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Abstract
In this paper, we consider the k-Covering Canadian Traveller Problem (k-CCTP), which can be
seen as a variant of the Travelling Salesperson Problem. The goal of k-CCTP is finding the shortest
tour for a traveller to visit a set of locations in a given graph and return to the origin. Crucially,
unknown to the traveller, up to k edges of the graph are blocked and the traveller only discovers
blocked edges online at one of their respective endpoints. The currently best known upper bound for
k-CCTP is O(

√
k) which was shown in [Huang and Liao, ISAAC ’12]. We improve this polynomial

bound to a logarithmic one by presenting a deterministic O(log k)-competitive algorithm that runs
in polynomial time. Further, we demonstrate the tightness of our analysis by giving a lower bound
instance for our algorithm.
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1 Introduction

The Canadian Traveller Problem (CTP) was introduced in 1991 by Papadimitriou and
Yannakakis [26] as an extension of the Shortest Path Problem and has applications in online
route planning in road networks. The goal of the problem is to find a shortest path between a
source and a destination in an unreliable graph, in which some edges may become unavailable.
This can only be observed in an online manner, i.e., when reaching one of the endpoints of
such an edge. More specifically, consider a connected, undirected graph G = (V, E) with a
source node s ∈ V , a destination node t ∈ V and a non-negative cost function c : E → R+

representing the cost to traverse each edge. A traveller seeks to find a path with minimum
cost from s to t. However, one or more edges might be blocked, and thus cannot be traversed.
The traveller only learns that an edge is blocked when reaching one of its endpoints. When
the number of blocked edges is bounded by k, the variant is called k-Canadian Traveller
Problem or k-CTP [6].

This work studies a generalization of CTP, defined in [22], which is called the Covering
Canadian Traveller Problem (CCTP). In CCTP, one attempts to develop an efficient tour
for a traveller that visits all vertices in a graph and returns to the origin (source) under the
same uncertainty as that of CTP. When the number of blocked edges is bounded by k, the
problem is called k-CCTP, analogous to the k-CTP variant of CTP.
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53:2 The Covering Canadian Traveller Problem Revisited

We make two assumptions on the underlying graph model, similar to [22]. First, we
assume that the graph remains connected even if all blocked edges are removed. Second, the
state of an edge, i.e., whether it is blocked or not, does not change after the traveller learns
about it. The problem has practical uses in dynamic routing systems that prioritize efficient
travel routes and aim to avoid traffic congestion. Since Huang and Liao introduced CCTP [22],
there has been a notable amount of work on similar problems in the literature [1, 30, 36, 37].
For example, Zhang et al. [35] studied the Steiner Travelling Salesperson Problem in which
the salesperson instantly learns about new blocked edges. Shiri et al. [29] focused on how to
allocate and route search-and-rescue teams to areas with trapped victims, considering the
uncertainty about road conditions which may delay the operations.

The motivation behind CCTP stems from other similar optimization problems, such as
dynamic TSP and online TSP. Dynamic TSP has been studied for various different types
of dynamic change, such as the addition or removal of locations, and changing pairwise
distances between locations in the underlying space [21, 32]. On the other hand, Ausiello et
al. [4] introduced the online TSP in which the input arrives over time, i.e., during the travel
new requests (locations) appear that have to be visited by the algorithm. The problem has
many practical applications, e.g., in logistics and robotics [2, 27]. Since its introduction, a
series of papers has been published on the subject [3, 10, 19].

As is usual in the literature on online problems, we measure the performance of our
algorithm by its competitive ratio [11]. This means that its performance is compared to the
performance of an algorithm for the corresponding offline problem. In our setting, this would
be an algorithm which knows the complete graph structure, including all blocked edges.

Our Contribution

In this paper, we focus on k-CCTP. Currently, the best known deterministic algorithm for
k-CCTP is the Cyclic Routing algorithm by Huang and Liao [22] with competitive ratio
O(
√

k). We improve this bound to O(log k) by making a connection with the Online Graph
Exploration problem. In the Online Graph Exploration problem, a searcher starts from a
source vertex and aims to visit all vertices of an unknown but fixed graph. Upon reaching a
new vertex, the server learns all incident edges and their costs. The reduction we give allows
us to get a polynomial time algorithm for k-CCTP using an algorithm for the Exploration
problem. Finally, we show that our analysis of the O(log k)-competitive algorithm is tight.

2 Related Work

Online Graph Exploration Problem

In the Online Graph Exploration problem, defined in [20], an agent has to explore an unknown
graph by starting at a given vertex, visiting all other vertices, and returning to the starting
one. The agent can only move along the edges of the graph and has to pay a cost for each
traversed edge.

A simple and fast algorithm that solves the problem is the Nearest Neighbor (NN)
algorithm. The algorithm selects an unexplored vertex that is cheapest to reach from
the current one and visits it, repeating this process until all vertices are visited. This
algorithm has been shown to have a competitive ratio of Θ(log n) for arbitrary graphs in the
Online Graph Exploration Problem [28], which is a tight bound even on planar unit-weight
graphs [15, 18]. Note that although the analysis in [28] deals with the offline problem, the
nearest neighbor can always be identified even in the online scenario and the same analysis
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applies. The second algorithm that achieves the Θ(log n) bound, which is the best known
upper bound for arbitrary graphs, is the hierarchical Depth First Search algorithm (hDFS)
in [23].

On the other hand, obtaining constant-competitive tours is known only for special cases
of graphs, such as graphs with k distinct weights, graphs with bounded genus, cycles, tadpole
graphs and cactus graphs [12, 15, 20, 23, 24]. Conversely, the best known lower bound on
the competitive ratio of an online algorithm is just 10/3 [9], and despite efforts, it is still
unclear whether there exists an o(log n) or even O(1)-competitive exploration algorithm for
general graphs.

Canadian Traveller Problem

CTP has been proven to be PSPACE-complete [26]. For the k-CTP variant, Bar-Noy
and Schieber proposed a polynomial time algorithm that minimizes the maximum travel
length [6]. Westphal developed a simple deterministic online algorithm for k-CTP that is
(2k + 1)-competitive and proved that no deterministic online algorithm can have a (strictly)
better competitive ratio [33]. Furthermore, he showed a lower bound of k + 1 for any
randomized algorithm, even if all s − t paths are node disjoint. Xu et al. [34] proposed a
deterministic algorithm that is also (2k +1)-competitive for k-CTP and proved that a natural
greedy strategy based on the available blockage information is exponential in k. On graphs
where all s− t paths are node-disjoint, a (k + 1)-competitive randomized online algorithm is
known [7, 31]. Demaine et al. [14] proposed a polynomial time randomized algorithm that
improves the deterministic lower bound of 2k + 1 by an o(1) factor for arbitrary graphs.
They also showed that the competitive ratio is even better if the randomized algorithm runs
in pseudo-polynomial time. Recently, Bergé et al. [8] proved that the competitive ratio of
any randomized algorithm using a specific set of strategies called memoryless cannot be
better than 2k + O(1). Over the last few years, various other variants of CTP have been
investigated [5, 17, 25].

Covering Canadian Traveller Problem

The best known algorithm for k-CCTP is the one proposed in [22] with a competitive ratio
of O(

√
k). The algorithm, called Cyclic Routing, decomposes the entire route into several

rounds. In each round, the traveller attempts to visit as many vertices as possible in the
graph following the visiting order (or the reverse order) of the tour derived by Christofides’
algorithm [13].

3 Preliminaries

In this section, we give some basic definitions. We start by giving a formal definition of the
problem we study, before defining the Online Graph Exploration Problem, the performance
measure and restating Christophides’ algorithm for completeness. In what follows, we will
denote by G = (V, E) a weighted, undirected graph. We will interchangeably use the notion
of “cost” and “length” for the weight of an edge. For example, a shortest tour is a tour of
minimum cost.

Definition of k-CCTP

The formal definition of CCTP is as follows. Given a complete metric graph G = (V, E)
with a source vertex s ∈ V , a traveller aims, beginning from s, to visit every other vertex
in V at least once and return to s with as little cost as possible. However, the traveller

MFCS 2023



53:4 The Covering Canadian Traveller Problem Revisited

discovers online that some edges are blocked once reaching one of their endpoints. Moreover,
as mentioned earlier, two assumptions are made. First, the blocked edges cannot isolate
vertices of G, i.e., G remains connected, and second, edges remain in their state (i.e., whether
they are blocked or not) forever. In this paper, we consider its variant k-CCTP where the
number of blocked edges is bounded by k.

Definition of the Online Graph Exploration Problem

The problem can be formalized as follows. Let G = (V, E) be a weighted, undirected graph
with |V | = n vertices. The agent starts at a vertex s ∈ V and has to visit every vertex in the
graph and return to s. Note that the agent can visit a vertex more than once. At each step,
the agent is located at a vertex u and can choose to move to any of the neighboring vertices
of u. The agent incurs a cost equal to the cost of the edge traversed. Upon arriving at a
vertex v, the agent learns all the edges incident to v and their costs.

Competitive Ratio

A deterministic online algorithm ALG for k-CCTP is c-competitive if the total cost |ALG(σ)|
accrued by ALG for input σ is at most c · |OPT (σ)|. Here, |OPT (σ)| is the total cost of an
optimal tour for σ which is computed by an offline algorithm that already knows all blocked
edges.

Christophides’ algorithm

We also remind the reader how Christophides’ algorithm works. Christophides’ algorithm on
a complete metric graph G can be described as follows [16]:
1. Create a minimum spanning tree T of G.
2. Find a minimum-weight perfect matching M in the subgraph of G that is induced by the

vertices with odd degrees in T .
3. Combine the edges of M and T to form a connected multigraph H.
4. Form a Eulerian cycle in H.
5. Make the circuit found in the previous step into a Hamiltonian cycle by skipping repeated

vertices.

4 Solving k-CCTP via Graph Exploration

In this section, we present the results of our work. First, we show a connection between
CCTP and the Online Graph Exploration problem (Theorem 1). This is the crucial step to
improve the upper bound of O(

√
k).

The idea behind our reduction is that CCTP can be solved by an algorithm that solves
the Online Graph Exploration Problem. This is possible since at every step, the traveller
locally learns the real edges in both problems. The challenge here is that the algorithms for
the Online Graph Exploration for arbitrary graphs have competitive ratios depending on the
number of vertices n.

So, how can we reduce the size of the graph in which we run an algorithm for Graph
Exploration to something of size O(k)? First, we try to follow an approximately optimal
TSP tour, skipping vertices when edges are discovered to be blocked. Similar to the idea
in Cyclic Routing of [22], we use a function ShortCut to achieve this. After that, we
return to the starting vertex. This way, we visit at least n− k vertices of G. Since they do
not have to be visited again, we can then use the information gathered to reduce the number
of vertices in the graph on which we will run the algorithm for Graph Exploration to O(k).
Formally, we have the following theorem.
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▶ Theorem 1. If there exists an f(k)-competitive algorithm for the Online Graph Exploration
problem on graphs with at most k + 1 nodes and an α-approximation algorithm for metric
TSP, then there exists an (f(k) + 2α)-competitive algorithm for k-CCTP.

Proof. Suppose that we have AlgoExploration, an f(k)-competitive algorithm for the
Online Graph Exploration problem on arbitrary graphs with at most k + 1 nodes, and
AlgoTSP, an α-approximation algorithm for metric TSP. Then, we will prove that the al-
gorithm CompressAndExplore that uses these algorithms as subroutines has a competitive
ratio of at most f(k) + 2α for k-CCTP (for pseudocode, see Algorithm 1).

First, the algorithm runs AlgoTSP on the input graph G to compute a TSP tour P .
For simplicity, we relabel the vertices with respect to the tour, i.e., we assume that the tour
P has the order s = v1 → v2 → · · · → vn → v1. If an edge {vi, vj} is blocked, the traveller
tries to go to the next vertex in the order determined by P , i.e., vj+1, or v1 for j = n

(for pseudocode of this subroutine, see Function ShortCut on page 8). This procedure is
possible since the original graph is complete. By the triangle inequality, the cost of the tour
is upper bounded by the cost of tour P . If the traveller reaches vertex s, then ShortCut
terminates. If s is not reachable directly because of a blocked edge, the traveller returns to s

by retracing their steps. Since cost(P ) is an α-approximation for metric TSP, we have that
cost(ShortCut) ≤ 2 · cost(P ) ≤ 2α · |OPT |, where OPT is an optimal offline TSP tour on
graph G.

The traveller learns about all blocked edges which are adjacent to the vertices that are
visited during ShortCut. In the procedure, all edges that are discovered to be blocked are
collected in the set Eb. Thus, the traveller knows the whole graph (with all blocks) except for
the induced (complete) subgraph formed by the unvisited vertices U . Let κ be the number of
vertices which remain unvisited by ALG after ShortCut, i.e., the size of the set U . Then,
the traveller has discovered at least κ blocked edges, i.e., |Eb| ≥ κ.

Next, the traveller, being at s, has to visit the vertices in U . Since the true edges of the
graph except for those of the induced subgraph formed by vertices in U are known, it suffices
to consider only the vertices in the set Us = U ∪{s}. While the vertices in V \Us themselves
are not required, a shortest path between two vertices x, y ∈ Us might include vertices from
the set V \Us as intermediate nodes. This can occur when currently unknown edges between
unvisited nodes are blocked. More specifically, the algorithm runs the function Compress
(for pseudocode, see Function Compress on page 9). For every pair of vertices x, y ∈ Us, the
function creates a new edge Px,y representing a shortest path between x and y such that the
path consists only of edges that are known not to be blocked, i.e., edges in which at least one
node has already been visited before – if such a shortest path exists. Note that this phase of
the algorithm does not incur any cost in terms of competitive ratio. Thus, the procedure
creates a multigraph G′ which consists of vertex set Us, the initial edges that connect these
vertices and the “shortest-path” edges as described above. To better explain the steps of
the algorithm we present an example of an execution of algorithm CompressAndExplore
below (see Example 1).

Finally, the algorithm runs AlgoExploration on G′ and visits the remaining vertices.1
Every time the traveller visits a vertex, they learn all incident edges. This includes the newly
added “shortest-path” edges, of which we know that they are feasible. If the traveller uses

1 AlgoExploration solves the Exploration problem on arbitrary graphs, but G′ is a multigraph with at
most two edges per pair of vertices. However, this does not cause a problem, since the algorithm can
always select a shortest edge out of the two and the optimal solution can be computed while keeping
only one edge per pair.

MFCS 2023
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such a “shortest-path” edge, then in the final computed tour in the original graph we expand
it, meaning that we use the real path that corresponds to this edge. The cost of an optimal
TSP tour OPTG′ on multigraph G′ is at most the cost of an optimal TSP tour OPTG(Us)
that only has to visit the vertex set Us, i.e., the vertices that are also in G′, but inside the
input graph G. To see that this holds, consider an optimal tour OPTG(Us). Assume that
it visits the vertices in Us in the order s = x1 → x2 → · · · → x|Us| → x1. Between any
vertices xi, xi+1 ∈ Us for i ∈ {1, . . . , |Us| − 1} (or x|Us|, x1) that are visited one after the
other, OPTG(Us) uses a shortest path. Each of these shortest paths starts in Us. If it then
uses an edge to another vertex in Us, this edge will also be in G′ as each direct edge between
two vertices of Us will either be blocked in both G and G′ or not be blocked in both. Hence,
we can assume that an edge {u, v} from u ∈ Us to a vertex v /∈ Us is taken. This is an
already discovered edge, as v has already been visited during ShortCut. Eventually, the
path will re-enter into the set Us by using another already discovered edge {v′, u′} for some
v′ /∈ Us and u′ ∈ Us. In between leaving and re-entering, all edges that were taken are also
already discovered and this partial path has exactly the same length as the shortest-path
edge Pu,u′ between u, u′ ∈ Us.2 Continuing this argument, eventually the target vertex in Us

is reached. All intermediate partial paths are inside G′, either since they are regular edges
that also exist in G, or since they have been added as shortest-path edges during ShortCut.

The multigraph G′ has κ + 1 vertices and at least κ blocks have already been discovered.
The number of blocked edges is at most k, and thus there are at most k + 1 vertices in G′. So,
from the hypothesis the cost incurred by AlgoExploration on G′ is at most f(k) · |OPTG′ |.
Since an optimal solution for visiting a subset of vertices OPTG(Us) has cost at most |OPT |,
we get the following

cost(AlgoExploration) ≤ f(k) · |OPTG′ | ≤ f(k) · |OPTG(Us)| ≤ f(k) · |OPT | .

Overall, the algorithm has a total cost for the traveller of

cost(CompressAndExplore) = cost(ShortCut) + cost(AlgoExploration)
≤ (f(k) + 2α) · |OPT | .

Consequently, CompressAndExplore is an (f(k) + 2α)-competitive algorithm for k-CCTP.
Note that the knowledge of k does not affect the performance of the algorithm. ◀

▶ Remark. In the proof, we allow k ≥ n− 1 as long as the resulting graph remains connected.
The analysis of the competitive ratio of O(

√
k) in [22] requires k < n− 1.

▶ Example 1. Fig. 1 shows an example of CompressAndExplore. The traveller begins at
vertex s = v1 and moves in a counterclockwise direction. The given TSP tour by AlgoTSP
here is v1 → v2 → · · · → v16 → v1. The solid lines represent the tour that the traveller follows
during ShortCut due to the discovered blocked edges (red dashed lines). The traveller follows
the shortcut path v1 → v2 → v4 → v5 → v9 → v10 → v11 → v14 → v16 and after visiting
vertex v16, they return back to s following the same path backwards. Next, the algorithm
runs Compress and gets G′. Multigraph G′ contains s, the remaining unvisited vertices and
at most two edges between each pair of these vertices. Between vi and vj there is the edge
{vi, vj} (which may be blocked) and possibly the “shortest-path” edge Pi,j. The cost of Pi,j

2 There might be several shortest paths with the same length, which is why the shortest path chosen for
Pu,u′ and the described shortest path might differ. Still, their lengths are equal by definition.



N. Hahn and M. Xefteris 53:7

Algorithm 1 CompressAndExplore(AlgoTSP, AlgoExploration).

Input : A complete metric graph G = (V, E) with n vertices; a starting vertex
s ∈ V ;

Output : A tour that visits every vertex in V ;
Parameter : AlgoTSP(G1): An algorithm that returns a TSP tour on a metric

graph G1; The tour has the form s = v1 → v2 → · · · → vn → v1;
AlgoExploration(G2): An algorithm that solves the Online Graph
Exploration problem on an arbitrary graph G2 and returns a tour;

1 P ← AlgoTSP(G);
2 G∗, U, P1 ← ShortCut(G, P );
3 G′ ← Compress(G∗, U, G);
4 P2 ← AlgoExploration(G′);
5 P ′ ← (P1 → P2);

/* Concatenate P1 and P2, i.e., visit the vertices according to P1,
then according to P2. */

6 return P ′;

v1 = s

v2

v3
v4v5

v6

v7

v8

v9

v10

v11 v12
v13

v14

v15

v16 G′

v1 = s

v2

v3
v4v5

v6

v7

v8

v9

v10

v11 v12
v13

v14

v15

v16

P1,3

Figure 1 An example of algorithm CompressAndExplore.

is the cost of the shortest path from vi to vj in which each edge has at least one endpoint
outside of G′. In the example, a possible case for i = 1 and j = 3 is shown on the right with
P1,3 being the path v1 → v4 → v3.

Finally, the algorithm runs AlgoExploration on G′. The traveller visits all remaining
vertices, returns to s and the algorithm terminates.

Now, we can use CompressAndExplore with Christophides’ algorithm for metric TSP
and the Nearest Neighbor for the Online Graph Exploration problem. Since this algorithm
uses Christophides’ algorithm and then Nearest Neighbor, we refer to it by CNN.

▶ Corollary 2. CNN has a competitive ratio of O(log k) for k-CCTP.

Proof. Christophides’ algorithm gives a 3/2-approximation for metric TSP. On the other
hand, NN yields a competitive ratio of O(log n) for the Graph Exploration problem in an
arbitrary graph, where n is the number of vertices in the graph. Thus, from Theorem 1 we
get that CNN has a competitive ratio of 3 + O(log(k + 1)) = O(log k). ◀

MFCS 2023
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1 Function ShortCut(G, P):
/* G is the input graph and P a TSP tour. */
/* P has the form s = v1 → v2 → · · · → vn → v1. */

2 i← 1; j ← 2;
3 Us ← {s}; Eb ← ∅; P ′ ← {s};

/* Path P ′ which the traveller follows is built. */
4 while j ≤ n do
5 Add all newly discovered blocked edges {vi, x}, with x ∈ V \ {vi}, to Eb;
6 if {vi, vj} is not blocked then
7 P ′ ← (P ′ → vj); // Append vj to P ′

8 i← j;
9 else

10 Us ← Us ∪ {vj};
11 end
12 j ← j + 1;
13 end
14 if {vi, v1} is blocked then
15 Return to s following P ′ backwards;
16 P ′ ← Concatenate the path P ′ and the reverse of P ′ to return to s;
17 else
18 P ′ ← (P ′ → v1);
19 end
20 G∗ ← (V, E \ Eb);
21 return G∗, Us, P ′;
22 end Function

To demonstrate that the above analysis is tight, the following theorem presents a family
of instances that achieves a competitive ratio of Ω(log k) and therefore proves the analysis to
be tight.

▶ Theorem 3. There exists a family of instances for which CNN has a competitive ratio of
the Ω(log k).

Proof. We will use the graph presented in [18] to lower bound the competitive ratio of the
Nearest Neighbor algorithm. For an integer p ≥ 1, the graph Gp = (Vp, Ep) consists of a
chain of 2p− 1 triangles. Gp has 2p vertices in its lower level, and 2p− 1 vertices in its upper
level. The left-most vertex in the lower level is denoted by lp, the right-most by rp and the
central vertex in the upper level is denoted by mp. All edges in Gp have an equal cost of 1.

For our instance, we slightly modify the graph by adding another vertex u to the left of
lp with an edge {u, lp} of cost 1. We also set s = lp as the starting vertex. Since the input
for k-CCTP is a complete graph, we also need to add some more edges. All edges from u to
the other vertices have a cost of 1, and all other new edges have a cost of 2. All these edges
will be blocked edges. We call this new graph G+

p .
The resulting graph has k = Θ(n2) blocked edges and clearly satisfies the triangle

inequality. We illustrate the non-blocked part of G+
p for p = 3 in Fig. 2.

In the first step of Christophides’ algorithm, a minimal spanning tree is constructed. One
possible MST T is a path from u to rp. The nodes with uneven degree in T are the nodes u

and rp, so for the matching, the edge between u and rp is added. This results in a simple
cycle of all nodes. The MST and the matching edge are illustrated in Fig. 3.
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1 Function Compress(G∗, Us, G):
/* G∗ is the graph without the discovered blocked edges and Us the

set of the remaining unvisited vertices in the graph together
with the starting vertex s. */

2 E′ ← {{x, y} ∈ E | x, y ∈ Us};
/* E′ is the subset of edges with unknown state, i.e., of {x, y}

with x, y ∈ Us. */
3 G′ ← (Us, E′);
4 H ← (V, E \ E′);

/* H includes all edges with a known state, since in every edge at
least one vertex has already been visited. */

5 Let Us = {v′
1, v′

2, . . . , v′
|Us|};

6 for i← 1 to |Us| do
7 for j ← i + 1 to |Us| do
8 Find a shortest path Pi,j from v′

i to v′
j in H;

9 ci,j ← total cost of Pi,j ;
10 Add an edge {v′

i, v′
j} with cost ci,j to G′;

11 end
12 end
13 return G′;
14 end Function

u l3

m3

r3

Figure 2 Graph G+
p (for p = 3). G+

p is used to show tightness of the O(log k)-competitive ratio.

The TSP-tour can then be chosen to be s = l3 → u→ r3 → · · · → l3. This means that in
ShortCut, only node u would be visited besides lp as the direct edges from u to any other
node (besides lp) are blocked. At the end of ShortCut, the traveller returns to lp.

After ShortCut, the remaining graph would thus be the original graph Gp from [18].
We use the following lemma to prove that there exists a TSP-tour in Gp which starts (and
ends) in lp which is found by NN that has a length of (p + 4) · 2p−1 − 2. We will prove the
lemma below.

▶ Lemma 4 (Based on [18, Lemma 1]). There exists a NN-based TSP tour on Gp which
starts in lp and visits mp as final vertex before returning back to lp. The tour has length
(p + 4) · 2p−1 − 2.

Using this result, the total cost of the described TSP-tour is (p + 4)2p−1, whereas an
optimal TSP-tour has cost 2 + 3(2p − 1), namely visiting u and optimally visiting Gp by
going in a zig-zag motion from left to right (as shown in the MST in Fig. 3) and returning
using the lower edges of the triangle, thereby using each edge of the triangles exactly once.

MFCS 2023



53:10 The Covering Canadian Traveller Problem Revisited

u l3

m3

r3

Figure 3 The MST and the matching edge (dashed line) in G+
3 .

This gives us a ratio of

(p + 4) · 2p−1

2 + 3 · (2p − 1) = (p + 4) · 2p−1

6 · 2p−1 − 1 ≥
p + 4

6 = Ω(p) = Ω(log n) . ◀

Proof of Lemma 4. We split the tour into two parts. In the first part, all vertices are visited,
and in the second part, the traveller returns to lp.

The second part has length 1 + 2p−1 − 1 = 2p−1. This is true because the whole graph
has been discovered and the traveller can take the shortest path from mp to lp, which is
going down to the left point of the middle triangle and then traversing the 2p−1 − 1 many
triangles on the left side to reach lp.

Hence, to show the Lemma, it remains to show that there exists a NN-route to visit all
vertices in Gp which has length (p + 3) · 2p−1 − 2 = (p + 4) · 2p−1 − 2− 2p−1, starting at lp
and ending at mp. We prove this by induction. For p = 1, Gp consists of a single triangle,
and the route l1 → r1 → m1 has length 2 = (1 + 3) · 21−1 − 2.

For the inductive step, we observe that Gp can be constructed from two copies of Gp−1

and an additional vertex mp (and three additional edges). Let G
(l)
p−1 be the left copy and

G
(r)
p−1 be the right copy. Then, the new edges are {r(l)

p−1, l
(r)
p−1}, {r

(l)
p−1, mp} and {l(r)

p−1, mp}.
This is illustrated in Fig. 4. By the induction hypothesis, there exists an NN-route in G

(l)
p−1

starting in lp = l
(l)
p−1 and ending in m

(l)
p−1 with length (p−1 + 3) ·2p−1−1−2. The two nearest

unvisited neighbors to m
(l)
p−1 are mp and l

(r)
p−1 with equal distance 2p−2 + 1. By going to l

(r)
p−1,

the sub-route from l
(r)
p−1 to m

(r)
p−1 of length (p + 2) · 2p−2 − 2 can then be found by NN. Note

that throughout this route, mp will never be closer to the current vertex than any other
unvisited vertex in the current sub-route and thus will not be visited before m

(r)
p−1. Finally,

mp needs to be visited, which requires an additional cost of 2p−2 + 1. Overall, there exists
an NN-route from lp to mp with length

2 · ((p + 2) · 2p−2 − 2) + 2 · (2p−2 + 1) = (p + 2) · 2p−1 − 4 + 2p−1 + 2 = (p + 3) · 2p−1 − 2 .

This concludes the proof. ◀

Finally, we remark that CNN takes polynomial time. The procedures ShortCut and
Compress run in polynomial time as the required shortest paths can be computed in
polynomial time. Since Christophides’ algorithm and Nearest Neighbor also have polynomial
time complexity, so does CNN.

5 Concluding Remarks

In this work, we considered the Covering Canadian Traveller Problem with up to k blocked
edges. We improved the upper bound to O(log k) by drawing an interesting connection to
the Online Graph Exploration problem. Further, we showed the tightness of our analysis.
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Figure 4 Graph Gp (for p = 3) constructed from two copies of Gp−1, with the joining edges
denoted by the dashed lines.

Our reduction implies immediate consequences of future work on the respective other
problem. For one, it allows an improvement of the lower bound on the Graph Exploration
problem using a general lower bound on k-CCTP. Currently, the best known bound for the
Graph Exploration problem is 10/3. Tightening this gap would be a very interesting result.
Second, an improved algorithm for the Graph Exploration problem immediately gives rise to
a better algorithm and upper bound on k-CCTP.

Nevertheless, already an improved algorithm for k-CCTP or a lower bound on the Graph
Exploration problem would be of independent interest without exploiting our reduction and
thus provides another challenging direction of future research.
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