
On the Complexity of Computing Time Series
Medians Under the Move-Split-Merge Metric
Jana Holznigenkemper #

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Christian Komusiewicz #

Institute of Computer Science, Friedrich-Schiller-Universität Jena, Germany

Nils Morawietz #

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Bernhard Seeger #

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Abstract
We initiate a study of the complexity of MSM-Median, the problem of computing a median of a
set of k real-valued time series under the move-split-merge distance. This distance measure is based
on three operations: moves, which may shift a data point in a time series; splits, which replace one
data point in a time series by two consecutive data points of the same value; and merges, which
replace two consecutive data points of equal value by a single data point of the same value. The
cost of a move operation is the difference of the data point value before and after the operation, the
cost of split and merge operations is defined via a given constant c.

Our main results are as follows. First, we show that MSM-Median is NP-hard and W[1]-
hard with respect to k for time series with at most three distinct values. Under the Exponential
Time Hypothesis (ETH) our reduction implies that a previous dynamic programming algorithm
with running time |I|O(k) [Holznigenkemper et al., Data Min. Knowl. Discov. ’23] is essentially
optimal. Here, |I| denotes the total input size. Second, we show that MSM-Median can be solved
in 2O(d/c) · |I|O(1) time where d is the total distance of the median to the input time series.

2012 ACM Subject Classification Mathematics of computing → Time series analysis

Keywords and phrases Parameterized Complexity, Median String, Time Series, ETH

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.54

Funding Jana Holznigenkemper : Partially supported by the LOEWE initiative (Hesse, Germany)
within the emergenCITY center.
Nils Morawietz: Supported by the DFG, project OPERAH, KO 3669/5-1.

1 Introduction

Computing an exact or approximate consensus of a set of real-valued time series is a
critical task in many applications like nearest-neighbor classification and clustering of time
series [1, 8, 10]. The algorithmic task in this problem is to compute for a given set X of
time series some time series x which has a small distance to the members of X. Naturally,
the quality of the computed consensus time series for the above-mentioned applications and
the difficulty of computing such a consensus depend highly on the underlying time series
distance function.

The best results in terms of quality and robustness of the computed distances is achieved
by elastic distance measures [11]. Informally, when computing an elastic distance measure
for two time series, each time series may be stretched or compressed. This ensures that the
best-fitting parts are aligned. Elastic distance measures allow for comparison of time series
of different lengths, are translation invariant and robust to temporal misalignment [9]. The
high quality of elastic measures however comes at a high running time cost [11].

© Jana Holznigenkemper, Christian Komusiewicz, Nils Morawietz, and Bernhard Seeger;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 54; pp. 54:1–54:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:holznigenkemper@informatik.uni-marburg.de
mailto:c.komusiewicz@uni-jena.de
https://orcid.org/0000-0003-0829-7032
mailto:morawietz@informatik.uni-marburg.de
mailto:seeger@informatik.uni-marburg.de
https://doi.org/10.4230/LIPIcs.MFCS.2023.54
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


54:2 On the Complexity of Computing Time Series Medians Under the MSM Metric

Consider for example the most popular elastic measure, the dynamic time warping
(DTW) distance. The DTW distance of two time series of length n and m can be computed
in O(nm) time by a simple dynamic programming (DP) algorithm. Under the SETH, a fairly
common complexity-theoretic assumption, this cannot be improved to O(n2−ϵ) time even
when both time series have length n [3]. DTW-Mean, the problem of computing a mean
under the DTW distance measure, that is, a time series that minimizes the sum of squared
DTW distances to the input time series, can be solved in O(n2k+12kk) time [2]. Here, n is
the maximum time series length and k is the number of input time series. While this running
time is polynomial for a constant number of strings, it grows rapidly with k making the
algorithm impractical for k ≥ 4. DTW-Mean is NP-hard [4], so a polynomial-time algorithm
cannot be expected. Moreover, DTW-Mean is W[1]-hard with respect to k and thus an
FPT algorithm for k, that is, an algorithm with running time f(k) · nO(1) is presumably
impossible [4]. Altogether, the complexity of distance and mean computation under the
DTW measure are fairly well-understood by now.

DTW is by far not the only elastic distance measure. In this work, we study the Move-
Split-Merge (MSM) distance [12]. Here, one time series is transformed into another using
three types of operations. A move shifts one value in a time series, a split replaces one
point of a time series by two subsequent points of the same value and a merge replaces
two subsequent points of the same value by a single point of the same value. In contrast
to DTW, the MSM distance fulfills the properties of a metric. Moreover, it achieves high
accuracy in 1-NN classification tasks [9, 11]. This highly motivates an algorithmic study of
distance computation and median finding problems. Initially, the distance computation for
the MSM metric was found to be much slower than for DTW [11]. Recent progress showed
that, on the practical side, the MSM distance computation can be improved so that it is
competitive with state-of-the-art algorithms for DTW [5]. For MSM-Median, the problem
of computing a time series that minimizes the sum of the MSM-distances to a given set X

of time series, the running times are even better than for DTW-Mean1: There is a DP
algorithm that solves MSM-Median in O(nk+32kk3) time [6].2 As in the DTW-Mean
algorithm, this is a polynomial running time for fixed number of input sequences but the
running time dependence on k is better. This running time advantage was also confirmed
in an experimental evaluation [6]. Given the high quality of MSM-based classifications,
it would be very desirable to push this running time advantage even further by finding
better algorithms for MSM-Median. At this point, it should be noted that apart from
the above-mentioned DP, nothing is known about the complexity of MSM-Median. This
work aims at filling this gap. In particular, we study whether there is hope for substantial
improvements over the current DP algorithm.

Our Results. We present two main results. First, we show that MSM-Median is NP-
hard, W[1]-hard when parameterized by k, and cannot be solved in f(k) · |I|o(k) time for
any computable function f , unless the ETH fails. Here, |I| denotes the total input size of
MSM-Median. These hardness results hold even if the total number of distinct values in the
input time series is three. This implies that the previous DP algorithm for MSM-Median [6]

1 It may seem inappropriate to directly compare a mean finding problem with a median finding problem.
However, in the DTW-Mean problem, the DTW distance measure is defined as a square root of a
warping past cost [2]. Consequently, the DTW mean minimizes the sum of warping path costs and is
thus in fact a median for this distance measure.

2 Previously, the problem was called MSM-Mean. Following a reviewer suggestion, we now use the name
MSM-Median since the aim is to minimize the sum of distances instead of the sum of squared distances.



J. Holznigenkemper, C. Komusiewicz, N. Morawietz, and B. Seeger 54:3

is close to optimal. Second, we show that MSM-Median can be solved in 2O(d/c) ·|I|O(1) time
where c is the constant cost for a merge or split operation and d is a bound on the total
distance of the median x∗ to the input time series in X. Due to space constraints, proofs of
statements marked with (*) are deferred to a full version.

2 Preliminaries

A time series of length n is a sequence x = (x[1], . . . , x[n]), where each data point, in short
point, x[i] is a real number. For i ∈ [1, n] and j ∈ [i, n], we denote by x[i, j] the contiguous
subsequence of x starting at i and ending at j. A contiguous subsequence x[i, j] is an α-run
if x[ℓ] = α for each ℓ ∈ [i, j]. Similarly, we call x[i, j] a binary run if x[ℓ] ∈ {0, 1} for each
ℓ ∈ [i, j]. For a set of time series X = {x1, . . . , xk}, the ith point of the jth time series of X

is denoted by xj [i]; V (X) = {x[i] | x ∈ X, i ∈ [1, |x|]} denotes the set of all values of points
in the time series of X.

Move-Split-Merge Operations. We now define the MSM metric, following the notation of
Stefan et al. [12], and the MSM-Median problem. The MSM metric allows three types of
operations to transfer one time series into another: move, split, and merge. For time series
x = (x[1], . . . , x[n]), a move transforms a point x[i] into x[i] + w for some w ∈ R, that is,
Movei,w(x) := (x[1], . . . , x[i−1], x[i] + w, x[i+1], . . . , x[n]), with cost Cost(Movei,w) = |w|.
Informally, we say that there is a move at point x[i] to another point x[i] + w. The split
operation splits the ith element of x into two consecutive points. A split at point x[i] is
defined as Spliti(x) := (x[1], . . . , x[i − 1], x[i], x[i], x[i + 1], . . . , x[n]). A merge operation may
be applied to two consecutive points of equal value. For x[i] = x[i + 1], it is given by
Mergei(x) := (x[1], . . . , x[i − 1], x[i + 1], . . . , x[n]). We say that x[i] and x[i + 1] merge.
Split and merge operations are inverse operations. Their costs are assumed to be equal and
determined by a given nonnegative constant c =: Cost(Spliti) = Cost(Mergei).

A transformation sequence S is a tuple (S1, . . . , Ss) with Sj ∈ {Moveij ,wj
, Splitij

, Mergeij
}.

A transformation T(x, S) of a time series x for a given transformation sequence S is defined
recursively via T(x, S) := T(S1(x), (S2, . . . , Ss)) and T(x, ∅) := x. We say that S transforms
x to y if T(x,S) = y. The cost of a transformation sequence S is the sum of all individual
operation costs, that is, Cost(S) :=

∑
S∈S Cost(S). A transformation is optimal if it has

minimal cost. The MSM distance dMSM(c)(x, y) between two time series x and y is the cost
of an optimal transformation. If c is clear from context, we may only write dMSM. We let
DMSM(c)(X, y) :=

∑
x∈X dMSM(x, y) denote the distance of a sequence X of time series to a

time series y. A median x∗ of a set of time series X is a time series with minimum distance
to X. The decision problem of computing a median is defined as follows.

MSM-Median
Input: A constant c > 0, a sequence X := (x1, . . . , xk) of time series, and an integer d.
Question: Is there a time series x∗ such that DMSM(c)(X, x∗) ≤ d?

Transformations Graphs. We further recall the concept of transformation graphs to describe
the structure of a transformation between time series x and x∗ [6, 12]. The transformation
graph of T(x,S) = x∗ is a directed acyclic graph GS(x, x∗) with source nodes N(x) =
{u[1], . . . , u[m]} and sink nodes N(x∗) = {u∗[1], . . . , u∗[n]}, where a node u[i] represents the
point x[i] and a node u∗[j] represents the point x∗[j]. The nodes which are neither source nor
sink nodes are called intermediate nodes. All nodes have in-degree and out-degree at most 2.
If there is a directed path from one node α to another node β, we say that α is aligned

MFCS 2023



54:4 On the Complexity of Computing Time Series Medians Under the MSM Metric

4

5

5

10

5

5

5 7

7 10

7

8

1

2

3

-2

Figure 1 An optimal transformation graph between x := (4, 5, 5, 10) and y := (10, 7, 8) with
c = 0.1. Move edges are red. There are two merge operations, one split operation, and move
operations of total cost 8. Hence, d(x, y) = 8.3.

to β. The nodes of N(x) that align to the same node α correspond to consecutive points
in x. Each node in the node set V of GS(x, x∗) is associated with a value given by a function
val : V → R. For source and sink nodes we have val(u[i]) = x[i] and val(u∗[j]) = x∗[j]. Each
intermediate node is also associated with a value. The edges represent the transformation
operations of S. To create a transformation graph, for each operation in S, a respective
move edge or two split edges, or two merge edges are added to the graph. If a node α has
outdegree 2 and is connected to a node β by a split edge and β is a child of α, then there
exists a node γ ≠ β to which α is connected by a split edge and which is a child of α. If
the nodes α and β are connected by a merge edge, α is a parent of β, and β has indegree 2,
then there exists a node γ ≠ α which is connected to β by a merge edge and is a parent
of β. Moreover, for the split and the merge case, it holds that val(α) = val(β) = val(γ). A
move edge can be further specified as an increasing (inc-) or decreasing (dec-) edge if the
move operation adds a (not necessarily strictly) positive or negative value to the value of the
parent node, respectively.

A transformation path, in short path, in GS(x, x∗) is a directed path from a source
node u[i] ∈ N(x) to a sink node u∗[j] ∈ N(x∗). A transformation path is monotonic if
the move edges on this path are only inc- or only dec-edges. A transformation graph is
optimal if it belongs to an optimal transformation. There exists an optimal transformation
graph GS(x, x∗) which can be decomposed into a sequence of distinct trees (T1, . . . , Tt) with
the following properties [6]: 1) The sink and source nodes of each tree Ti form a contiguous
subsequence of x and y, respectively. 2) For all i ∈ [1, t − 1], the source and sink nodes of Ti

precede the source and sink nodes of Ti+1, respectively. 3) Each path in each Ti is monotonic.
For i ∈ [1, n] and j ∈ [i, n], we denote by u[i, j] a contiguous subsequence of nodes of x.

The cost of a tree T is the sum of the cost of the tree edges and denoted by Costc(T ).
If the merge/split cost c is clear from the context, we may omit the subscript. If a tree
contains two nodes α and β, its cost are at least |α − β|. If a tree contains a split or merge
edge, its cost are at least c. We call an optimal transformation graph decomposed into a
sequence of trees as an optimal transformation forest. Figure 1 shows an example where the
transformation graph consists of two trees.

▶ Observation 1 (*). Let X be a set of time series, let x∗ be a time series, and let i ∈
[1, |x∗| − 1]. If for each time series x ∈ X, there is some optimal transformation graph
containing a tree Tx such that both u∗[i] and u∗[i + 1] are sinks of Tx, then there is a time
series y∗ such that for each time series x ∈ X, dMSM(c)(x, x∗) > dMSM(c)(x, y∗).

Let x and y be time series of the same length. We define dMove(x, y) :=
∑|x|

i=1 |x[i]−y[i]| as
the move distance between x and y. The move distance describes the cost of a transformation
forest between x and y that only uses move operations. Hence, dMove(x, y) = dMSM(c)(x, y)
if and only if some optimal transformation between x and y uses only move operations.



J. Holznigenkemper, C. Komusiewicz, N. Morawietz, and B. Seeger 54:5

Circular Consensus String. Our negative results are obtained by a reduction from Binary
Circular Consensus String [4]. Let s be a string of length n and let δ ∈ [1, n]. The circular
shift of s by δ is the string s←δ of length n with s←δ[i] := s[1 + (i − 1 + δ) mod n] for
each i ∈ [1, n]. We denote the Hamming distance of strings s1 and s2 by dHam(s1, s2).

Binary Circular Consensus String
Input: A set S := {s1, . . . , sk} of binary strings of length n and an integer d.
Question: Is there a binary string s∗ of length n and a k-tuple (δ1, . . . , δk) ∈ [0, n−1]k
such that

∑
i∈[1,k] dHam(si

←δi , s∗) ≤ d?

The Exponential Time Hypothesis (ETH) [7] implies that 3-SAT cannot be solved
in 2o(|F |) time where F is the input formula. Assuming the ETH, Binary Circular
Consensus String cannot be solved in f(k) · no(k) time for any computable function f [4].

3 Finding an MSM-Median is Hard

In this section we prove our main hardness results for MSM-Median.

▶ Theorem 2. For c = 1, MSM-Median is NP-hard, W[1]-hard when parameterized by k,
and cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the ETH
fails. This holds even if |V (X)| = 3.

To show the hardness results, we present a reduction from the Binary Circular
Consensus String-problem which is NP-hard, W[1]-hard when parameterized by k, and
cannot be solved in f(k) · no(k) time for any computable function f , unless the ETH fails [4].

Let I := (S, d) be an instance of Binary Circular Consensus String and let n denote
the length of each binary strings of S := {s1, . . . , sk} with k := |S|. If d ≥ n · k, then I is a
trivial yes-instance. Hence, we assume that d ≤ n · k. We can assume that k ≤ n as otherwise
I can be solved in FPT-time for k. We now describe how to construct in polynomial
time an equivalent instance I ′ := (c = 1, X, d′) of MSM-Median such that |X| = |S|
and |I ′| ∈ nO(1). Each point in each time series of X has value either 0, 1, or A := 2d + 3.
Let g : {0, 1}∗ → {0, 1, A}∗ be the function where g(0) := (0, A) and g(1) := (1, A), and for
any binary string y of length at least 2 we have g(y) := g(y[1]) ◦ . . . ◦ g(y[|y|]).

For each i ∈ [1, k], we define a time series x′i := g(si). Let R := k · (n · (A + 2) + 1). We
set X := (x1, . . . , xk), where for each i ∈ [1, k], xi is the concatenation of R copies of x′i, that
is, xi := (x′i)R = (g(si))R = g((si)R). Finally, we set d′ := (R − 1) · d + k · (n · (A + 2) + 1) =
(R − 1) · d + k · (n · (2d + 5) + 1). This completes the construction of I ′.

Note that |X| = k and that |I ′| ∈ |I|O(1) ⊆ nO(1) since we assumed that k ≤ n

and d ≤ n · k. Hence, to show the statement, it remains to show that I is a yes-instance
of Binary Circular Consensus String if and only if I ′ is a yes-instance of MSM-Median.

I′ is a yes-instance if I is a yes-instance. Let s∗ be a binary string of length n and
let (δ1, . . . , δk) ∈ [0, n − 1]k be a k-tuple such that

∑
i∈[1,k] dHam(si

←δi , s∗) ≤ d. We define a
time series x′ as x′ := g(s∗). Let x∗ be the concatenation of R − 1 copies of x′, that is,

x∗ := (x′)R−1 = (g(s∗))R−1 = g((s∗)R−1).

We show that DMSM(X, x∗) ≤ d′. More precisely, we show that dMSM(xi, x∗) ≤ (R −
1) · dHam(si

←δi , s∗) + n · (A + 2) + 1 for each i ∈ [1, k]. Since
∑

si∈S dHam(si
←δi , s∗) ≤ d

and DMSM(X, x∗) =
∑

xi∈X dMSM(xi, x∗), this then implies that DMSM(X, x∗) ≤ (R − 1) ·
d + k · (n · (A + 2) + 1) = d′. Informally, we obtain the bound on dMSM(xi, x∗) via the

MFCS 2023



54:6 On the Complexity of Computing Time Series Medians Under the MSM Metric

s1
←3 11011101

s2
←0 11101110

s3
←2 00110011

s∗←2 11100011

x1 1A1A0A1A1A1A0A1A · · · 1A1A0A1A1A1A0A1A
x2 1A1A1A0A1A1A1A0A · · · 1A1A1A0A1A1A1A0A
x3 0A0A1A1A0A0A1A1A · · · 0A0A1A1A0A0A1A1A

x∗ 1A1A1A0A1A1A1A0A · · · 1A1A1A0A1A1A1A0A

Figure 2 Left: An instance of CCS for three strings s1, s2, s3 with the consensus string s∗. Red
rectangles show the shift δi, i ∈ [1, 3]. Right: Corresponding MSM-Median problem with input
time series x1, x2, and x3 and the median x∗. Blue parts in the input time series align via merge-
and move edges to x∗. Red parts align via move edges from the input time series to x∗.

following transformation: For the middle (R − 1) · 2 · n points of xi, only move operations
are applied. All other points at the beginning and end of each time series in X merge to the
first or last point in x∗, respectively. Figure 2 shows an example.

The above-mentioned set of middle points of xi is defined as follows. The string (si)R

contains the substring (si
←δi)R−1 starting at index δi + 1. Hence, xi = g((si)R) contains the

substring x̃i := g((si
←δi)R−1) = g(si

←δi)R−1 starting at index 2 · δi + 1. The time series x̃i

comprises exactly these middle points. We now bound the distance of xi to x̃i and the
distance of x̃i to x∗.

First, we show that dMSM(xi, x̃i) ≤ n·(A+2)+1. To this end, we describe a transformation
graph Gi between xi and x̃i that consists of (R − 1) · 2 · n trees. The first tree T1 contains
the first 2 · δi + 1 points of xi as source nodes and the first point of x̃i as the unique sink
node. Similarly, the last tree T(R−1)·2·n contains the last 2 · (n − δi) + 1 points of xi as source
nodes and the last point of x̃i as the unique sink node. For each ℓ ∈ [2, (R − 1) · 2 · n − 1],
the tree Tℓ consists of a single edge from the source ui[2 · δi + ℓ] to the sink ũi[ℓ]. Since xi

contains the substring x̃i starting at index 2 · δi + 1, for each ℓ ∈ [2, (R − 1) · 2 · n − 1],
we have xi[2 · δi + ℓ] = x̃i[ℓ] which implies Cost(Tℓ) = 0. Hence, it remains to show
that Cost(T1) + Cost(T(R−1)·2·n) ≤ n · (A + 2) + 1. The following lemma upper-bounds the
costs of these trees independent of the concrete binary values of their respective sources and
sinks. For each α ∈ {0, 1, A}, we use α as shortcut for the length-one time series (α).

▶ Lemma 3 (*). Let y be a binary string. It holds that
dMSM(A ◦ g(y), A) ≤ |y| · (A + 2) and
for each α1 ∈ {0, 1} and each α2 ∈ {0, 1}, dMSM(g(y) ◦ α1, α2) ≤ |y| · (A + 2) + 1.

Recall that sink nodes of T1 are nodes in x∗. Since the unique sink node of T1 has value
either 0 or 1, Lemma 3 implies Cost(T1) ≤ (δi) · (A + 2) + 1. Moreover, since the unique
sink node of T(R−1)·2·n has value A, Lemma 3 implies Cost(T(R−1)·2·n) ≤ (n − δi) · (A + 2).
Hence, dMSM(xi, x̃i) ≤ Cost(T1) + Cost(T(R−1)·2·n) ≤ n · (A + 2) + 1.

Second, we show that dMSM(x̃i, x∗) ≤ (R − 1) · dHam(si
←δi , s∗). Recall that x̃i and x∗

have the same length ((R − 1) · 2 · n). Hence, it is sufficient to show that dMove(x̃i, x∗) ≤
(R − 1) · dHam(si

←δi , s∗). Since x̃i[ℓ] = x∗i [ℓ] = A for each even ℓ ∈ [1, |x∗|], we conclude

dMove(x̃i, x∗) =
∑

odd ℓ∈[1,|x∗|]

|x̃i[ℓ] − x∗[ℓ]| =
∑

ℓ∈[1,(R−1)·n]

|x̃i[2ℓ − 1] − x∗[2ℓ − 1]|

= (R − 1) ·
∑

ℓ∈[1,n]

|x̃i[2ℓ − 1] − x∗[2ℓ − 1]|

= (R − 1) ·
∑

ℓ∈[1,n]

dHam(x̃i[2ℓ − 1], x∗[2ℓ − 1])



J. Holznigenkemper, C. Komusiewicz, N. Morawietz, and B. Seeger 54:7

= (R − 1) ·
∑

ℓ∈[1,n]

dHam(si
←δi [ℓ], s∗[ℓ])

= (R − 1) · dHam(si
←δi , s∗).

Recall that x̃i = (g(si
←δi))R−1 and x∗ = (g(s∗))R−1. The second to last equation holds since

by definition of g, for each j ∈ [1, n], g(si
←δi)[2j − 1] = si

←δi [j] and g(s∗)[2j − 1] = s∗[j].
Hence, dMSM(x̃i, x∗) ≤ dMove(x̃i, x∗) = (R − 1) · dHam(si

←δi , s∗).
Since dMSM is a metric, we obtain

dMSM(xi, x∗) ≤ dMSM(xi, x̃i) + dMSM(x̃i, x∗) ≤ (R − 1) · dHam(si
←δi , s∗) + n · (A + 2) + 1.

Hence, dMSM(xi, x∗) ≤ (R−1) ·dHam(si
←δi , s∗)+n ·(A+2)+1 for each time series xi ∈ X

and thus DMSM(X, x∗) ≤ d′. Consequently, I ′ is a yes-instance of MSM-Median.

I′ is a no-instance if I is a no-instance. If I is a no-instance, then for each binary string s∗

of length n and each k-tuple (δ1, . . . , δk) ∈ [0, n−1]k,
∑

i∈[1,k] dHam(si
←δi , s∗) ≥ d+1. Let x∗

be a time series that minimizes DMSM(X, x∗). We show that DMSM(X, x∗) ≥ R · (d + 1) =
d′+d > d. We can assume that x∗ uses only values of V (X) = {0, 1, A} [6]. For each i ∈ [1, k],
let GSi(xi, x∗) be an optimal transformation graph between xi and x∗. Moreover, let Ti be
the collection of all trees of GSi

(xi, x∗). We can assume that each value in each such tree is
from V (X) = {0, 1, A} [6]. For a collection of trees T, we denote Cost(T) :=

∑
T∈T Cost(T ).

To show that DMSM(X, x∗) > d′, we first introduce some notation.
We say that a move edge (u1, u2) of any tree is heavy if | val(u1)−val(u2)| > 1. Analogously,

we call path P in any tree heavy if at least one move edge of P is heavy. Since each node
of each tree between X and x∗ has a value from {0, 1, A}, a tree T contains a heavy path
if and only if T contains at least one node with value A and at least one node with value
either 0 or 1. In other words, if a tree T contains no heavy path, then a) the value of each
node in T is A or b) the value of each node in T is from {0, 1}. Since A = 2d + 3, the cost of
a tree with a heavy path is at least A − 1 = 2(d + 1).

In the following, we take the time series x1 ∈ X as a pivot and regard the partial
alignment of a prefix of x1 to a prefix of x∗. Then, we analyze the cost of all other time
series x ∈ X \ {x1} aligning to this prefix of x∗.

For each i ∈ [0, R], let bi be the largest number of [0, |x∗|] such that u∗[bi] is the sink
of a tree of T1 containing no source nodes of u1[2ni + 1, 2nR]. Note that b0 = 0 and that
if the tree of T1 that has u1[1] as a source node also has a source node u1[2ni + 1] for
some i ∈ [1, R − 1], then bj = 0 for each j ∈ [0, i]. For each i ∈ [0, R] let Bi be set of trees
between any time series x of X and x∗ containing only sinks of u∗[1, bi]. Figure 3 depicts
examples of trees belonging to Bi and a tree not belonging to Bi. For i ∈ [1, R], the ith
block is defined as Qi = Bi \ Bi−1. That is, each tree T in a block Qi contains only sinks
of u∗[1, bi] and at least one sink of u∗[bi−1 + 1, bi]. The ith block Qi is a cut if Qi ∩ T1
has exactly the set of source nodes u1[2n(i − 1) + 1, 2ni]. Figure 4 depicts two examples

bi−1 + 1 bi

xj

x∗

xℓ

T ′

T ′′
T ′′′

Figure 3 Two time series xj and xℓ with a median x∗ of X; T ′ is not in Bi, T ′′ and T ′′′ are in Bi.

MFCS 2023



54:8 On the Complexity of Computing Time Series Medians Under the MSM Metric

2(i− 1)n + 1 2in 2(i− 1)n + 1 2in 2(i− 1)n + 1 2in

bi−1 + 1 bi bi−1 + 1 bi bi−1 + 1 bi

x1

x∗

T T T ′ T ′′

Figure 4 The upper time series shows x1, the lower time series shows the median x∗. The first
example is not a cut since the tree T has source nodes u1[j] with j > 2in. The second example is
not a cut since the tree T has source nodes u1[j] with j ≤ 2(i − 1)n. The third example is a cut.

of blocks not being cuts and one example of a cut. The idea behind the definitions of cuts
is as follows: If a block Qi is not a cut, then some tree T ∈ T1 with at least two sources
contains u1[2n(i − 1)] or u1[2ni + 1] as a source. We say that Qi is a light cut if for each
tree T ∈ Qi ∩ T1, T contains no heavy path. Hence, if Qi is a light cut, then for each source
node û in u1[2n(i − 1) + 1, 2ni], the tree of T1 containing û contains no heavy path. Note
that a light cut Qi may still contain trees with heavy paths but these trees are not contained
in T1.

We further describe the structure of a light cut. By construction, every copy of x1 starts
with a binary value followed by an A, followed by a binary value and so on. All paths in
trees of a light cut Qi are light. That is, an A in x1 aligns to one or multiple A in x∗ and
a binary number in x1 aligns to one or multiple binary numbers in x∗. That is, we have n

non-empty binary runs (r1
bin, . . . , rn

bin) and n non-empty A-runs (r1
A, . . . , rn

A) such that

x∗[bi−1 + 1, bi] = (r1
bin ◦ r1

A ◦ r2
bin ◦ r2

A ◦ . . . ◦ rn
bin ◦ rn

A).

We now show that each block Qi has amortized cost at least d + 1. This implies that the
total cost of the transformation forest exceeds d′ < R · (d + 1) and thus I ′ is a no-instance of
MSM-Median. Let i ∈ [1, R]. We say that a set J ⊆ [i, R] with i ∈ J is right-dominated by
a set J ′ ⊆ [i, R] if J ⊆ J ′ and [max(J), max(J ′)] ⊆ J ′.

▶ Lemma 4 (*). Let i ∈ [1, R] such that the block Qi is not a light cut. Moreover, let J ⊆ [i, R]
such that i ∈ J and for each j ∈ J , the block Qj is not a light cut. Then, there is
some J ′ ⊆ [i, R] such that J is right-dominated by J ′ and Cost(∪j∈J′Qj ∩ T1) ≥ |J ′| · (d + 1).

▶ Lemma 5. Let I be a no-instance of Binary Circular Consensus String and let i ∈
[0, R − 1]. If Cost(Bi) ≥ i · (d + 1), then there is some j > i such that Cost(Bj) ≥ j · (d + 1).

Proof. Considering the next block Qi+1, we distinguish whether Qi+1 is a light cut.
Case 1: Block Qi+1 is not a light cut. Let J = {i + 1}. By Lemma 4, there is some

J ′ ⊆ [i + 1, R] with J ⊆ J ′ and [max(J), max(J ′)] = [i + 1, max(J ′)] ⊆ J ′ such
that Cost(∪j′∈J′Qj′ ∩ T1) ≥ |J ′| · (d + 1). For j = max(J ′) we have Cost(Bj \ Bi) ≥
Cost(∪j′∈J′Qj′ ∩ T1) ≥ |J ′| · (d + 1) = (j − i) · (d + 1). We get

Cost(Bj) = Cost((Bj \ Bi) ∪ Bi) = Cost(Bj \ Bi) + Cost(Bi)
≥ (j − i) · (d + 1) + i · (d + 1) = j · (d + 1).

Hence, the statement holds for j.
Case 2: Block Qi+1 is a light cut. Recall that since Qi+1 is a light cut, there are n non-

empty binary runs (r1
bin, . . . , rn

bin) and n non-empty A-runs (r1
A, . . . , rn

A) such that

x∗[bi + 1, bi+1] = (r1
bin ◦ r1

A ◦ r2
bin ◦ r2

A ◦ . . . ◦ rn
bin ◦ rn

A).



J. Holznigenkemper, C. Komusiewicz, N. Morawietz, and B. Seeger 54:9

First, we show two properties of transformation graphs from each time series of X to x∗

which directly imply Cost(Bj) ≥ j · (d + 1) for some j ≥ i + 1. Afterward, we show that
transformation graphs without these properties then resembles circular shifts of the binary
input strings of I. Because I is a no-instance of Binary Circular Consensus String,
we then get Cost(Qi+1) ≥ d + 1 which implies Cost(Bi+1) ≥ (i + 1) · (d + 1).

▷ Claim 6 (*). Let i ∈ [0, R − 1] such that Qi+1 is a light cut. If there is some tree T

in BR \ T1 that contains at least one sink node of u∗[bi + 1, bi+1] and where any of the
following holds:
1. T is contained in Qi+1 and contains a heavy path or
2. the values of the sinks of T contain at least one A and at least one binary value,
then there is some j > i such that Cost(Bj \ Bi) ≥ (j − i) · (d + 1).

Hence, if Condition 1 or Condition 2 holds, then there is some j ≥ i+1 such that Cost(Bj \
Bi) ≥ (j − i) · (d + 1). Consequently, Cost(Bj) = Cost(Bj \ Bi) + Cost(Bi) ≥ j · (d + 1)
which implies that the statement holds for j. In the following, we thus assume that neither
Condition 1 or Condition 2 holds. This implies that

each tree of Qi+1 has only one source node (otherwise, Condition 1 holds) and
each tree with at least one sink node of x∗[bi + 1, bi+1] has either a) only sinks with binary
values or b) only sinks with value A (otherwise, Condition 2 holds).

Note that the latter implies that each tree with at least one sink node of x∗[bi + 1, bi+1] has
either a) only sinks with binary values or b) only sinks with value A. Since Condition 1 does
not hold, this further implies that each tree T of Qi+1

has only sinks with binary values, if the value of the unique source of T is binary and
has only sinks with value A, if the unique source of T has value A.

Next, we show that the statement holds for j = i+1. To this end, we show that Cost(Qi+1) ≥
d + 1. For each q ∈ [1, n], let lastq denote the index of the last binary value of rq

bin in the
median. Let s∗ be the length-n string such that s∗[q] = x∗[lastq] for each q ∈ [1, n].

▷ Claim 7. For each p ∈ [1, k], there is some even index δ′p such that for each q ∈ [1, n] there
is a tree T q

p satisfying the following properties:
(i) T q

p is contained in Qi+1 ∩ Tp,
(ii) up[δ′p + 2 · q − 1] is the unique source node of T q

p , and
(iii) u∗[lastq] is a sink node of T q

p .

Proof. Let p ∈ [1, k]. We prove this statement in an inductive way. First, we show that there
is an even index δ′p such that there is a tree T n

p satisfying Properties (i)–(iii). Afterward,
we show that if for some ℓ ∈ [2, n], there is a tree T ℓ

p satisfying Properties (i)–(iii), then the
tree T ℓ−1

p satisfies Properties (i)–(iii). This then implies the statement.
Let T n

p be the tree of Tp having u∗[lastn] as a sink node and let T ′ be the tree of Tp

having u∗[lastn + 1] as a sink node. Note that T n
p satisfies Property (iii). Since lastq is the

index of the last value of the nth binary run of Qi+1, we have x∗[lastn + 1] = A. Moreover,
since each tree containing at least one sink node in x∗[bi + 1, bi+1] has either a) only sinks
with binary values or b) only sinks with value A, T n

p and T ′ are distinct trees. Hence,
since lastn + 1 ≤ bi+1, T n

p is contained in Qi+1. This implies that T n
p satisfies Property (i).

Moreover, since no tree in Qi+1 contains a heavy path, the values of the source nodes and the
values of the sink nodes of T n

p are all binary values. Hence, since each tree of Qi+1 has only
one source node, T n

p has a unique source and this unique source has a binary value. Since xp

contains binary values only on odd positions, there is some even δ′p such that up[δ′p + 2 · n − 1]
is the unique source of T n

p . Hence, T n
p satisfies Properties (i)–(iii) for δ′p.

MFCS 2023



54:10 On the Complexity of Computing Time Series Medians Under the MSM Metric

Now assume by induction that the statement holds for T ℓ
p . We show that the tree T ℓ−1

p

satisfies Properties (i)–(iii) as well. Since rℓ−1
A is a non-empty A-run and each tree of Qi+1 has

either a) only sinks with binary values or b) only sinks with value A, T ℓ
p is not the first tree

of Tp. Hence, since δ′p is even, δ′p +2 ·ℓ−1 ≥ 3. Let T ′ be the tree of Tp having up[δ′p +2 ·ℓ−2]
as a source node, and let T ℓ−1

p be the tree of Tp having up[δ′p +2 ·ℓ−3] = up[δ′p +2 · (ℓ−1)−1]
as a source node. Since no tree of Qi+1 contains a heavy path, the values of all sink nodes
of T ℓ

p and T ℓ−1
p are binary and the values of all sink nodes of T ′ are A. Hence, T ℓ

p contains
exactly the ℓth binary run as sink nodes, as otherwise, T ℓ

p contains a sink with value A

or T ′ contains a sink with a binary value. Hence, T ′ contains the node of the last A of
the (ℓ − 1)th A-run as a sink node. Since T ℓ

p is contained in Qi+1, this further implies that T ′

is also contained in Qi+1. Thus, similarly to the above, T ′ contains exactly the (ℓ−1)th A-run
as sink nodes, as otherwise, T ′ contains a sink with binary value or T ℓ−1

p contains a sink
with value A. Hence, T ℓ−1

p contains the node u∗[lastℓ−1] as a sink node and thus fulfills
Property (iii). Since T ℓ

p is contained in Qi+1, this further implies that T ℓ−1
p is also contained

in Qi+1. Hence, T ℓ−1
p fulfills Property (i). By the fact that each tree in Qi+1 contains only

one source node, this then implies that up[δ′p + 2 · (ℓ − 1) − 1] is the unique source node
of T ℓ−1

p . Hence, T ℓ−1
p satisfies Properties (i)–(iii).

Moreover, the above proof also shows that δ′p + 2 · ℓ − 1 ≥ 3 for each ℓ ∈ [2, n], which
implies that δ′p ≥ 0. Additionally, the proof also shows that for each ℓ ∈ [2, n],

T ℓ
p of Tp contains exactly the ℓth binary run as sink nodes and

the tree of Tp containing up[δ′p + 2 · ℓ − 2] as unique source node, contains exactly
the (ℓ − 1)th A-run as sink nodes.3 ◁

For each p ∈ [1, k], let δ′p be the index fulfilling the properties of Claim 7. Moreover, for
each p ∈ [1, k] and for each q ∈ [1, n], let T q

p be the tree fulfilling the properties of Claim 7
with respect to δ′p. Finally, let T := {T q

p | p ∈ [1, k], q ∈ [1, n]} denote the set of these trees.
We show that Cost(T) ≥ d + 1. Due to Property (i) of Claim 7, T ⊆ Qi+1. Hence,

Cost(Bi+1) = Cost((Bi+1 \ Bi) ∪ Bi) = Cost(Qi+1) + Cost(Bi)
≥ (d + 1) + i · (d + 1) ≥ (i + 1) · (d + 1).

To show that Cost(T) ≥ d + 1, we use the fact that for each binary string ŝ of length n

and each k-tuple (δ1, . . . , δk),
∑

p∈[1,k] dHam(sp
←δp , ŝ) ≥ d+1. In particular, this holds for s∗,

the string of length n where for each index q ∈ [1, n], s∗[q] = x∗[lastq]. For each p ∈ [1, k],
we set δp := δ′

p mod (2n)
2 = δ′

p

2 mod n. Next, we show that for each p ∈ [1, k], Cost(Tp) ≥
dHam(sp

←δp , s∗), where Tp := T ∩ Tp = {T q
p | q ∈ [1, n]}.

Let p ∈ [1, k]. Recall that xp = (g(sp))R = g((sp)R). Hence, by definition of g and sp
←δp ,

for each q ∈ [1, n],

sp
←δp [q] = sp[1 + (δp + q − 1) mod n] = (sp)R[δp + q]

= xp[2 · (δp + q) − 1] = xp[2 · δp + 2 · q − 1] = xp[δ′p + 2 · q − 1].

Since for each q ∈ [1, n], T q
p contains the source up[δ′p + 2 · q − 1] of value xp[δ′p + 2 · q − 1] =

sp
←δp [q] and the sink u∗[lastq] of value s∗[q], we conclude Cost(T q

p ) ≥ |sp
←δp [q] − s∗[q]| ≥

dHam(sp
←δp [q], s∗[q]). Hence, Cost(Tp) =

∑n
q=1 Cost(T q

p ) ≥
∑n

q=1 dHam(sp
←δp [q], s∗[q]) =

dHam(sp
←δp , s∗).

Since
∑k

p=1 dHam(sp
←δp , s∗) ≥ d + 1, we conclude Cost(Qi+1) ≥ Cost(T) ≥ d + 1. This

then implies Cost(Bi+1) ≥ (i + 1) · (d + 1). Hence, the statement holds for j = i + 1. ◀

3 Recall that x∗ minimizes DMSM(X, x∗) and that for each i ∈ [1, k], Gi is a transformation graph
between xi and x∗. By Observation 1, this implies that for each ℓ ∈ [2, n], the ℓth binary run and
the (ℓ − 1)th A-run each have length 1. This then implies (x∗[last1], . . . , x∗[lastn + 1]) = g(s∗).



J. Holznigenkemper, C. Komusiewicz, N. Morawietz, and B. Seeger 54:11

Note that Cost(B0) = Cost(∅) = 0 ≥ 0 · (d + 1). Hence, due to Lemma 5, one can show
via induction that Cost(BR) ≥ R · (d + 1). Since R = k · (n · (A + 2) + 1),

R · (d + 1) = (R − 1) · d + R + d = (R − 1) · d + k · (n · (A + 2) + 1) + d = d′ + d.

Hence DMSM(X, x∗) = Cost(BR) ≥ R · (d + 1) > d′ and I ′ is a no-instance of MSM-Median.
This completes the proof of the equivalence of I and I ′ and thus the proof of Theorem 2.
With the hardness for c = 1 at hand, we may also show hardness for arbitrary values of c.

▶ Theorem 8 (*). For every constant c > 0, MSM-Median is NP-hard, W[1]-hard when
parameterized by k, and cannot be solved in f(k) · |I|o(k) time for any computable function f ,
unless the ETH fails. This holds even if |V (X)| = 3.

4 Parameterized Algorithms for MSM-Median

The algorithms presented in the following extend the DP algorithm of Holznigenkemper et
al. [6]. Given a sequence X of time series of length at most n each and some m ∈ N, this
DP computes in time O(n|X|+2 · 2|X| · |X|2 · m) a time series x∗ of length at most m that
contains only points of V (X) and has minimum distance to X among all such time series.

Allowing Weights. Let X := (x1, . . . , xk) be a sequence of time series. Moreover, let X ′ :=
{xi | 1 ≤ i ≤ k} be the set of time series of X and let ω : X ′ → N+ be the function where
for each x ∈ X ′, ω(x) is the number of occurrences of x in X. We call (X ′, ω) the weighted
equivalent of X. We denote by Dω

MSM(c)(X ′, y) :=
∑

x∈X′(ω(x) · dMSM(c)(x, y)) the weighted
MSM-distance between X ′ and y.

▶ Observation 9. Let X := (x1, . . . , xk) be a sequence of time series and let (X ′, ω) be the
weighted equivalent of X. Then, for each time series x∗, DMSM(c)(X, x∗) = Dω

MSM(c)(X ′, x∗).

▶ Lemma 10. Let X be a set of time series of length at most n each, let ω : X → N+ be a
weight function, and let m ∈ N. In time O(n|X|+2 ·2|X| ·|X|2 ·m) one can find a time series x∗

that contains only points of V (X), has length at most m, and minimizes Dω
MSM(c)(X, x∗).

Proof. We adapt the algorithm by Holznigenkemper et al. [6] by inserting the weights of the
time series as follows: We fill a (k + 2)-dimensional table D with entries D[p, ℓ, s], where
p = (p1, . . . , pk) indicates the current positions of X, the index ℓ ∈ [1, m] indicates the
current position of x∗, and s is a point in V (X). The entry D[p, ℓ, s] stores the minimal cost
needed to transform the partial time series (x1[1, p1], . . . , xk[1, pk]) to any time series x∗ of
length exactly ℓ where x∗[ℓ] = s and x∗ uses only values from V (X). Since all time series
are weighted, all partial time series are also weighted. Hence, the cost of all transformation
operations regarding the weighted partial time series also have to be weighted.

In the DP recurrence, we distinguish two cases: Merges are applied (to the last positions
of a subset of X) or splits or moves are applied (to the last positions of all time series in X).
When merges applied, the position of x∗ does not change in the recurrences, this case is
denoted by AME . When moves and splits are applied, then the position of x∗ decreases, this
case is denoted AMS . In the recurrence, we consider the best of these two cases:

D[p, ℓ, s] = min{AMS [p, ℓ, s], AME [p, ℓ, s]}.

To present the recurrence for the two cases, we use index sets IMO, ISP , and IME representing
the time series indices for which move, split, and merge operations are applied, respectively.

MFCS 2023



54:12 On the Complexity of Computing Time Series Medians Under the MSM Metric

All index sets are subsets of [1, k] and IMO ∪ ISP = [1, k]. For an index set I, let pI =
(p1, . . . , pk) where pi = pi − 1 for all i ∈ I and pi = pi for all i ∈ [1, k] \ I. For merge
operations, the recursive call of the function does not decrease the current position of x∗:

AME [p, ℓ, s] = min
IME

(
D[pIME

, ℓ, s] +
∑

i∈IME

(ω(xi) · C(xi[pi], xi[pi − 1], s))
)
,

where C(u, v, w) =
{

c if v ≤ u ≤ w or v ≥ u ≥ w

c + min(|u − v|, |u − w|) otherwise.

For move and split operations, the recursive call of the function decreases the current
position of x∗:

AMS [p, ℓ, s] = min
s′∈V (X)

{
min

IMO,ISP

(
D[pIMO

, ℓ − 1, s′]

+
∑

i∈IMO

(ω(xi) · |xi[pi] − s|) +
∑

i∈ISP

(ω(xi) · C(s, xi[pi], s′))
)}

.

Each single entry of AMS and AME can be computed in time 2|X| · (|X| + n + d/c + m)O(1).
For the last recursion step, the entries D[(1, . . . , 1), 1, s] are computed by D[(1, . . . , 1), 1, s] =∑k

i=1(ω(xi) · |xi[1] − s|). All entries D[p, ℓ, s] for which pi < 1 for some i ∈ [1, k] are set
to +∞. If ℓ = 1 and pi > 1 for all i ∈ [1, k], then only merge operations may be applied
since the position of x∗ can not be decreased anymore: D[p, 1, s] = AME [p, ℓ, s].

The minimum distance Dω
MSM(c)(X ′, x∗) to any time series x∗ of length at most m

that uses only points of V (X) can be computed by minℓ∈[m],s∈V (X)(D[p, ℓ, s]), where p :=
(|x1|, . . . , |xk|). Since the previous DP [6] runs in the desired running time and we only added
weights to the DP but did not change the table structure, the running time stays the same.
The corresponding time series can be found via traceback. ◀

▶ Lemma 11 (*). Let X be a set of time series of length at most n each and let ω : X → N+.
Then, each time series x∗ that minimizes DMSM(c)(X, x∗) has length at most n · |X|.

Improving the Dynamic Program with a Cost-Bound. Next, we establish an intermediate
FPT algorithm with the parameters |X| and d/c.

▶ Theorem 12. Let X be a set of time series each of length at most n, let ω : X → N+ be
a weight function, let d ∈ R, and let m ∈ N. In time 4|X| · 3d/c · (|X| + n + d/c + m)O(1)

one can find a time series x∗ that contains only points of V (X), has length at most m,
and minimizes Dω

MSM(c)(X, x∗) or correctly output that there is no such time series x∗

with Dω
MSM(c)(X, x∗) ≤ d.

The main idea is that when given a cost budget d, we may be able to limit the number of
entries in the DP-table that do not exceed a cost of d. That is, we only need to compute the
entries in the DP-table that are close to the diagonal.

▶ Lemma 13 (*). Let p = (p1, . . . , pk) ∈ Nk, let ℓ ∈ N, and let s ∈ R. If
∑k

i=1 |pi − ℓ| > d/c,
then D[p, ℓ, s] > d.

We now adapt the DP-table described in the proof of Lemma 10 as follows. The table
entries now have a slightly different interpretation: If the minimal cost needed to transform
the partial time series (x1[1, p1], . . . , xk[1, pk]) to any time series x∗ of length ℓ with x∗[ℓ] = s

that only uses points from V (X) is at most d, then the value of D[p, ℓ, s] is exactly this
number. Otherwise, D[p, ℓ, s] may hold an arbitrary value larger than d, for example d + 1.



J. Holznigenkemper, C. Komusiewicz, N. Morawietz, and B. Seeger 54:13

For each ℓ ∈ [1, m] and each s ∈ V (X), we only compute the table
entries D[(p1, . . . , pk), ℓ, s] with

∑k
i=1 |pi − ℓ| ≤ d/c. Moreover, whenever a sum required to

compute an entry of D[p′, ℓ′, s′] depends on the value of an entry D[p, ℓ, s] with
∑k

i=1 |pi−ℓ| >

d/c, then this sum is not computed but replaced by d+1 since the sum is at least D[p, ℓ, s] > d

as well. This is correct since each entry of D is obtained by minimizing sums of non-negative
numbers. Finally, we compute d∗ := minℓ∈[1,m] mins∈V (X) D[(|x1|, . . . , |xk|), ℓ, s]. If d∗ > d,
we output that there is no time series x∗ with the desired properties. Otherwise, we find
some time series x∗ with Dω

MSM(c)(X, x∗) = d∗ via traceback and output this time series.
To show that this modified algorithm has the running time promised in Theorem 12, we

bound the number of vectors (p1, . . . , pk) ∈ Nk with
∑k

i=1 |pi − ℓ| ≤ d/c.

▶ Observation 14 (*). Let q = (q1, . . . , qk) ∈ Zk be a vector and let α ∈ N. In time O(2k ·
3α · α · k), one can enumerate all vectors p = (p1, . . . , pk) ∈ Zk with

∑k
i=1 |qi − pi| ≤ α.

By setting α = d/c and qi = ℓ for each i ∈ [1, k], Observation 14 implies that we have
to compute at most 2|X| · 3d/c · (|X| + n + d/c + m)O(1) entries of D to compute d∗ :=
minℓ∈[1,m] mins∈V (X) D[(|x1|, . . . , |xk|), ℓ, s]. Since each entry can be computed in time 2|X| ·
(|X| + n + d/c + m)O(1), we obtain the stated running time. If d∗ ≤ d, the corresponding
time series can be found via traceback in the same running time. This shows Theorem 12.

An FPT-algorithm for the Distance Bound. In this section, we now obtain an FPT
algorithm for the parameter d/c, removing the running time dependence on |X|.

▶ Theorem 15. MSM-Median can be solved in time 2O(d/c) · |I|O(1). Moreover, when given
a yes-instance of MSM-Median, one can find a median in the same running time.

For a time series x, we define XClose(x) := {y ∈ X | |y| = |x| and dMSM(c)(x, y) ≤ 3 · c/2}.

▶ Lemma 16. Let X be a set of time series, let x ∈ X, and let x∗ be any time series
with dMSM(c)(x, x∗) < c/2, then

|x∗| = |x|,
for each y ∈ XClose(x), dMSM(c)(y, x∗) = dMove(y, x∗), and
for each z ∈ X \ XClose(x), dMSM(c)(z, x∗) ≥ c.

Proof. First, note that since dMSM(c)(x, x∗) < c/2, each optimal transformation forest
between x and x∗ uses only move edges. Hence, |x∗| = |x|.

Next, we show that for each y ∈ XClose(x), dMSM(c)(y, x∗) = dMove(y, x∗). By the triangle
inequality, dMSM(c)(y, x∗) ≤ dMSM(c)(y, x) + dMSM(c)(x, x∗) < 3 · c/2 + c/2 = 2c. Hence,
since |y| = |x| = |x∗|, each transformation forest between y and x∗ contains the same number
of split and merge operations. Since dMSM(c)(y, x∗) < 2c, each optimal transformation forest
between y and x∗ uses only move edges which implies that dMSM(c)(y, x∗) = dMove(y, x∗).

Finally, we show that for each z ∈ X\XClose(x), dMSM(c)(z, x∗) ≥ c. Let z ∈ X\XClose(x).
If |z| ≠ |x|, then since |x| = |x∗|, each transformation forest between z and x∗ contains at least
one split or merge operation. Consequently, dMSM(c)(z, x∗) ≥ c. Otherwise, that is, if |z| = |x|,
then 3 · c/2 < dMSM(c)(z, x) since z /∈ XClose(x). By the triangle inequality, dMSM(c)(z, x) ≤
dMSM(c)(z, x∗) + dMSM(c)(x, x∗) < dMSM(c)(z, x∗) + c/2. Hence, 3 · c/2 < dMSM(c)(z, x∗) + c/2
which implies dMSM(c)(z, x∗) > c. ◀

Proof of Theorem 15. Let I := (X ′, d) be an instance of MSM-Median where each time
series of X ′ has length at most n and let (X, ω) be the weighted equivalent of X ′. There is a
median that only uses values of V (X) [6, Lemma 10]. We describe how to find in the stated
running time a time series x∗ with this property that minimizes Dω

MSM(c)(X, x∗) or correctly
detect that no such time series exists with Dω

MSM(c)(X, x∗) ≤ d. We distinguish two cases.

MFCS 2023



54:14 On the Complexity of Computing Time Series Medians Under the MSM Metric

Case 1: d/c ≥ |X|/2. Hence, |X| ≤ 2 · d/c. By Lemma 11, the sought time series x∗ has
length at most n · |X|. Due to Theorem 12, we can find a time series with the desired
properties that has length at most n · |X| in time 4|X| · 3d/c · (|X| + n + d/c)O(1) ≤
42·d/c · 3d/c · (|X| + n + d/c)O(1) = 48d/c · (|X| + n + d/c)O(1) or detect that no such
time series exists with Dω

MSM(c)(X, x∗) ≤ d. Hence, if such a time series x∗ is found, we
can correctly output that I is a yes-instance of MSM-Median and return the found
time series. Otherwise, by the above, we can correctly output that I is a no-instance
of MSM-Median.

Case 2: d/c < |X|/2. The idea is as follows: If I is a yes-instance of MSM-Median,
then there is a median x∗ with Dω

MSM(c)(X, x∗) ≤ d and some time series x̃ ∈
X with dMSM(c)(x̃, x∗) ≤ d/|X| < c/2. Lemma 16 now implies: for each time
series y ∈ XClose(x̃), dMSM(c)(y, x∗) = dMove(y, x∗) and for each time series z ∈
X \ XClose(x̃), dMSM(c)(z, x∗) ≥ c. This implies that Z := X \ XClose(x̃) contains at
most d/c time series. Hence, to find a median, the main algorithmic difficulty lies in finding
a time series of length |x̃| that uses only points of V (X) and minimizes Dω

MSM(c)(X, x∗) =
Dω

MSM(c)(Z, x∗) +
∑

y∈XClose(x)(ω(y) · dMove(y, x∗)). We show that this can be done in
time 4|Z| · 3d/c · (|X| + n + d/c)O(1) by modifying the DP of Theorem 12. Essentially
the idea is that since for each time series y ∈ XClose(x̃), dMSM(c)(y, x∗) = dMove(y, x∗),
the transformation forest between y and x∗ is fixed and we do not need to store current
positions of time series in XClose(x̃) as dimensions in the DP-table.

▷ Claim 17 (*). Let Z be a set of time series of length at most nZ each, let Y be a
non-empty set of time series of length nY each, let ω : Z ∪ Y → N+, and let d ∈ R. In
time 4|Z| · 3d/c · (|Z ∪ Y | + max(nZ , nY ) + d/c)O(1) one can find a time series x∗ that

contains only points of V (Z) ∪ V (Y ), has length nY , and
minimizes dZ,Y (x∗) := Dω

MSM(c)(Z, x∗) +
∑

y∈Y (ω(y) · dMove(y, x∗))
or correctly output that there is no such time series x∗ with dZ,Y (x∗) ≤ d.

The algorithm for d/c < |X|/2 now works as follows: Branch into all possibilities
for x̃. That is, iterate over all time series x ∈ X and compute the sets Y := XClose(x)
and Z := X \ Y . If |Z| > d/c, then continue with the next time series since x is no candidate
for x̃. Otherwise, apply the algorithm behind Claim 17 for the sets Z and Y . If this algorithm
returns that there is no time series x∗ with the desired property, then x is not a candidate
for x̃ or I is a no-instance of MSM-Median. Otherwise, store the time series x∗ that
minimizes Dω

MSM(c)(Z, x∗) +
∑

y∈Y (ω(y) · dMSM(c)(y, x∗)) ≤ d. After iterating over all time
series of X, output the stored time series x∗ that minimizes Dω

MSM(X, x∗). If no such time
series was found, output that I is a no-instance of MSM-Median.

By the above, this algorithm is correct. It remains to show the running time. Since for any
two time series x and y, dMSM(c)(x, y) can be computed in O(|x|·|y|) time [12], each individual
step of this algorithm runs in |I|O(1) time. For each time series x with |X \ XClose(x)| ≤ d/c,
the algorithm behind Claim 17 can be applied in time 4|X\XClose(x)|·3d/c·|I|O(1) ≤ 12d/c·|I|O(1).
Consequently, this algorithm runs in time 12d/c · |I|O(1).

Since in both cases the running time is at most 48d/c · |I|O(1), the statement holds. ◀

Finally, let us observe that the concrete value of d need not be known in advance.

▶ Corollary 18. Let X be a sequence of time series of length at most n each, then we can find
in time 2O(d/c) · (|X| + n + d/c)O(1) a time series x∗ that minimizes DMSM(c)(X, x∗) = d.



J. Holznigenkemper, C. Komusiewicz, N. Morawietz, and B. Seeger 54:15

References
1 Saeed Reza Aghabozorgi, Ali Seyed Shirkhorshidi, and Ying Wah Teh. Time-series clustering -

A decade review. Inf. Syst., 53:16–38, 2015. doi:10.1016/j.is.2015.04.007.
2 Markus Brill, Till Fluschnik, Vincent Froese, Brijnesh J. Jain, Rolf Niedermeier, and David

Schultz. Exact mean computation in dynamic time warping spaces. Data Min. Knowl. Discov.,
33(1):252–291, 2019. doi:10.1007/s10618-018-0604-8.

3 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proccedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’15), pages 79–97. IEEE Computer Society, 2015.

4 Laurent Bulteau, Vincent Froese, and Rolf Niedermeier. Tight hardness results for consensus
problems on circular strings and time series. SIAM J. Discret. Math., 34(3):1854–1883, 2020.
doi:10.1137/19M1255781.

5 Jana Holznigenkemper, Christian Komusiewicz, and Bernhard Seeger. Exact and heuristic
approaches to speeding up the MSM time series distance computation. In Proceedings of the
2023 SIAM International Conference on Data Mining (SDM ’23), pages 451–459. SIAM, 2023.
doi:10.1137/1.9781611977653.ch51.

6 Jana Holznigenkemper, Christian Komusiewicz, and Bernhard Seeger. On computing exact
means of time series using the move-split-merge metric. Data Min. Knowl. Discov., 37(2):595–
626, 2023.

7 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

8 Weiwei Jiang. Time series classification: Nearest neighbor versus deep learning models. SN
Appl. Sci., 2(4):721, 2020. doi:10.1007/s42452-020-2506-9.

9 Jason Lines and Anthony Bagnall. Time series classification with ensembles of elastic distance
measures. Data Min. Knowl. Discov., 29:565–592, 2015. doi:10.1007/s10618-014-0361-2.

10 John Paparrizos and Luis Gravano. Fast and accurate time-series clustering. ACM Trans.
Database Syst., 42(2):8:1–8:49, 2017. doi:10.1145/3044711.

11 John Paparrizos, Chunwei Liu, Aaron J. Elmore, and Michael J. Franklin. Debunking four
long-standing misconceptions of time-series distance measures. In Proceedings of the 2020
International Conference on Management of Data (SIGMOD ’20), pages 1887–1905. ACM,
2020. doi:10.1145/3318464.3389760.

12 Alexandra Stefan, Vassilis Athitsos, and Gautam Das. The move-split-merge metric for time
series. IEEE Trans. Knowl. Data Eng., 25(6):1425–1438, 2013. doi:10.1109/TKDE.2012.88.

MFCS 2023

https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1007/s10618-018-0604-8
https://doi.org/10.1137/19M1255781
https://doi.org/10.1137/1.9781611977653.ch51
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/s42452-020-2506-9
https://doi.org/10.1007/s10618-014-0361-2
https://doi.org/10.1145/3044711
https://doi.org/10.1145/3318464.3389760
https://doi.org/10.1109/TKDE.2012.88

	1 Introduction
	2 Preliminaries
	3 Finding an MSM-Median is Hard
	4 Parameterized Algorithms for MSM-Median

