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Abstract
We study the α-Fixed Cardinality Graph Partitioning (α-FCGP) problem, the generic local
graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we
are given a graph G, two numbers k, p and 0 ≤ α ≤ 1, the question is whether there is a set S ⊆ V

of size k with a specified coverage function covα(S) at least p (or at most p for the minimization
version). The coverage function covα(·) counts edges with exactly one endpoint in S with weight α

and edges with both endpoints in S with weight 1−α. α-FCGP generalizes a number of fundamental
graph problems such as Densest k-Subgraph, Max k-Vertex Cover, and Max (k, n − k)-Cut.

A natural question in the study of α-FCGP is whether the algorithmic results known for its
special cases, like Max k-Vertex Cover, could be extended to more general settings. One of the
simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019]
and subexponential algorithms [Fomin et al. IPL 2011] for Max k-Vertex Cover is based on the
greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree
ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for α > 0 and
the subexponential-time algorithms for the problem on apex-minor free graphs for maximization
with α > 1/3 and minimization with α < 1/3.
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1 Introduction

In this work, we study a broad class of problems called α-Fixed Cardinality Graph
Partitioning (α-FCGP), originally introduced by Bonnet et al. [2] 1. The input is a graph
G = (V, E), two non-negative integers k, p, and a real number 0 ≤ α ≤ 1. The question
is whether there is a set S ⊆ V of size exactly k with covα(S) ≥ p (covα(S) ≤ p for the
minimization variant), where

1 Bonnet et al. [2] called the problem “local graph partitioning problem”, however we adopt the nomen-
clature from Koana et al. [19].
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46:2 FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges

covα(S) := (1 − α) · m(S) + α · m(S, V \ S).

Here, m(S) is the number of edges with both endpoints in S, and m(S, V \ S) is the number
of edges with one endpoint in S and other in V \ S. We will call the maximization and
minimization problems Max α-FCGP and Min α-FCGP, respectively. This problem
generalizes many problems, namely, Densest k-Subgraph (for α = 0), Max k-Vertex
Cover2 (for α = 1/2), Max (k, n−k)-Cut (for α = 1), and their minimization counterparts.

Although there are plethora of publications that study these special cases, the general
α-FCGP has not received much attention, except for the work of Bonnet et al. [2], Koana
et al. [19], and Schachnai and Zehavi [23]. In this paper, we aim to demonstrate the wider
potential of the existing algorithms designed for specific cases, such as Max k-Vertex
Cover, by presenting an algorithm that can handle the more general problem of α-FCGP.
Algorithms for these specific cases often rely on greedy vertex degree orderings. For instance,
Manurangsi [20], showing that a (1−ε)-approximate solution can be found in the set of O(k/ε)
vertices with the largest degrees, gave a (1 − ε)-approximation algorithm for Max k-Vertex
Cover that runs in time (1/ε)O(k) · nO(1). Fomin et al. [14] gave a 2O(

√
k) · nO(1)-time

algorithm for Max k-Vertex Cover on apex-minor graphs via bidimensionality arguments,
by showing that an optimal solution S is adjacent to every vertex of degree at least d + 1,
where d is the minimum degree over vertices in S. In this work, we will give approximation
algorithms as well as subexponential-time algorithms for apex-minor free graphs exploiting
the greedy vertex ordering.

For approximation algorithms, we will show that both Max α-FCGP and Min α-FCGP
admit FPT Approximation Schemes (FPT-AS) for α > 0, i.e., there is an algorithm running
in time f(k, α, ε) · nO(1) that finds a set S of size k with covα(S) ≥ (1 − ε) · OPT (or
covα(S) ≤ (1 + ε) · OPT for the minimization variant), where OPT denotes the optimal value
of p. Previously, the special cases were known to admit FPT approximation schemes; see
[22, 16, 17, 20] for α = 1/2 and [2] for α = 1. In particular, the state-of-the-art running time
for α = 1/2 is the aforementioned algorithm of Manurangsi that runs in time (1/ε)O(k) · nO(1)

for maximization (also for the minimization variant). For α = 0, the situation is more negative;
Max α-FCGP (namely, Densest k-Subgraph) does not admit any o(k)-approximation
algorithm with running time f(k) · nO(1) under the Strongish Planted Clique Hypothesis [21].
Min α-FCGP is also hard to approximate when α = 0 since it encompasses Independent
Set as a special case for p = 0.

Next, we discuss the regime of subexponential-time algorithms. Amini et al. [1] showed
that Max k-Vertex Cover is FPT on graphs of bounded degeneracy, including planar
graphs, giving a kO(k) · nO(1)-time algorithm. They left it open whether it can be solved in
time 2o(k) · nO(1). This was answered in the affirmative by Fomin et al. [14], who showed
that Max k-Vertex Cover on apex-minor free graphs can be solved in time 2O(

√
k) · nO(1)

time. Generalizing this result, we give a 2O(
√

k) · nO(1)-time algorithm for Max α-FCGP
with α > 1/3 and Min α-FCGP with α < 1/3. The complexity landscape of Max α-FCGP
with α < 1/3 (and Min α-FCGP with α > 1/3) is not well understood. It is a long-standing
open question whether Densest k-Subgraph on planar graphs is NP-hard [4]. Note that
the special case Clique is trivially polynomial-time solvable on planar graphs because a
clique on 5 vertices does not admit a planar embedding.

2 This is problem is also referred to as Partial Vertex Cover.
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Further related work

As mentioned, special cases of α-FCGP when α ∈ {0, 1/2, 1} have been extensively studied.
For instance, the W[1]-hardness for the parameter k has been long known for these special
cases [3, 11, 15]. Both Max α-FCGP and Min α-FCGP are actually W[1]-hard for every
α ∈ [0, 1] with the exception α ̸= 1/3, as can be seen from a parameterized reduction
from Clique and Independent Set on regular graphs. Note that α-Fixed Cardinality
Graph Partitioning becomes trivial when α = 1/3 because covα(S) = 1

3 ·
∑

v∈S d(v) for
any S ⊆ V where d(v) is the degree of v.

Bonnet et al. [2] gave a (∆k)2k · nO(1)-time algorithm for α-FCGP where ∆ is the
maximum degree. They also gave an algorithm with running time ∆k · nO(1) for Max
α-FCGP with α > 1/3 and Min α-FCGP with α < 1/3. This result was strengthened by
Schachnai and Zehavi [23]; they gave a 4k+o(k)∆k · nO(1)-time algorithm for any value of α.
Koana et al. [19] showed that Max α-FCGP admits polynomial kernels on sparse families of
graphs when α > 1/3. For instance, Max α-FCGP admits a kO(d)-sized kernel where d is
the degeneracy of the input graph. They also showed analogous results for Min α-FCGP
with α < 1/3.

Preliminaries

For an integer n, let [n] denote the set {1, · · · , n}.
We use the standard graph-theoretic notation and refer to the textbook of Diestel [10]

for undefined notions. In this work, we assume that all graphs are simple and undirected.
For a graph G and a vertex set S, let G[S] be the subgraph of G induced by X. For a vertex
v in G, let d(v) be its degree, i.e., the number of its neighbors. For vertex sets X, Y , let
m(X) := |{uv ∈ E | u, v ∈ X}| and m(X, Y ) := |{uv ∈ E | u ∈ X, v ∈ Y }|. In this work,
an optimal solution for Max α-FCGP (and Min α-FCGP) is a vertex set S of size k such
that covα(S) ≥ covα(S′) (resp., covα(S) ≤ covα(S′)) for every vertex set of size k. A graph
H is a minor of G if a graph isomorphic to H can be obtained from G by vertex and edge
removals and edge contractions. Given a graph H, a family of graph H is said to be H-minor
free if there is no G ∈ H having H as a minor. A graph H is an apex graph if H can be
made planar by the removal of a single vertex.

We refer to the textbook of Cygan et al. [5] for an introduction to Parameterized
Complexity and we refer to the paper of Marx [22] for an introduction to the area of
parameterized approximation.

2 FPT Approximation Algorithms

In this section, we design an FPT Approximation Scheme for Max α-FCGP as well as
Min α-FCGP parameterized by k and α, assuming α > 0. More specifically, we prove the
following theorem.

▶ Theorem 1. For any 0 < α ≤ 1 and 0 < ϵ ≤ 1, Max α-FCGP and Min α-FCGP each
admits an FPT-AS parameterized by k, ϵ and α. More specifically, given a graph G = (V, E)
and an integer k, there exists an algorithm that runs in time f(k, α, ϵ) · nO(1), and finds a set
S ⊆ V such that covα(S) ≥ (1−ϵ)·covα(O) for Max α-FCGP and covα(S) ≤ (1+ε)·covα(O)
for Min α-FCGP, where O ⊆ V is an optimal solution.

For the case that OPT := covα(O) is large, the following greedy argument will be helpful.

MFCS 2023
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▶ Lemma 2. For Max α-FCGP, let S be the set of k vertices with the largest degrees. Then,
covα(S) ≥ OPT − 2k2. For Min α-FCGP, let S be the set of k vertices with the smallest
degrees. Then, covα(S) ≤ OPT + 2k2.

Proof. Without loss of generality, we assume that O ̸= S. Let S \ O = {y1, y2, . . . , yt}, and
O \ S = {w1, w2, . . . , wt}, where 1 ≤ t ≤ k. Here, we index the vertices so that d(yi) ≥ d(yj)
and d(wi) ≥ d(wj) (for Min α-FCGP, d(yi) ≤ d(yj) and d(wi) ≤ d(wj)) for i < j. Note
that due to the choice of S, it holds that d(yi) ≥ d(wi) (d(yi) ≤ d(wi) for Min α-FCGP) for
each 1 ≤ i ≤ t.

Now we define a sequence of solutions O0, O1, . . . , Ot, where O0 = O, and for each
1 ≤ i ≤ t, Oi := (Oi−1 \ {wi}) ∪ {yi}. Note that Ot = S. We claim that for each 1 ≤ i ≤ t,
covα(Oi) ≥ covα(Oi−1) − 2k for Max α-FCGP and covα(Oi) ≤ covα(Oi−1) + 2k for Min
α-FCGP. To this end, we note that Oi is obtained from Oi−1 by removing wi and adding yi.
Thus, covα(Oi) = covα(Oi−1) − (αm1 + ((1 − α) − α) · m2) + αm3 + ((1 − α) − α) · m4, where

m1 := m({wi} , V \ Oi−1), m2 := m({wi} , Oi−1 \ {wi}),
m3 := m({yi} , V \ Oi), m4 := m({yi} , Oi \ {wi}).

Observe that d(wi) − k ≤ m1 ≤ d(wi), d(yi) − k ≤ m3 ≤ d(yi), and 0 ≤ m2, m4 ≤ k. We
consider Max α-FCGP first. We have that

covα(Oi) = covα(Oi−1) + α(m3 − m1) + (1 − 2α)(m4 − m2)
≥ covα(Oi−1) + α(m3 − m1) − |(1 − 2α)(m4 − m2)|.

Since m3 − m1 ≥ d(yi) − d(wi) − k ≥ −k and |(1 − 2α)(m4 − m2)| ≤ k, we obtain covα(Oi) ≥
covα(Oi−1) − 2k, regardless of the value of α. We consider Min α-FCGP next. It holds that

covα(Oi) = covα(Oi−1) + α(m3 − m1) + (1 − 2α)(m4 − m2)
≤ covα(Oi−1) + α(m3 − m1) + |(1 − 2α)(m4 − m2)|.

Since m3 − m1 ≤ d(yi) − d(wi) + k ≤ k and |(1 − 2α)(m4 − m2)| ≤ k, we obtain covα(Oi) ≤
covα(Oi−1) + 2k, regardless of the value of α.

Therefore, covα(Ot) ≥ covα(O0) − 2kt ≥ OPT − 2k2 for Max α-FCGP and covα(Ot) ≤
covα(O0) + 2kt ≤ OPT + 2k2 for Min α-FCGP. ◀

Lemma 2 allows us to find an approximate solution when OPT is sufficiently large. The
case that OPT is small remains. We use different approaches for Max α-FCGP and Min
α-FCGP.

Algorithm for MAX α-FCGP

Let v1 be a vertex with the largest degree. Our algorithm considers two cases depending on
whether d(v1) > ∆ := 2k2

ϵα + k. If d(v1) > ∆, we can argue that the set S from Lemma 2 a
(1 − ϵ)-approximate solution. To that end, we make the following observation.

▶ Observation 3. If d(v1) > ∆, then 2k2 ≤ ϵ · covα(S).

Proof. Note that m(S, V \ S) =
∑

u∈S m({u} , V \ S) ≥ m({v1}, V \ S) ≥ d(v1) − k, where
the inequality follows from the fact that at most k edges incident to v1 can have the other
endpoint in S. This implies that

covα(S) ≥ α · m(S, V \ S) ≥ α · (d(v1) − k) ≥ 2k2

ϵ
.

Where we use the assumptions that 0 < α ≤ 1 and d(v1) ≥ ∆. ◀
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Thus, for d(v1) > ∆, we have OPT ≤ covα(S) + 2k2 ≤ (1 + ε) · covα(S), and thus covα(S) ≥
(1 − ε) · OPT.

So assume that d(v1) < ∆. In this case, the maximum degree of the graph is bounded
by ∆. Let O ⊆ V be an optimal solution. Then the total number of edges contributing
to covα(O) is bounded by k∆ = O(k3/αϵ). Let Q be the set of vertices in V \ O that
have a neighbor in O, and note that |Q| = O(k3/αϵ). Let z = |O| + |Q|, and note that
z = O(k3/αϵ).

We first guess the structure of the subgraph G′ = (O ∪ Q, E′), where E′ consists of all
edges with at least one endpoint in O. For each guess for G′, we check whether there exists
a subgraph in G that is isomorphic to G′. Over all guesses where we find an isomorphic
subgraph, we return the solution maximizing the covα(·) value. Note that the number of
guesses is bounded by 2z2 = g(k, α, ϵ). Since the maximum degree of G is bounded by
∆, and the number of vertices in the subgraph corresponding to each guess is z, we can
solve each instance of Subgraph Isomophism in time 2O(z∆)z! · nO(1) = g′(k, α, ϵ) · nO(1)

using random separation, e.g., Theorem 5.7 in [5]. Thus, overall, the running time of the
algorithm is bounded by some f(k, α, ϵ) · nO(1). Combining both cases, we conclude the proof
of Theorem 1.

Algorithm for MIN α-FCGP

For Min α-FCGP, our algorithm considers two cases depending on the value of OPT. If
OPT ≥ 2k2

ε , then our algorithm returns the set S from Lemma 2. Note that covα(S) ≤
OPT + 2k2 ≤ (1 + ε) · OPT.

Now suppose that OPT < 2k2

ε . In this case, we know that O cannot contain a vertex
of degree larger than ∆ = 2k2

αϵ + k, for otherwise, covα(O) > α(∆ − k) ≥ OPT, which is a
contradiction.

In this case, we can guess the structure of G′ = (O ∪ N(O), E′), where E′ consists of
all edges with at least one endpoint in E′. Then, we can find a subgraph isomorphic to G′

using an FPT algorithm (we can delete the edges between all vertices whose degree is larger
than ∆). This takes FPT time.

Since the value of OPT is unknown to us, we cannot directly conclude which case is
applicable. So we find a solution for each case and return a better one.

3 Subexponential FPT Algorithm for MAX α-FCGP on Apex-Minor
Free Graphs

Fomin et al. [14] showed that Partial Vertex Cover on apex-minor free graphs can
be solved in time 2O(

√
k) · nO(1). In this section, we will prove its generalization to Max

α-FCGP as well as Min α-FCGP:

▶ Theorem 4. For an apex graph H, let H be a family of H-minor free graphs.
For any α ≥ 1/3, Max α-FCGP for H can be solved in 2O(

√
k) · nO(1) time.

For any α ≤ 1/3, Min α-FCGP for H can be solved in 2O(
√

k) · nO(1) time.

We will give a proof for the maximization variant. The minimization variant follows
analogously. Let σ = v1, v2, . . . , vn be an ordering of vertices of V in the non-increasing order
of degrees, with ties broken arbitrarily. That is, d(v1) ≥ d(v2) ≥ . . . ≥ d(vn−1) ≥ d(vn). We
will denote the graph by G = (Vσ, E) to emphasize the fact that the vertex set is ordered
w.r.t. σ. We also let V j

σ = {v1, . . . , vj}. We first prove the following lemma.

MFCS 2023
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▶ Lemma 5. Let G = (Vσ, E) be a yes-instance for Max α-FCGP, where 1/3 ≤ α ≤ 1.
Let C = {ui1 , ui2 , . . . , uik

} be the lexicographically smallest solution for Max α-FCGP and
uik

= vj for some j. Then C is a dominating set of size k for G[V j
σ ].

Proof. Suppose for the contradiction that C is not a dominating set for G[V j
σ ]. Then, there

exists a vertex vi with 1 ≤ i < j such that N [vi] ∩ C = ∅. Set C ′ = (C \ {vj}) ∪ {vi}. Note
that d(vi) ≥ d(vj). Define the following:

m1 = m({vj} , V \ C),
m2 = m({vj} , C \ {vj}),
m3 = m({vi} , (V \ C) ∪ {vj}) = d(vi),
m4 = m({vi} , C \ {vj}) = 0.

We will show that C ′ is another solution for the Max α-FCGP instance. Since C ′ \ {vi} =
C \ {vj}, it suffices to show that

covα(C ′) − covα(C) = (covα(C ′) − covα(C ′ \ {vi})) − (covα(C) − covα(C \ {vj}))

is nonnegative. By definition,

covα(C ′) − covα(C ′ \ {vi}) = α · m3 + ((1 − α) − α) · m4 = α · d(vi) and
covα(C) − covα(C \ {vj}) = α · m1 + ((1 − α) − α) · m2 ≤ α · (m1 + m2) = α · d(vj),

(1)

where the inequality is due to the assumption that α ≥ 1/3. Therefore,

covα(C ′) − covα(C) = α · (d(vi) − d(vj)) ≥ 0,

which is a contradiction to the assumption that C is the lexicographically smallest solution
for Max α-FCGP. ◀

In view of Lemma 5, we can use the following approach to search for the lexicographically
smallest solution C. First, we guess the last vertex vj of C in the ordering σ, i.e., we search
for a solution C such that vj ∈ C and C ⊆ V j

σ . If G[V j
σ ] has no dominating set of size at most,

say 2k, then we reject. This can be done in polynomial time, since Dominating Set admits
a PTAS on apex-minor free graphs [7]. We thus may assume that there is a dominating set
of size 2k in G[V j

σ ]. It is known that an apex-minor free graph with a dominating set of size
κ has treewidth O(

√
κ), where O hides a factor depending on the apex graph whose minors

are excluded [6, 9, 12]. We can use a constant-factor approximation algorithm of Demaine
[8] to find a tree decomposition T of width w ∈ O(

√
k). Finally, we solve the problem via

dynamic programming over the tree decomposition. Bonnet et al. [2] gave a O∗(2w)-time
algorithm that solves Max α-FCGP with a tree decomposition of width w given. We need
to solve a slightly more general problem because T is the tree decomposition is over V j

σ .
To remove V \ V j

σ , we introduce a weight ω : V j
σ → N defined by ω(v) = |N(v) ∩ (V \ V j

σ )|.
The objective is then to maximize covα(C) + α

∑
v∈C ω(C). The dynamic programming

algorithm of Bonnet et al. can be adapted to solve this weighted variant in the same running
time. Thus, we obtain a 2O(

√
k) · nO(1)-time algorithm for Max α-FCGP.

For Min α-FCGP, we can show the following lemma whose proof is omitted because it
is almost analogous to the previous one. The only change is that, Vσ refers to the vertices in
the non-decreasing order of degrees. Also, we consider the regime where 0 ≤ α ≤ 1/3, which
implies α ≤ 1 − 2α, which would give the reverse inequality in (1).
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▶ Lemma 6. Let G = (Vσ, E) be a yes-instance for Max α-FCGP, where 0 ≤ α ≤ 1/3.
Let C = {ui1 , ui2 , . . . , uik

} be the lexicographically smallest solution for Max α-FCGP and
uik

= vj for some j. Then C is a dominating set of size k for G[V j
σ ].

With this lemma at hand, an analogous algorithm solves Min α-FCGP in 2O(
√

k) · nO(1)

time, thereby proving Theorem 4.

4 Conclusion

In this paper, we demonstrated that the algorithms exploiting the “degree-sequence” that have
been successful for designing algorithms for Max k-Vertex Cover naturally generalize to
Max/Min α-FCGP. Specifically, we designed FPT approximations for Max/Min α-FCGP
parameterized by k, α, and ϵ, for any α ∈ (0, 1]. For Max α-FCGP, this result is tight
since, when α = 0, the problem is equivalent to Densest k-Subgraph, which is hard to
approximate in FPT time [21]. We also designed subexponential FPT algorithms for Max
α-FCGP (resp. Min α-FCGP) for the range α ≥ 1/3 (resp. α ≤ 1/3) on any apex-minor
closed family of graphs. It is a natural open question whether one can obtain subexponential
FPT algorithms for Max/Min α-FCGP for the entire range α ∈ [0, 1]. A notable special
case is that of Densest k-Subgraph on planar graphs. In this case, the problem is
not even known to be NP-hard, if the subgraph is allowed to be disconnected. For the
Densest Connected k-Subgraph problem, it was shown by Keil and Brecht [18] that
the problem is NP-complete on planar graphs. From the other side, it can be shown that
Densest Connected k-Subgraph admits a subexponential in k randomized algorithm
on apex-minor free graphs using the general results of Fomin et al. [13]. Thus, dealing with
disconnected dense subgraphs is difficult for both algorithms and lower bounds.
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