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Abstract
Selection of a group of representatives satisfying certain fairness constraints, is a commonly occurring
scenario. Motivated by this, we initiate a systematic algorithmic study of a fair version of Hitting
Set. In the classical Hitting Set problem, the input is a universe U , a family F of subsets of
U , and a non-negative integer k. The goal is to determine whether there exists a subset S ⊆ U of
size k that hits (i.e., intersects) every set in F . Inspired by several recent works, we formulate a
fair version of this problem, as follows. The input additionally contains a family B of subsets of U ,
where each subset in B can be thought of as the group of elements of the same type. We want to
find a set S ⊆ U of size k that (i) hits all sets of F , and (ii) does not contain too many elements of
each type. We call this problem Fair Hitting Set, and chart out its tractability boundary from
both classical as well as multivariate perspective. Our results use a multitude of techniques from
parameterized complexity including classical to advanced tools, such as, methods of representative
sets for matroids, FO model checking, and a generalization of best known kernels for Hitting Set.
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1 Introduction

Imagine a scenario of selecting a committee of size k from a group of people U . We need a
committee of people with some given attributes. These kinds of “attribute hitting” scenarios
is modeled by a family F over U , where for each attribute A , we have a set F containing
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people in U who have the attribute A . As is life, not always every set of people can work
collectively. In particular, the committee cannot operate smoothly if we select more than the
desired number of people from a set B ⊆ U . These conflicts are modeled by another family,
B over U , and a function f : B → N, which says that f(B) is the maximum number of people
from a set B ∈ B that can serve on the committee. Specifically, we want a committee that is
a hitting set for attributes and has a set of people who are “conflict free”. This paper aims to
undertake a systematic study of a generalization of Hitting Set, which models such scenarios,
and study this problem in the realm of parameterized complexity.

Indeed, Hitting Set is one of the 21 problems proven to be NP-complete by [6]. Recall,
in this problem, we are given a set system (U , F), and an integer k. Here, U is a finite set of
elements known as universe and F is a family of subsets of U . The objective is to determine
whether there exists a subset S ⊆ U such that S hits all sets in F , i.e., for every Fi ∈ F ,
S ∩ Fi ̸= ∅. Hitting Set is closely related to the Set Cover problem. These two problems,
along with a particularly interesting special case thereof, namely that of Vertex Cover,
are some of the most extensively studied problems in the field of approximation algorithms
and parameterized complexity. Hitting Set problem is of a particular interest, because
many combinatorial problems can be modeled as instances of Hitting Set.

Motivated from real-life applications, there has been a growing interest on the fairness
aspect of various problems and algorithms developed. This has led to the whole new field
of algorithmic fairness. Depending on the specific application, there are numerous ways
to define the notion of fairness. One of the earliest definitions of fairness comes from [8],
who defined fair versions of edge deletion problems. This was motivated from the following
scenario. Suppose the graph models a communication network, with each edge being a link
between a pair of nodes. In order to achieve acyclicity in the network, some links need to be
disconnected. However, from the perspective of each node, it is desirable that fewest possible
links incident to it are disconnected. Thus, we wish to disconnect links in a fair or equitable
manner for the nodes.

Subsequently, this notion was extended by [11, 7] to define fair versions of vertex deletion
problems. In this model, we want to delete a subset of vertices in order to achieve a certain
graph property, such that each vertex has fewest possible neighbors deleted. As a concrete
example, in a fair version of Vertex Cover in this model, we want to find a vertex
cover S, such that each vertex outside S has fewest neighbors in S. Recently, [1] studied
a generalization of this, called Sparse Hitting Set. The input to Sparse Hitting Set
consists of (U , F , B), where U is the universe, and F and B are two families of subsets of U .
The goal is to find a hitting set S ⊆ U for F such that k := maxBi∈B |Bi ∩ S| is minimized.
Here, k is called the sparseness of the solution. Note that Sparse Hitting Set generalizes
Fair Vertex Cover as defined above. Along a similar line, [5] considered conflict-free
versions of various problems, including Hitting Set. In Conflict Free d-Hitting Set,
we are given an instance (U , F , k) of Hitting Set, and a conflict graph H = (U , E), and
the goal is to find a hitting set S ⊆ U of size at most k, such that S induces an independent
set in the conflict graph H.

Our Problem

Along the same line of work, we define a fair version of Hitting Set, which captures all of
the aforementioned problems, and much more. Formally, the problem is defined as follows.
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Fair Hitting Set
Input. An instance I = (U , F , B, f : B → N, k), where U = {u1, u2, . . . , un} is the
universe; B and F are two families of subsets of U , where F = {F1, F2, . . . , Fm}, and
B = {B1, B2, . . . , Bℓ}, and k is a positive integer.
Task. Determine whether there exists S ⊆ U , with the following properties.

|S| ≤ k,
S is a hitting set for F , i.e., for every Fi ∈ F , S ∩ Fi ̸= ∅, and
For every Bj ∈ B, |S ∩ Bj | ≤ f(Bj).

We refer to a set S ⊆ U satisfying the above properties as a fair hitting set for F , and
use |I| to denote the size of the instance I.

We note that Fair Hitting Set generalizes Sparse Hitting Set. Given an instance
(U , F , B) of Sparse Hitting Set, we iteratively solve instances Ii of Fair Hitting Set
for i = 1, 2, . . .. Here, an instance Ii of Fair Hitting Set is given by (U , F , B, fi, |U|),
where fi(Bj) = i for all Bj ∈ B. For the smallest i such that Ii is a yes-instance of Fair
Hitting Set, we stop and conclude that i is the optimal sparseness of the given instance
of Sparse Hitting Set. We note that Fair Hitting Set also generalizes the setting
considered by [5].

1.1 Our Results, Techniques, and Relation to Hitting Set

First, we observe that Fair Hitting Set is a generalization of Hitting Set, by setting
B = ∅. Thus, Fair Hitting Set inherits all lower bound results from Hitting Set, namely,
in general the problem is NP-hard as well as W[2]-hard parameterized by k, the solution
size [2]. However, note that in the hard instances of Hitting Set, the sets in F can intersect
arbitrarily. Indeed, consider an extreme case, when the sets in F are pairwise disjoint. In
this setting Hitting Set is trivial to solve – an optimal solution must contain exactly one
element from each set of F . In contrast, we show that Fair Hitting Set remains NP-hard,
as well as W[1]-hard w.r.t. k – and thus unlikely to be FPT – even in this simple setting. In
particular, we show the following lower bound results, which are proved formally in the full
version.

▶ Theorem 1. Fair Hitting Set remains NP-hard when (1) the sets in F are pairwise
disjoint, (2) each element appears in at most two distinct Bi’s in B, and (3) each Bi ∈ B
has size exactly 2. Furthermore, assuming ETH, it is not possible to solve Fair Hitting
Set in time 2o(t), where t = max{|U|, |F|, |B|}..

Fair Hitting Set is W[1]-hard when parameterized by k, even when the sets in F are
pairwise disjoint, and each Bi ∈ B has size exactly 2.

The first result is obtained via a reduction from a problem of finding a “rainbow matching”
on a path, and for the second result we give a parameter preserving reduction from k-
Multicolored Independent Set. Given these lower bound results (Theorem 1), we study
Fair Hitting Set under specific assumptions on the instance I = (U , F , B, f, k). A natural
question is: under which assumptions? To answer this we look at the known fixed-parameter
tractability results for Hitting Set.

MFCS 2023
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Hitting Set in Parameterized Complexity

Hitting Set is known to be W[2]-complete parameterized by the solution size in general.
In other words, under widely believed complexity theoretic assumptions, it does not admit
an FPT algorithm parameterized by the solution size. This motivates the study of Hitting
Set in special cases. One particularly interesting case is Vertex Cover when the size of
each set in F is exactly two. Vertex Cover is the most extensively studied problem in the
parameterized complexity with a number of results in the FPT algorithms and kernelization
in general graphs as well as special classes of graphs. Many of the techniques and results
developed for Vertex Cover also extend d-Hitting Set, where each set in F has size at
most d, for some constant d. More generally, Hitting Set is known to be FPT and admits
a polynomial kernel in the case when the incidence graph GU,F , which is the bipartite graph
on the vertex set U ⊎ F with edges denoting the set-containment, is Ki,j-free. That is, no i

sets in F contain j elements in common, where i and j are assumed to be constants. This
setting generalizes all the above settings as well as when the GU,F is d-degenerate (since
such graphs are Kd+1,d+1-free).

Our Algorithmic Results

Notably, we are able to extend almost all of the fixed-parameter tractability results for
Hitting Set mentioned in the previous paragraph, under suitable assumptions on the set
system (U , B). We give a summary of our results in Figure 1.

More specifically, we obtain our results in the following steps. Consider a special case
Fair Hitting Set, when the sets in F are pairwise disjoint, and each element appears in at
most q sets in B. Note that the first part of Theorem 1 implies that the problem is NP-hard
even when q = 2. On the other hand, when q = 1, i.e., when both F and B are families of
pairwise disjoint sets, then we observe Fair Hitting Set can be solved in polynomial time.
Thus, q = 1 to 2 is a sharp transition between the tractability of the problem. Although the
problem is NP-hard even for constant values of q, the following results are interesting in this
setting. In particular, we show that the problem is FPT, and admits a polynomial kernel
parameterized by k, if q is a constant.

▶ Theorem 2. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then, Fair
Hitting Set can be solved in time 2O(qk)nO(1) time, when every element in U appears in at
most q sets in B and any pair of sets in F are pairwise disjoint. Further, Fair Hitting
Set admits a kernel of size O(kq2(

kq
q

)
log k).

Next we generalize Theorem 2 to a scenario where every element in U appears in at most
q sets in B and at most d sets in F .

▶ Theorem 3. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then,
Fair Hitting Set can be solved in time kO(dk)2O(qk)nO(1) time, when every element in U
appears in at most q sets in B and at most d sets in F .

These results, Theorems 2 and 3, are obtained by the key observation that the problem
can be modeled as finding a hitting set for F that is also an independent set in a suitably
defined partition matroid that encodes the constraints imposed by (U , B, f). This enables
us to use the representative sets toolkit developed for matroids. This result is discussed in
Section 3.

Next we consider a generalization of the above setting, where (1) each element appears in
at most q sets in B, and (2) the GU,F is Kd,d-free. In this case, we combine the techniques
developed in Hitting Set literature in the Kd,d-free setting, as well as, the representative
sets based techniques developed in Section 3, to obtain the following result.
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▶ Theorem 4. Given an instance I = (U , F , B, f, k) of Fair Hitting Set, such that
GU,F is Kd,d-free, and the frequency of each element in B is bounded by q, one can find
an equivalent instance I ′ = (U ′, F ′, B′, f ′, k′) of Fair Hitting Set in polynomial time,
such that |U ′| = O(kd2+qddqq), |F ′| ≤ dkd, and |B′| = O(kd2+q · ddqq+1), where d and q are
assumed to be constants.

Finally, we reach our most general case, where suppose (1) the (U , B) incidence graph
is “nowhere dense” (defined formally in the full version; this class includes planar, excluded
minor, bounded degree, and bounded expansion graphs), and (2) the (U , F) incidence graph
is Kd,d-free. In this case, we obtain an FPT algorithm, parameterized by k and d. This result
is in two steps. First, we proceed as prior to the case when each element appears in f(k, d)
sets of F (cf. Theorem 4). Next, since (U , B) incidence graph is nowhere dense, we reduce
the problem of finding a Fair Hitting Set to FO model checking procedure on nowhere
dense graphs, which is known to be FPT in the size of the formula. In particular, we show
that the problem can be encoded by a variant of Induced Subgraph Isomorphism on
nowhere dense graphs, where the size of the host graph we are searching for can be bounded
by a function of k, d and the graph class.

▶ Theorem 5. Let G be a nowhere dense graph class. Let I = (U , F , B, f, k) be an instance
of Fair Hitting Set such that the incidence graph G := GU,B ∈ G, and GU,F is Kd,d-free
for some d ≥ 1. Then, one can solve Fair Hitting Set on I in time h(k, d) · |I|O(1), for
some function h(·, ·).

2 Preliminaries

For an integer ℓ ≥ 1, we use the notation [ℓ] := {1, 2, . . . , ℓ}. Let R = (U , S) be a set system,
where U is a finite set of elements (also called the ground set or the universe), and S is
a family of subsets of U . For an element u ∈ U , and any S ′ ⊆ S, we use the notation
S ′(u) := {S ∈ S ′ : u ∈ S}, i.e., S ′(u) is the sub-family of sets from S ′ that contain u. For a
subset R ⊆ U , we denote S − R := {S \ R : S ∈ S}. We use GU,S to denote the incidence
graph corresponding to the set system (U , S), i.e., GU,S is a bipartite graph with bipartition
U ⊎ S, such that there is an edge between an element e ∈ U and a set S ∈ S iff e ∈ S.

In this paper, we work with finite, simple, undirected graphs. We use the standard graph
theoretic notation and terminology, as defined in [3].

3 FPT Algorithm and Kernel Based on Representative Sets

In this section we design an algorithm and a kernel for a special case of Fair Hitting Set,
using methods based on representative sets [4, 10]. Let (U , F , B, f : B → N, k) be an instance
of Fair Hitting Set. The first special case we consider is the following: every element in
U appears in at most q sets in B and any pair of sets in F are pairwise disjoint.

Before this, however, we consider the special case of q = 1, i.e., when any pair of sets in
B, as well as that in F are disjoint. In this case, we can solve the problem in polynomial
time, by reducing it to the problem of finding maximum flow in an auxiliary directed graph,
defined as follows. The vertices of the graph are B ⊎ U ⊎ F ⊎ {s, t}. First, we add arcs (i.e.,
directed edges) from source s to each Bj ∈ B, with capacity f(Bj). Next, for every u ∈ Bj ,
we add an arc (Bj , u) of capacity 1. Similarly, for each u ∈ Fi, we add an arc (u, Fi), of
capacity 1. Finally, we add arcs (Fi, t) of capacity ∞. It is straightforward to show that
there exists a flow of value k in the graph iff there exists a fair hitting set of size k. We omit
the details.

MFCS 2023
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No. GU,B GU,F Results
1 q = 1 d = 1 Polynomial time

(B′
is are disjoint) (F ′

i s are disjoint)
2 q = 2 d = 1 NP-Hard

No sub-exp algo(full version)
3 q d = 1 2O(qk) · |I|O(1)(Theorem 2)

O(kq2(
kq
q

)
log k)(kernel)

(Theorem 12)
4 q d kO(dk)2qk|I|O(1)

(Theorem 3)
5 q Kd,d-free kO(d2+q)ddqq+1(kernel)

(Theorem 4)
6 apex-minor free Kd,d-free FPT/(k + d) (full version)
7 nowhere dense Kd,d-free FPT/(k + d) (Theorem 5)
8 K2,2-free d = 1 W [1]-Hard/k (full version)

Figure 1 An overview of different results obtained in this paper. In the second (resp. third)
column, we state the assumption on the set system (U , B) (resp. (U , F)). In rows 1-5 (resp. rows
1-4) q (resp. d) denotes the maximum frequency of an element in B (in F). In the last column, we
mention our results in the respective settings, and give corresponding references. Note that some of
the references can be found in the full version.

1

2

3

4

5

7

6

8

Figure 2 A Hasse diagram of the settings considered in Figure 1, where the number in each node
corresponds to the row in the table. An arrow from node i to node j indicates that the setting in
row i generalizes the setting in row j. Nodes colored in green, orange (resp. red) color indicate that
the setting is solvable in polynomial, FPT time (resp. is W [1]-hard).



T. Inamdar, L. Kanesh, M. Kundu, N. Purohit, and S. Saurabh 55:7

Note that q ≥ 2, but the sets in F are pairwise disjoint, the problem is NP-hard. In this
case, To design both our algorithm and the kernel we first embed the fairness constraints
imposed by B in a combinatorial object called a partition matroid. A partition matroid is a
set system M = (E, I), defined as follows. The ground set E is partitioned into ℓ subsets
E1 ⊎ E2 ⊎ . . . ⊎ Eℓ, such that a set S ⊆ E belongs to the family I iff for each 1 ≤ j ≤ ℓ, it
holds that |Ej ∩ S| ≤ kj , where k1, k2, . . . , kℓ are non-negative integers.

It might be observed that the definition of a partition matroid closely resembles the
fairness constraints, i.e., for each Bj , the hitting set H must satisfy |H ∩ Bi| ≤ f(Bi).
However, this idea does not quite work, since the sets Bj ∈ B are not disjoint – indeed,
otherwise we could solve the problem in polynomial time, as discussed earlier. Nevertheless,
we can salvage the situation by making q distinct copies of every element u ∈ U , and replacing
each of the occurrences of u in q distinct Bj ’s with a unique copy. The resulting set system
is a partition matroid that exactly captures the fairness constraints. Correspondingly, in
each set of F , we replace an original element with all of its q copies. Recall that we want to
find a hitting set for F ; however, in the new formulation, we must now ensure that if we pick
at least one copy of element in the solution, we pick all of its copies in the solution.

Thus, our solution is an independent set of M that (1) is a hitting set for F , and (2) picks
either 0 or q copies of every element. To find such a solution in time FPT in k and q (resp.
to reduce the size of the instance), we use a sophisticated tool developed in parameterized
complexity, called representative sets. Later, we generalize this idea to the case where very
element in U appears in at most q sets in B and at most d sets in F . In the next section, we
formally define the partition matroid, and in the subsequent sections, we apply the toolkit of
representative sets to design our FPT algorithm and the kernel.

3.1 Partition Matroid and Our Solution
In a partition matroid we have a universe Ũ , partitioned into Ũ1, · · · , Ũℓ, together with
positive integers k1, · · · , kℓ, and a family of independent sets I, such that X ⊆ Ũ is in I if
and only if |X ∩ Ũi| ≤ ki, i ∈ [ℓ].

Let (U , B) be the given set system such that each element u ∈ U appears in at most q

sets of B. For an element u ∈ U , let q(u) ≤ q denote the number of sets in B, that u appears
in. Further, for an element u ∈ U , let copies(u) = {u1, u2, . . . , uq(u)}. We define

Ũ =
⋃

u∈U
copies(u).

Next, we need to define a partition of Ũ . Towards this, we use the information about the
sets in B. We know that each element u ∈ B appears in q(u) sets and we have made q(u)
copies of u, thus we use distinct and unique copy of u in each sets in B in which u appears.
This results in B̃ = {B̃i : Bi ∈ B}, where B̃i is the set corresponding to an original set Bi,
after replacing elements with their copies. Observe that for every pair of indices i ̸= j we
have that B̃i ∩ B̃j = ∅ and ∪iB̃i = Ũ . This immediately gives a partition of Ũ . Finally, we
define ki = f(Bi). This completes the description of the partition matroid we will be using.
We will call this matroid as M = (Ũ , I)

Given a subset X ⊆ Ũ , we define a set associated with X, called projection(X) as follows.
The set projection(X) ⊆ U , contains an element u ∈ U if and only if copies(u) ∩ X ̸= ∅.
Similarly, we define a notion of embedding. For a set A ⊆ U , let embed(A) = ∪u∈Acopies(u).
This brings us to the following lemma which relates our problem and finding an independent
set in the matroid.

MFCS 2023
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▶ Lemma 6. An input (U , F , B, f : B → N, k) is a yes-instance if and only if there exists
an independent set X ∈ I of the matroid M = (Ũ , I) such that (1) |projection(X)| ≤ k, (2)
X = embed(projection(X)), and (3) projection(X) is a hitting set for F .

Proof. In the forward direction, let S ⊆ U be a solution to the original problem. Suppose
S = {s1, s2, . . . , sk}. Consider X = embed(S). Observe that by definition, S = projection(X).
So |projection(X)| = k and projection(X) is a hitting set for F . We claim that X is an
independent set because if not, there exists a part B̃i which satisfies that |X∩B̃i| > ki = f(Bi).
As S = projection(X) and for every u ∈ B̃i, Bi contains a v such that u ∈ copies(v), this
results in |S ∩ Bi| > ki implying |S ∩ Bi| > f(Bi) which contradicts that S is a valid solution
to the original problem.

In the reverse direction, let X ∈ I be an independent set satisfying both the conditions.
Let S = projection(X). We claim that, S is a solution for the original instance because if
not, there exist a part Bi which satisfies that |S ∩ Bi| > f(Bi) = ki. As X = embed(S)
and for every u ∈ Bi, an unique copy from copies(u) is contained in B̃i, which results in
|X ∩ B̃i| > ki which contradicts that X is an independent set. ◀

3.2 Computation of the Desired Independent Set
In this section we give an algorithm to compute an independent set X ∈ I of the matroid
M = (Ũ , I) such that |projection(X)| ≤ k and projection(X) is a hitting set for F (as given
by Lemma 6). We will design a dynamic programming algorithm based on representative
families to compute the desired independent set. Towards this we first give the required
definitions. We start with the definition of an ℓ-representative family.

▶ Definition 7 (ℓ-Representative Family). Given a matroid M = (E, I) and a family S of
subsets of E, we say that a subfamily Ŝ ⊆ S is ℓ-representative for S if the following holds:
for every set Y ⊆ E of size at most ℓ, if there is a set X ∈ S disjoint from Y with X ∪Y ∈ I,
then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is ℓ-representative for S
we write Ŝ ⊆ℓ

rep S.

In other words if some independent set in S can be extended to a larger independent
set by adding ℓ new elements, then there is a set in Ŝ that can be extended by the same ℓ

elements. We say that a family S = {S1, . . . , St} of sets is a p-family if each set in S is of
size p.

▶ Proposition 8 ([4, 9, Theorem 3.8, Theorem 1.3]). Let M = (E, I) be a partition matroid,
S = {S1, . . . , St} be a p-family of independent sets. Then there exists Ŝ ⊆ℓ

rep S of size
(

p+ℓ
p

)
.

Furthermore, given a representation AM of M over a field F, there is a deterministic al-
gorithm computing Ŝ ⊆ℓ

rep S of size at most
(

p+ℓ
p

)
in O

((
p+ℓ

p

)
tpω + t

(
p+ℓ

p

)ω−1 + ||AM ||O(1)
)

operations over F, where ||AM || denotes the length of AM in the input.

For the purpose of this article, it is enough to know that partition matroids are “rep-
resentable” [10, Proposition 3.5] and a “truncation” of partition matroids are computable
in deterministic polynomial time [9, Theorem 1.3]. This results in Proposition 8, which we
will use for our algorithm without giving further definitions of representation and trunca-
tion [4, 9, 10].

Let F = {F1, F2, . . . , Fm} be the subsets of U , k be a positive integer. Since, the sets in
F are pairwise disjoint, the number of sets in F is upper bounded by k. We call a set S ⊆ U ,
a potential solution, if for all j ∈ [ℓ], |S ∩ Bj | ≤ f(Bj). Let

Si := {S : S is a potential solution , |S| = i and for all j ∈ [i]|S ∩ Fj | = 1}.
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Given Si, we define Semb
i as {embed(S) | S ∈ Si}. Observe that Semb

i ⊆ I and each set has
size at most qi. Notice that, each set in S has size exactly i, but the same can not be said
about the sets in Semb

i . However, since each element occurs in at most q sets of B, we have
that each set in Semb

i has size at most qi.
Our algorithm checks whether Sk is non-empty or not. Towards that first observe that

Sk is non-empty if and only if Semb
k is non-empty. So the testing of non-emptiness of Sk boils

down to checking whether Semb
k is non-empty or not. We test whether Semb

k is non-empty by
computing Ŝemb

k ⊆0
rep Semb

k and checking whether Ŝemb
k is non-empty. To argue the correctness

of the algorithm, first we have the following observation.

▶ Observation 9. Semb
k ̸= ∅ iff Ŝemb

k ̸= ∅.

Proof. Since Ŝemb
k ⊆ Semb

k , the reverse direction is immediate. Now we argue the forward
direction. Suppose Semb

k , then it contains some set A. Note that A trivially satisfies A∩∅ = ∅.
Therefore, since Ŝemb

k ⊆0
rep Semb

k , there must exist a set Â ∈ Ŝemb
k such that Â ∩ ∅ = ∅, i.e.,

Ŝemb
k ̸= ∅. ◀

Thus, having computed the representative family Ŝemb
k all we need to do is to check whether

it is non-empty. All that remains is an algorithm that computes the representative family
Ŝemb

k .
Let Z be a family of sets and ℓ be an integer, then Z[ℓ] is a subset of Z that contains all

the sets of Z of size exactly ℓ. We describe a dynamic programming based algorithm. Let D
be an array indexed from integers in {0, 1, . . . , k}. The entry D[i] stores the following for all
j ∈ {i, . . . , qi}, Ŝemb

i [j] ⊆qk−j
rep Semb

i [j].
We fill the entries in the matrix D in the increasing order of indexes. For i = 0, D[0] = ∅.

Suppose, we have filled all the entries until the index i. Then consider the set

N i+1 = {X ′ = X ∪ embed({u}) : X ∈ D[i], u ∈ Fi+1, projection(X ′) is a potential solution}

We partition sets in N i+1 based on sizes. Let N i+1[j] denote all the sets in N i+1 of size j.

▷ Claim 10. For all j ∈ {i + 1, . . . , q(i + 1)}, N i+1[j] ⊆qk−j
rep Semb

i+1 [j].

Proof. Let S ∈ Semb
i+1 [j] and Y be a set of size at most qk − j (which is essentially an

independent set of the matroid M = (Ũ , I)) such that S ∩ Y = ∅ and S ∪ Y ∈ I. We will
show that there exists a set S′ ∈ N i+1[j] such that S′ ∩ Y = ∅ and S ∪ Y ∈ I. This will
imply the desired result. Since S ∈ Semb

i+1 [j] there exists an element u ∈ Fi+1 such that

S = (S \ embed({u})) ∪ embed({u}).

Let Si = (S \ embed({u})). Since, S is an independent set of the matroid M = (Ũ , I),
we have that Si is an independent set of the matroid M = (Ũ , I) (hereditary property).
Further, |projection(Si)| = i and projection(Si) is a hitting set for F1, . . . , Fi. This implies
that Si ∈ Semb

i . Let Yi = Y ∪ embed({u}). Notice that since S ∩ Y = ∅ and S ∪ Y ∈ I,
we have that Yi is an independent set and Si ∪ Yi = S ∪ Y ∈ I. Let |Si| = j′. Then,
we know that D[i] contains Ŝemb

i [j′] ⊆qk−j′

rep Semb
i [j′]. This implies that there exists a set

S′
i ∈ Ŝemb

i [j′] such that S′
i ∪ Yi ∈ I. This implies that S′

i ∪ embed({u}) is in N i+1. Further,
since |S| =

∑
x∈projection(S) |embed({x})|, we have that |S′

i ∪ embed({u})| = |Si| = j. This
implies that S′

i ∪ embed({u}) is in N i+1[j]. Thus, we can take S′ = S′
i ∪ embed({u}). This

completes the proof. ◁
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We fill the entry for D[i + 1] as follows. We first compute N i+1. Observe that the sets
in N i+1 have sizes ranging from i + 1 to q(i + 1). Now we apply Proposition 8 on each of
N i+1[j], j ∈ {i + 1, . . . , q(i + 1)}, and compute qk − j representative. That is, we compute
N̂ i+1[j] ⊆qk−j

rep N i+1[j]. We set

D[i + 1] =
q(i+1)⋃
j=i+1

N̂ i+1[j].

Observe that the number of sets in D[i] of size j is upper bounded by
(

q(k−i)+j
j

)
≤

(
qk
di

)
≤

2O(qk). Hence, the time taken to compute D[i] is upper bounded by 2O(qk)nO(1). Thus, the
time taken to compute D[i + 1] requires at most qk invocations of Proposition 8. This itself
takes 2O(qk)nO(1) time. This completes the proof, resulting in the following result.

▶ Theorem 2. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then, Fair
Hitting Set can be solved in time 2O(qk)nO(1) time, when every element in U appears in at
most q sets in B and any pair of sets in F are pairwise disjoint. Further, Fair Hitting
Set admits a kernel of size O(kq2(

kq
q

)
log k).

Theorem 2 can be generalized to the scenario where every element in U appears in at
most q sets in B and at most d sets in F . Observe that if each element appear in at most d

sets of F , then the total number of sets that a subset of size k of U can hit is upper bounded
by dk, else we immediately return that given instance is a NO-instance. Let S = {u1, . . . , uk}
be a hypothetical solution to our problem. Now, with the help of S, we partition F as
follows. Let Fi denote all sets in F that contain ui and none of {u1, . . . , ui−1}. Clearly,
Fi, i ∈ [k], partitions F . Now we can design a dynamic programming algorithm similar to
the one employed in Theorem 2, where in each iteration we grow our representative family
by elements that only hit sets in Fi and not in Fj , j > i. This will result in the following
theorem, whose proof can be found in the full version.

▶ Theorem 3. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then,
Fair Hitting Set can be solved in time kO(dk)2O(qk)nO(1) time, when every element in U
appears in at most q sets in B and at most d sets in F .

3.3 A Kernel for a Special Case of Fair Hitting Set using Matroids
In this section we design a polynomial kernel for the same special case of Fair Hitting
Set, that we considered in the last section. Let (U , F , B, f : B → N, k) be an instance of
Fair Hitting Set and assume that every element in U appears in at most q sets in B and
any pair of sets in F are pairwise disjoint. To design our kernel we will again use Lemma 6
that says that an input (U , F , B, f : B → N, k) is a yes-instance if and only if there exists
an independent set X ∈ I of the matroid M = (Ũ , I) such that |projection(X)| ≤ k and
projection(X) is a hitting set for F .

Let F = {F1, F2, . . . , Fm} be the subsets of U , and k be a positive integer. Since, the
sets in F are pairwise disjoint, the number of sets in F is upper bounded by k. In particular,
we assume that m = k. We define F emb

i = {embed({u}) | u ∈ Fi}. For our kernel we apply
the following reduction rules. We start with some simple reduction rules.

▶ Reduction Rule 1. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set.
If there exists an element u ∈ U , such that u does not appear in any sets in F then delete
it from U and all the sets in B that it appears in.
If there exists a set B ∈ B such that B = ∅, then delete B, and take f as the restriction
of f on B \ {B}.
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If there exists a set B ∈ B such that f(B) = 0, then we do as follows: U := U \ {B};
delete all the elements of B from all the sets in B and F that it appears in. If some set
in F becomes empty then return a trivial No-instance. Else, take f as the restriction of
f on B \ {B} and keep the integer k unchanged.

Soundness of Reduction Rule 1 is obvious and hence omitted. The next reduction rule is
the main engine of our kernel.

▶ Reduction Rule 2. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set.
If there exists a pair of integers i ∈ [k] and j ∈ [q] such that |F emb

i [j]| >
(

kq
j

)
, then do as

follows. Compute F̂ emb
i [j] ⊆qk−j

rep F emb
i [j]. Let F ∈ Femb

i [j] that do not appear in F̂ emb
i [j].

Then obtain a reduced instance as follows.
U := U \ projection(F )
Delete projection(F ) from all the sets in B and F that it appears in.
The function f and k remains the same.

▶ Lemma 11. Reduction Rule 2 is sound.

Proof. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set, and let (U ′, F ′, B′, f :
B → N, k) be the reduced instance, after an application of Reduction Rule 2. It is easy to
see that a solution to the reduced instance can directly be lifted to the input instance. Thus,
we focus on forward direction.

In the forward direction, let S be a solution to (U , F , B, f : B → N, k). Then, by
Lemma 6, it implies that embed(S) ∈ I (of the matroid M = (Ũ , I)) and |S| ≤ k and
S = projection(embed(S)) is a hitting set for F . Let u = projection(F ). Then, we have that
U := U \ {u}. If u /∈ S, then S is also the solution to (U ′, F ′, B′, f : B′ → N, k). So we
assume that u ∈ S.

Observe that F = embed({u}), |F | = j, and u belongs to Fi. Further, since every set
in F are pairwise disjoint we have that the only job of u is to hit the set Fi. Consider,
Y = embed(S) \ embed({u}). Since, embed(S) ∈ I, we have that Y ∈ I (hereditary
property of the matroid), and the size of Y is upper bounded by qk − j. The last assertion
follows from the fact that for any element v ∈ U , the size of embed({v}) is upper bounded
by q and |embed(S)| =

∑
x∈S |embed({x})| ≤ qk. This implies that there exists F ′ ∈

F̂ emb
i [j] ⊆qk−j

rep F emb
i [j] such that Y ∪ {F ′} ∈ I. Since, |projection(embed(S))| ≤ k, we

have that |projection(Y )| ≤ k − 1. Thus, |projection(Y ∪ {F ′})| ≤ k. Now we need to
show that projection(Y ∪ {F ′}) is a hitting set for F . This follows from the fact that
u′ = projection(F ′) ∈ Fi. In other words, we have shown that S′ = S \ {u} ∪ {u′} is a desired
hitting set for F . This concludes the proof. ◀

Finally, we get the following kernel.

▶ Theorem 12. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set such that
every element in U appears in at most q sets in B and any pair of sets in F are pairwise
disjoint. Then, Fair Hitting Set admits a kernel of size O(kq2(

kq
q

)
log k).

Proof. For our algorithm we apply Reduction Rules 1 and 2 exhaustively. If any application
of these rules return that the input is a No-instance, we return the same. The correctness of
the algorithm follows from the correctness of Reduction Rules 1 and 2. Further it is clear
that the algorithm runs in polynomial time. What remains to show is that the reduced
instance is upper bounded by the claimed function.

For convenience we assume that the reduced instance is also denoted by (U , F , B, f : B →
N, k). Since, Reduction Rule 2 is not applicable we have that each set Fi, i ∈ [k], is upper
bounded by

∑q
j=1

(
kq
j

)
≤ q

(
kq
q

)
. This implies that |U| ≤ kq

(
kq
q

)
. Further, since every element
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in U appears in at most q sets in B, we have that the number of non-empty sets in B is upper
bounded by q|U| ≤ kq2(

kq
q

)
. Since, Reduction Rule 1 is not applicable we have that there

are no empty-sets and hence |B| ≤ kq2(
kq
q

)
. Further, to represent the function f we need at

most O(|B| log k) ≤ O(kq2(
kq
q

)
log k) bits. This completes the proof. ◀

4 Reduction from Kd,d-free GU ,F to Bounded Frequency in F

In Section 4.1, we consider a special case of the above setting: (1) GU,F is Kd,d-free, and
(2) each element in U has frequency at most q in B. For this case, we design a polynomial
kernel. For the sake of brevity, we give a detailed, yet informal, overview of the kernelization,
and defer the formal details to the full version.

A part of the kernelization procedure can also be used to bound the frequency of an
element in F by a function of k and d. We give an alternate, self-contained proof of this
theorem in the full version. This reduction is used as the first step in some of our results,
such as Section 5.

4.1 Polynomial Kernel for Kd,d-free GU ,F and Bounded Frequency in B
Consider an input (U , F , B, f : B → N, k) of Fair Hitting Set. In this section we design a
polynomial kernel for Fair Hitting Set problem when GU,F is Kd,d-free and frequency of
each element in B is at most q. We fix d and q for the rest of the section. Without loss of
generality we assume that d ≥ 2, k ≥ 2. We also assume that we do not have multisets in F
and B.

Under these assumptions, the kernelization algorithm consists of two phases. In the first
phase we apply some reduction rules to bound the size of |F|. In the second phase, we use
the partition matroid M = (Ũ , I), as defined in Section 3.1 using B to design a reduction
rule to bound the number of elements. Now we discuss each of these phases in more detail.

Phase 1

We first define the following easy reduction rules that handle some of the easy cases
We can delete an empty set from B without affecting the instance.
We can delete an element u ∈ U that is not contained in any set in F .
If there exists a set B ∈ B with f(B) = 0, then we consider two cases.

1. If there exists some F ∈ F such that F ⊆ B, then we have a no-instance.
2. Otherwise, we can delete B from B, and delete all elements of B from the universe U

as well as the corresponding sets in F .
Each such rule can be implemented in polynomial time. We emphasize that these reduction
rules are repeatedly applied in this order, after each application of subsequent rules.

Next, we consider the following case. If there exists an element u ∈ U contained in at
least dkd−1 sets of F , then in polynomial time we can find a non-empty set X ⊆ U of size at
most d − 1 with the following properties: (1) X intersects with every fair hitting set of size
at most k, and (2) the number of sets in F that contain X as a subset is large, i.e., at least
dkd−1. This is where we crucially use the fact that GU,F is Kd,d-free. Now, we can use such
a set X to reduce the size of instance, by either finding some u ∈ U , or some Fi ∈ F that
can be deleted without affecting the instance.

Note that since we reduce the size of instance in each application of the rule, this rule is
applicable only polynomially many times. Furthermore, when the rule is not applicable, it
follows that every element of U is contained in at most dkd−1 sets of F . Here, we observe that
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we did not make any specific assumptions about the hypergraph (U , B), except that we may
delete an element of U or a set from B. Thus, the resulting hypergraph is a sub-hypergraph
of the original hypergraph (U , B). Thus, if GU,B satisfies some hereditary property Π, then
the resulting incidence graph continues to satisfy Π. Thus, phase 1 constitutes a proof of .

At this step, if the number of sets in F is larger than dkd, no subset of size k can hit all
sets in F . Thus, we simply conclude that such an instance is a no-instance of the problem.
This concludes Phase 1.

Suppose in the original instance GU,B satisfied that the frequency of every element in B
is at most q. Then, at this step, we can use an approach similar to Theorem 3 to design an
FPT algorithm that runs in time dkkkd · 2O(kq) · |I|O(1). Now, we proceed to Phase 2, where
we further reduce the size of an instance to design a kernel under the assumption when the
frequency in B is bounded by q.

Phase 2

We observe that the number of elements in U with frequency at least d in F is bounded
by

(|F|
d

)
· d. Let U ′ denote the elements that are contained in at most d − 1 sets of F . We

define equivalence classes of U ′, such that all elements in the same class belong to all the
sets of Y , where Y ⊆ F is a sub-family of size at most d − 1. Let us denote such a subset by
ExactNbr(Y).

We use the matroid-based techniques developed in the previous section, in order to reduce
the number of distinct elements in ExactNbr(Y) that we need to remember. In particular, we
show that for every Y ⊆ F , we only need to remember at most

(
kq
q

)
distinct elements, and

we may delete the rest in a careful manner.
Thus, at the end, we have the following. The number of elements with degree (i.e.,

frequency) at most d − 1 in GU,F is bounded by d ·
(|F|

d

)
·
(

kq
q

)
. Accounting for the elements

with large degree, the total number of elements in U is bounded by O(kO(d2+q)ddqq). Since
each element has degree at most q in GU,B, we can also bound the number of sets in
B. Observe that each of our reduction rules can be applied in polynomial time and only
polynomially many times. Thus, we prove the following theorem.

▶ Theorem 4. Given an instance I = (U , F , B, f, k) of Fair Hitting Set, such that
GU,F is Kd,d-free, and the frequency of each element in B is bounded by q, one can find
an equivalent instance I ′ = (U ′, F ′, B′, f ′, k′) of Fair Hitting Set in polynomial time,
such that |U ′| = O(kd2+qddqq), |F ′| ≤ dkd, and |B′| = O(kd2+q · ddqq+1), where d and q are
assumed to be constants.

5 Parameterization by k + d when GU ,B is nowhere dense and GU ,F is
Kd,d-free

We give a brief overview of the following theorem, a formal proof can be found in the full
version.

▶ Theorem 5. Let G be a nowhere dense graph class. Let I = (U , F , B, f, k) be an instance
of Fair Hitting Set such that the incidence graph G := GU,B ∈ G, and GU,F is Kd,d-free
for some d ≥ 1. Then, one can solve Fair Hitting Set on I in time h(k, d) · |I|O(1), for
some function h(·, ·).

First, we reduce the given instance, where GU,F is Kd,d-free, to an instance where the
size of |F| is bounded by d · kd. Thus, it suffices to design an FPT algorithm parameterized
by k, d and m := |F|. The rest of the section focuses on designing such an algorithm. We
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prove Theorem 5 by reducing the problem to FO model checking on G. 1 Due to lack of
space, the necessary definitions and background pertaining to nowhere dense graph classes
and first-order logic is given in the full version.

We reduce the problem of deciding whether I is a yes-instance of Fair Hitting Set
to the problem of First-Order (FO) model checking. We first “guess” the structure of a
hypothetical solution (i.e., S ⊆ U such that S is a fair hitting set for F), if any. More
specifically, we guess the exact size k′ of a hypothetical solution, and the exact subset of
F that is hit by each element of the solution. Note that there are at most 2O(km) possible
guesses. For each such guess, we create a first-order logic formula that is true if and only if
such a solution is a fair hitting set, i.e., it hits all the sets in F , and for each Bj ∈ B, the
size of the intersection of Bj with the solution is at most f(Bj). We show that the size of
the formula is upper bounded by a function of k and |F|. Finally, since model checking of
first-order logic formulas can be decided in polynomial time on nowhere dense graphs, the
theorem follows.
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