP in $2^{\mathcal{O}(\sqrt{k})} \cdot n^{\mathcal{O}(1)}$ time, thereby proving Theorem 4.

4 Conclusion

In this paper, we demonstrated that the algorithms exploiting the "degree-sequence" that have been successful for designing algorithms for Max k-VERTEX COVER naturally generalize to Max/Min α-FCGP. Specifically, we designed FPT approximations for MAx/Min α-FCGP parameterized by k, α, and ϵ, for any $\alpha \in(0,1]$. For MAX α-FCGP, this result is tight since, when $\alpha=0$, the problem is equivalent to DEnsest k-SUbgraph, which is hard to approximate in FPT time [21]. We also designed subexponential FPT algorithms for MAX α-FCGP (resp. Min α-FCGP) for the range $\alpha \geq 1 / 3$ (resp. $\alpha \leq 1 / 3$) on any apex-minor closed family of graphs. It is a natural open question whether one can obtain subexponential FPT algorithms for Max/Min α-FCGP for the entire range $\alpha \in[0,1]$. A notable special case is that of Densest k-SUbGRaph on planar graphs. In this case, the problem is not even known to be NP-hard, if the subgraph is allowed to be disconnected. For the Densest Connected k-Subgraph problem, it was shown by Keil and Brecht [18] that the problem is NP-complete on planar graphs. From the other side, it can be shown that Densest Connected k-Subgraph admits a subexponential in k randomized algorithm on apex-minor free graphs using the general results of Fomin et al. [13]. Thus, dealing with disconnected dense subgraphs is difficult for both algorithms and lower bounds.

References

1 Omid Amini, Fedor V. Fomin, and Saket Saurabh. Implicit Branching and Parameterized Partial Cover Problems. Journal of Computer and System Sciences, 77(6):1159-1171, 2011.
2 Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Multiparameter Analysis for Local Graph Partitioning Problems: Using Greediness for Parameterization. Algorithmica, 71(3):566-580, 2015.
3 Leizhen Cai. Parameterized Complexity of Cardinality Constrained Optimization Problems. The Computer Journal, 51(1):102-121, 2008.
4 Derek G. Corneil and Yehoshua Perl. Clustering and domination in perfect graphs. Discret. Appl. Math., 9(1):27-39, 1984. doi:10.1016/0166-218X (84) 90088-X.
5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
6 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Bidimensional parameters and local treewidth. SIAM J. Discret. Math., 18(3):501-511, 2004. doi:10.1137/S0895480103433410.
7 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Bidimensionality: new connections between FPT algorithms and PTASs. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 590-601. SIAM, 2005. URL: http://dl.acm.org/citation.cfm? id=1070432. 1070514 .
8 Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic graph minor theory: Decomposition, approximation, and coloring. In 46 th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 637-646. IEEE Computer Society, 2005. doi:10.1109/SFCS. 2005. 14.

9 Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth with applications through bidimensionality. Comb., 28(1):19-36, 2008. doi:10.1007/ s00493-008-2140-4.
10 Reinhard Diestel. Graph Theory, 4 th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
11 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto-Rodriguez, and Frances A. Rosamond. Cutting up is hard to do: the parameterized complexity of k-cut and related problems. In Computing: the Australasian Theory Symposiumm, CATS 2003, Adelaide, SA, Australia, February 4-7, 2003, volume 78 of Electronic Notes in Theoretical Computer Science, pages 209-222. Elsevier, 2003. doi:10.1016/S1571-0661(04)81014-4.
12 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction bidimensionality: The accurate picture. In Algorithms - ESA 2009, $1^{\text {ry }}$ th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 706-717. Springer, 2009. doi:10.1007/978-3-642-04128-0_63.
13 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Subexponential parameterized algorithms for planar and apex-minorfree graphs via low treewidth pattern covering. SIAM J. Comput., 51(6):1866-1930, 2022. doi:10.1137/19m1262504.
14 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subexponential algorithms for partial cover problems. Inf. Process. Lett., 111(16):814-818, 2011. doi: 10.1016/j.ipl.2011.05.016.

15 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized Complexity of Vertex Cover Variants. Theory of Computing Systems, 41(3):501-520, 2007.
16 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for k-cut. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 113-123. IEEE Computer Society, 2018. doi: 10.1109/FOCS 2018.00020.

17 Anupam Gupta, Euiwoong Lee, and Jason Li. An FPT algorithm beating 2-approximation for k-cut. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2821-2837. SIAM, 2018. doi:10.1137/1.9781611975031.179.

18 J. Mark Keil and Timothy B. Brecht. The complexity of clustering in planar graphs. J. Combin. Math. Combin. Comput., 9:155-159, 1991.
19 Tomohiro Koana, Christian Komusiewicz, André Nichterlein, and Frank Sommer. Covering Many (or Few) Edges with k Vertices in Sparse Graphs. In Proceedings of the 39th International Symposium on Theoretical Aspects of Computer Science (STACS '22), volume 219 of LIPIcs, pages 42:1-42:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
20 Pasin Manurangsi. A Note on Max k-Vertex Cover: Faster FPT-AS, Smaller Approximate Kernel and Improved Approximation. In 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA, volume 69 of OASIcs, pages 15:1-15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/OASIcs.SOSA.2019.15.
21 Pasin Manurangsi, Aviad Rubinstein, and Tselil Schramm. The strongish planted clique hypothesis and its consequences. In 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 10:1-10:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs . ITCS. 2021. 10.
22 Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):6078, 2008. doi:10.1093/comjnl/bxm048.
23 Hadas Shachnai and Meirav Zehavi. Parameterized Algorithms for Graph Partitioning Problems. Theory of Computing Systems, 61(3):721-738, 2017. doi:10.1007/s00224-016-9706-0.

[^0]: ${ }^{1}$ Bonnet et al. [2] called the problem "local graph partitioning problem", however we adopt the nomenclature from Koana et al. [19].

[^1]: 2 This is problem is also referred to as Partial Vertex Cover.

