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Abstract
Feedback Vertex Set (FVS) is one of the most studied vertex deletion problems in the field of
graph algorithms. In the decision version of the problem, given a graph G and an integer k, the
question is whether there exists a set S of at most k vertices in G such that G − S is acyclic. It is one
of the first few problems which were shown to be NP-complete, and has been extensively studied from
the viewpoint of approximation and parameterized algorithms. The best-known polynomial time
approximation algorithm for FVS is a 2-factor approximation, while the best known deterministic
and randomized FPT algorithms run in time O∗(3.460k) and O∗(2.7k) respectively.1

In this paper, we contribute to the newly established area of parameterized approximation, by
studying FVS in this paradigm. In particular, we combine the approaches of parameterized and
approximation algorithms for the study of FVS, and achieve an approximation guarantee with a factor
better than 2 in randomized FPT running time, that improves over the best known parameterized
algorithm for FVS. We give three simple randomized (1 + ϵ) approximation algorithms for FVS,

running in times O∗(2ϵk · 2.7(1−ϵ)k), O∗
(((

4
1+ϵ

)(1+ϵ) ·
(

ϵ
3

)ϵ
)k
)

, and O∗(4(1−ϵ)k) respectively for

every ϵ ∈ (0, 1). Combining these three algorithms, we obtain a factor (1 + ϵ) approximation
algorithm for FVS, which has better running time than the best-known (randomized) FPT algorithm
for every ϵ ∈ (0, 1). This is the first attempt to look at a parameterized approximation of FVS
to the best of our knowledge. Our algorithms are very simple, and they rely on some well-known
reduction rules used for arriving at FPT algorithms for FVS.
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1 Introduction

Vertex deletion problems are one of the most basic and well-studied classes of graph editing
problems. In the decision version of these problems, given a graph G and integer k, we are
asked whether we can delete at most k vertices from G such that the resulting graph satisfies
certain properties. When we want the resulting graph to be empty or acyclic, then the vertex
deletion problem corresponds to the well-known Vertex Cover and Feedback Vertex
Set problems respectively. These were two of the first few problems to be shown NP-complete
and appear in Karp’s list of 21 NP-complete problems. In this paper, we concentrate on
the Feedback Vertex Set problem, in the realm of parameterized approximation. The
problem is formally defined as follows.

Feedback Vertex Set (FVS) Parameter: k

Input: A graph G = (V, E) and a positive integer k.
Question: Does there exist a set S ⊆ V (G) such that |S| ≤ k and G− S is acyclic?

Parameterized approximation combines the fields of parameterized and approximation
algorithms, where we try to get the best of both worlds by achieving a better guarantee
than that of the best-known approximation algorithm (running in polynomial time), while
the algorithm takes FPT time, but beats the best known exact algorithm for the problem.
Such algorithms are termed “parameterized approximation” algorithms in the literature. An
even more ambitious goal can be to get a parameterized approximation scheme, where for
every ϵ ∈ (0, α− 1) (where α is the best-known approximation factor for polynomial-time
algorithms), we get a factor (1 + ϵ) approximation algorithm, that runs in FPT time and is
faster than the best known parameterized algorithm for the problem.

Probably the best example for this approach is the Min k-Cut problem (delete a minimum
number of edges to get at least k connected components), which is not expected to be FPT
when parameterized by k since it is W[1]-hard. The best-known approximation factor, that
is possible in polynomial time, for this is 2 [20]. Gupta et al. [11] showed that we can
get an approximation ratio better than 2 by allowing FPT running time, and in a recent
breakthrough result, Lokshtanov et al. [19] designed a parameterized approximation scheme
for the problem, which means that for every ϵ > 0, there is an algorithm running in FPT
time which gives a factor (1 + ϵ) approximation for Min k-Cut. There are a few of lower
bounds results in the field as well [3, 5, 6, 17], which show that this approach does not work
for certain problems.

In addition to problems that are not expected to be FPT, researchers have also studied
problems that are FPT from the lens of parameterized approximation. For these problems,
we try to get a better approximation factor (than what is known in polynomial time) by
allowing faster FPT running time (as compared to the best FPT algorithm for the problem).
This approach has been applied to many problems including Vertex Cover, d-Hitting
Set [10, 4, 15], classical cut problems like Directed-FVS, Multicut [18] etc. For a
comprehensive overview of the current state of parameterized approximation, we refer to the
recent survey by Feldmann et al. [9], as well as the surveys conducted by Kortsarz [14] and
Marx [21].

In this paper, we look at Feedback Vertex Set (FVS), which is one of the most studied
problems in the field of parameterized complexity, from the parameterized approximation
lens. For FVS, the best-known approximation factor that can be achieved in polynomial time
is 2 [1], and this is the best approximation factor that we can hope for FVS in polynomial
time under the famous Unique Games Conjecture [13]. On the other side, the fastest known
deterministic and randomized FPT algorithms for FVS run in times O∗(3.460k) [12] and
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O∗(2.7k) [16] respectively. We want to design a parameterized approximation scheme for
FVS. This turns out to be a harder task than designing such schemes for problems like
Vertex Cover. For Vertex Cover, there is a simple branching algorithm, that picks an
edge and branches on its endpoints, but no such simple algorithm exists for FVS because the
forbidden subgraph for FVS, a cycle, can be very large. For designing a good parameterized
approximation scheme for Vertex Cover or d-Hitting Set, there are two ways to achieve
it: i) pick disjoint copies of edges or sets in the solution and then run the fastest FPT
algorithm on the remaining instance, and ii) do branching for some steps, and then run an
approximation algorithm on the remaining instance. These seem difficult to achieve for FVS
because the cycles can be very big, and hence the approximation guarantee in i) and the
branching factor in ii) are not bounded. In this paper, we overcome these difficulties using
ideas from known randomized algorithms and obtain the following result.

▶ Theorem 1. There exists a randomized algorithm that, given an instance (G, k) of FVS
and ϵ ∈ (0, 1), either reports a failure or finds a feedback vertex set in G of size at most
(1 + ϵ)k in time

O∗
(

min
{

2ϵk · 2.7(1−ϵ)k,

((
4

1 + ϵ

)(1+ϵ)
·
( ϵ

3

)ϵ
)k

, 4(1−ϵ)k
})

.

Moreover, if G has a feedback vertex set of size at most k, the algorithm returns a solution
of size at most (1 + ϵ)k with probability at least 1/e.

Our methods. For proving Theorem 1, we make use of two randomized algorithms, the first
being one of the oldest algorithms for FVS that runs in time O∗(4k) [2], and the other being
the currently best known randomized algorithm for FVS running in time O∗(2.7k) [16]. We
give three different algorithms to get the running time mentioned in Theorem 1, where each
of the three algorithms outperforms the other two in some range of ϵ in the interval [0, 1].
For a clearer view, we provide a graph depicting the running times of the three algorithms
for different values of ϵ in Figure 1. We observe that for every ϵ ∈ (0, 1), the algorithm
of Theorem 1 gives a randomized (1 + ϵ) approximation and runs in time better than
O∗(2.7k). All our algorithms make use of some simple reduction rules for FVS, which have
been extensively applied to obtain FPT algorithms for the problem. The useful property of
the rules is that if none of them are applicable, then the graph has a minimum degree of at
least 3.

The first algorithm that we design uses the property that in a graph with a minimum
degree of at least 3, at least half the edges are incident on any feedback vertex set of the
graph [2]. It picks some edges randomly, adds the endpoints of the edges to the solution,
and then it runs the O∗(2.7k) time algorithm of [16] on the remaining graph. This gives an
algorithm running in time O∗(2.7(1−ϵ)k) and succeeding (giving a factor (1+ϵ) approximation
for every ϵ ∈ (0, 1)) with probability c · 2−ϵk for some c ≥ 1

2 . We repeat this algorithm 1
c · 2

ϵk

times to get a constant probability of success, and the final running time is O∗(2ϵk ·2.7(1−ϵ)k).
The second algorithm that we design also uses the same property, but it picks one

of the endpoints randomly from a randomly picked edge in the solution (instead of both
endpoints in the first algorithm). We keep doing that till we either exhaust our budget or the
graph becomes acyclic. Using the techniques of [15], we show that this algorithm succeeds

with probability
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)−k

. Repeating this
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k

times, we get

constant success probability. The running time of this algorithm is better than the first
algorithm for ϵ ∈ (0.176, 1).
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Figure 1 A graph showing running times of the three algorithms, which we name RPAS1, RPAS2,
and RPAS3.

The third algorithm, instead of picking the vertices like the second algorithm does
till the budget is exhausted, picks vertices up to a certain threshold, and then applies
the 2-approximation algorithm of [1] on the remaining graph. This algorithm succeeds
with probability 4−(1−ϵ)k, which gives the running time of O∗(4(1−ϵ)k) for constant success
probability. This algorithm performs better than the first two algorithms for ϵ ∈ (0.674, 1).

The main purpose of this article is to put forward a proof of concept for designing FPT
approximation algorithms for problems for which the forbidden sets are of unbounded size.
All our algorithms are randomized, and getting a deterministic FPT approximation scheme
for FVS is an interesting open problem.

2 Preliminaries

In this section, we give the notations and definitions, along with some known results and
reduction rules which are used in the paper.
For a graph G = (V, E), we denote the set of vertices of the graph by V (G) and the set
of edges of the graph by E(G). For a set S ⊆ V (G), the subgraph of G induced by S is
denoted by G[S] and it is defined as the subgraph of G with vertex set S and edge set
{{u, v} ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting S (and the edges incident
to the vertices in S) is denoted as G− S. We say a graph G is acyclic if there is no cycle in
the graph. For ease of notation, we will use uv to denote an edge of a graph instead of {u, v}.
We denote the degree of a vertex v ∈ V (G) as d(v) and it is equal to the number of edges
incident on v. In case of a self-loop on v, the self-loop contributes 2 to d(v). The minimum
degree of a graph G is denoted as δ(G) and it is defined as δ(G) = min{d(v) : v ∈ V (G)}.
For a graph G, a set S ⊆ V (G) is called a feedback vertex set of G if G− S is acyclic. An
instance (G, k) of FVS is said to be a Yes instance if there is a feedback vertex set of size at
most k in G. Given a Yes instance (G, k) of FVS and an ϵ ∈ (0, 1) as an input, we say that
an algorithm A succeeds if it outputs a feedback vertex set of G of size at most (1 + ϵ)k. We
denote the size of a minimum-sized feedback vertex set of a graph G by fvs(G).

Let us state the following reduction rules that we will use in this paper to make the
minimum degree of the graph at least 3.
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1. [8] If there is a self-loop at a vertex v, delete v from the graph and decrease k by 1.
2. [8] If there is an edge of multiplicity larger than 2, reduce its multiplicity to 2.
3. [8] If there is a vertex v of degree at most 1, delete v.
4. [8] If there is a vertex v of degree 2, delete v and connect its two neighbors by a new edge.

If none of the above four reduction rules are applicable to a graph G then we can assume
that δ(G) ≥ 3. We will also use the following lemma to ensure that if δ(G) ≥ 3 then any
random endpoint of a random edge of the graph is part of any feedback vertex set of G with
probability at least 1

4 .

▶ Lemma 2 ([8]). Let G be a multigraph on n vertices, with minimum degree at least 3.
Then, for every feedback vertex set X of G, at least half of the edges of G have at least one
endpoint in X.

3 Algorithm I

In this section, we present the first randomized (1 + ϵ) approximation algorithm for FVS for
every ϵ ∈ (0, 1). Given an instance (G, k) of FVS, we first apply reduction rules 2-4 on the
graph. After applying the reduction rules, we pick all the vertices having a self-loop into the
set S1 and we decrease the parameter by the number of vertices picked into S1. If no vertex
has a self-loop, then we pick an edge uv uniformly at random and add both u and v into
S1 if none of the reduction rules are applicable and G− S1 is not acyclic. We decrease the
parameter by 1 in this case. We do that because with good probability that one of these
vertices belongs to any feedback vertex set of the graph, and hence we decrease fvs(G) by
one with good probability. Then we delete S1 from the graph and repeat the same process
until G − S1 becomes acyclic or the parameter decreases by at least ϵk. Next, we check
whether G− S1 is acyclic and |S1| ≤ (1 + ϵ)k. If yes, then we just return S1 as a solution.
Otherwise, we apply the randomized FPT algorithm of [16] for FVS on the graph G− S1
with the remaining parameter. If the randomized FPT algorithm of [16] returns a solution
S2, then we return S1 ∪ S2 as a solution, otherwise, we return No. We describe the algorithm
formally in Algorithm 1. Now we state the main result of this section.

▶ Theorem 3. There exists a randomized algorithm running in O∗(2ϵk · 2.7(1−ϵ)k) time such
that, given an FVS instance (G, k) and ϵ ∈ (0, 1), it either reports a failure or finds a feedback
vertex set of G of size at most (1 + ϵ)k. Moreover, if the algorithm is given a Yes-instance,
it returns a solution of size at most (1 + ϵ)k with probability at least 1/e.

Let us call the algorithm of Theorem 3 RPAS1. It is obtained by repeating Algorithm 1
multiple times to get a constant success probability. So before we give the proof of Theorem 3,
we prove a couple of lemmas about Algorithm 1.

▶ Lemma 4. If Algorithm 1 returns a set S then S is a feedback vertex set in G of size at
most (1 + ϵ)k.

Proof. The returned solution is either of the form S1 or of the form S1 ∪ S2 for some vertex
sets S1 and S2. If it consists of only S1, then by line 15 of the algorithm it is clear that
G− S1 is acyclic and |S1| ≤ (1 + ϵ)k.

Now, if the returned solution is of the form S1 ∪ S2, then by the correctness of the
randomized FPT algorithm of [16] for FVS, we can say that S2 is a feedback vertex set
of G − S1, and this implies that S = S1 ∪ S2 is a feedback vertex set of G. Also, if the
parameter is decreased by β inside the while loop when Algorithm 1 returns a solution
of the form S1 ∪ S2, then observe that |S1| ≤ β + ϵk and |S2| ≤ k − β. Thus, we get
|S| = |S1|+ |S2| ≤ β + ϵk + k − β = (1 + ϵ)k. ◀

MFCS 2023
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Algorithm 1 First randomized (1 + ϵ) approximation algorithm for FVS.

Input : An instance (G, k) of FVS and a ϵ ∈ (0, 1).
1 Fix l′ = k;
2 Fix l = (1− ϵ)k;
3 Initialize, S1 ← ∅;
4 while k > l & G− S1 is not acyclic do
5 apply reduction rules 2-4 exhaustively to G− S1;
6 if there is a self-loop then
7 S1 = S1 ∪ {v : there is a loop on v};
8 k ← k − |{v : there is a loop on v}| ;
9 else

10 pick an edge e = uv uniformly at random from E(G− S1);
11 S1 = S1 ∪ {u, v};
12 k ← k − 1;
13 end
14 end
15 if G− S1 is acyclic & |S1| ≤ (1 + ϵ)l′ then
16 return S1;
17 end
18 apply the randomized FPT algorithm of [16] for FVS on (G− S1, k) ;
19 if Above algorithm returns a solution S2 then
20 return S1 ∪ S2;
21 else
22 return No;
23 end

▶ Lemma 5. Given an Yes-instance of FVS, Algorithm 1 returns a solution of size at most
(1 + ϵ)k with probability at least c · 2−ϵk for some constant c ≥ 1

2 .

Proof. Let (G, k) be a given Yes-instance for FVS. Notice that, inside the while loop, the
parameter decreases when we pick vertices having a self-loop on them or when we choose an
edge uniformly at random and add both of its endpoints to S1. We do the latter only if none
of the reduction rules are applicable.

Now, when we pick vertices having a self-loop into the set S1, by the correctness of
reduction rule 1, there must exist a feedback vertex set F of G of size at most k (as the
given instance is a Yes-instance) containing those vertices having self-loops. Then we choose
an edge uv uniformly at random and add both its endpoints u and v to S1 only if none of
the reduction rules are applicable and thus the minimum degree of the graph is at least 3.
Then by Lemma 2, at least one of u and v is in F with probability at least 1

2 . Thus, when
the parameter decreases by one, we add at least one vertex of F to S1 with probability at
least 1

2 (the statement is true with probability 1 when we are adding the vertices having
self-loops to S1). If the parameter decreases by β (note that β ≥ ϵk) inside the while loop,
then S1 contains at least β vertices of F with probability at least 1

2ϵk (as we choose an edge
uniformly at random inside the while loop for at most ϵk steps). Also, if S1 contains at least
β vertices from F , then (G− S1, k− β) is a Yes-instance and the randomized FPT algorithm
of [16] will find feedback vertex set in G− S1 of size at most k − β with probability at least
c for some constant c ≥ 1

2 . Thus, given a Yes-instance (G, k) of FVS, Algorithm 1 returns a
feedback vertex set of size at most (1 + ϵ)k with probability at least c · 2−ϵk. ◀
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Algorithm 2 Second randomized (1 + ϵ) approximation algorithm for FVS.

Input : An instance (G, k) of FVS and ϵ ∈ (0, 1).
1 Initialize, S ← ∅;
2 while |S| < (1 + ϵ)k & G− S is not acyclic do
3 apply reduction rules 2-4 exhaustively to G− S;
4 if there is a self-loop then
5 S = S ∪ {v : there is a self-loop on v};
6 else
7 pick an edge e u.a.r from E(G− S);
8 pick a vertex v u.a.r. from the endpoints of e ;
9 S = S ∪ {v};

10 end
11 if G− S is acyclic & |S| ≤ (1 + ϵ)k then
12 return S;
13 end
14 end
15 return No;

Proof of Theorem 3. The randomized FPT algorithm of [16] for FVS runs in O∗(2.7k′) time
for an instance (G, k′) of FVS. Notice that, when Algorithm 1 calls the algorithm of [16],
the parameter is at most (1− ϵ)k. Thus Algorithm 1 takes O∗(2.7(1−ϵ)k) time when it calls
the algorithm of [16]. Except for this step, all other steps in Algorithm 1 can be done in
polynomial time. So overall Algorithm 1 runs in time O∗(2.7(1−ϵ)k). Also, due to Lemma 5,
given a Yes-instance of FVS it outputs a solution of size at most (1 + ϵ)k with probability
at least c · 2−ϵk. The algorithm of Theorem 3 (which we call RPAS1) repeats Algorithm 1 at
most 1

c · 2
ϵk times. The first time Algorithm 1 returns a solution, RPAS1 returns the same

solution and stops. Otherwise, if all the 1
c · 2

ϵk runs of Algorithm 1 return No, then RPAS1
returns No as well. This gives the running time of RPAS1 to be O∗(2ϵk · 2.7(1−ϵ)k). We have
already seen in Lemma 4 that Algorithm 1 either fails or returns a solution of size at most
(1 + ϵ)k, so this is true for RPAS1 as well. For showing the second part of Theorem 3, we
observe that RPAS1 fails if and only if each of the runs of Algorithm 1 fails. Hence, RPAS1
succeeds with probability at least 1− (1− c · 2−ϵk) 1

c ·2ϵk ≥ 1/e. This finishes the proof of the
theorem. ◀

4 Algorithm II

In this section, we present our second randomized (1 + ϵ) approximation algorithm for FVS
for every ϵ ∈ (0, 1). Given an instance (G, k) of FVS, like before, we first apply reduction
rules 2-4 on the graph. When none of the reduction rules 2-4 are applicable, we pick all the
vertices with self-loops into the set S. If no vertex has a self-loop, then we pick an edge
uniformly at random and then we pick an endpoint (say v) of this edge uniformly at random.
We add this vertex v into S. Then we delete S from the graph and repeat the same process
until G−S becomes acyclic or the size of S crosses (1 + ϵ)k. If G−S becomes acyclic before
the size of S crosses (1 + ϵ)k, then we return S as a solution, otherwise, we return No. We
describe the algorithm formally in Algorithm 2. Now we state the main result of this section.

MFCS 2023
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▶ Theorem 6. There exists a randomized algorithm running in O∗

(((
4

1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k
)

time such that, given an FVS instance (G, k) and ϵ ∈ (0, 1), it either reports a failure or
finds a feedback vertex set of G of size at most (1 + ϵ)k. Moreover, if the algorithm is given
a Yes-instance, it returns a solution of size at most (1 + ϵ)k with probability at least 1/e.

Let us call the algorithm of Theorem 6 RPAS2. Just like RPAS1, it is obtained by
repeating Algorithm 2 multiple times to get a constant success probability. So before we
give the proof of Theorem 6, we need to show some results about the success probability of
Algorithm 2. We first make the following observation which follows directly from line 11 of
the algorithm.

▶ Observation 7. If Algorithm 2 returns a solution S for a given instance (G, k) of FVS
then S is a feedback vertex set in G of size at most (1 + ϵ)k.

Let T (b, k, n) : Z× N× N→ [0, 1] be defined as follows.

T (b, k, n) := min
G: |V (G)|≤n, fvs(G)≤k

{ρ | Algorithm 2 returns a feedback vertex set of G of

size at most b with probability ρ}

If we can show a lower bound on T (b, k, n) where b = (1 + ϵ)k, and k and ϵ are as in the input
of Algorithm 2, then that will give a lower bound for the success probability of Algorithm 2.
We first make the following observation.

▶ Observation 8. T (b, k, n) ≤ T (b, k, n− 1) and T (b, k, n) ≤ T (b, k − 1, n).

Proof. The first part of the observation follows from the fact that the set of graphs considered
for T (b, k, n− 1) while taking the minimum in the definition is a subset of the set of graphs
considered for T (b, k, n). The second part also follows by a similar reasoning on the size of
the feedback vertex set. ◀

Now, let us see what happens when Algorithm 2 adds vi to S. Let E1 denote the event
when this vi belongs to some feedback vertex set of G of size at most k, and let E2 denote the
event when vi is not part of any feedback vertex set of G of size at most k. The probability
of success of Algorithm 2 on G with parameter k and budget b is at least T (b− 1, k− 1, n− 1)
and T (b− 1, k, n− 1) respectively in case E1 or E2 happens. This gives us the following.

T (b, k, n) ≥ Pr[E1] · T (b− 1, k − 1, n− 1) + Pr[E2] · T (b− 1, k, n− 1).

Now, if we add vi to S from line 5 of Algorithm 2 and G has a feedback vertex set of size
at most k, then there must exists a feedback vertex set F of G of size at most k that contains
vi. Else, if vi is added to S from line 9, then none of the reduction rules are applicable and
by Lemma 2, we have that, Pr[E1] ≥ 1

4 . That is, Pr[E1] = 1
4 + ci for some ci ≥ 0. We also

know that Pr[E1] + Pr[E2] = 1. Hence, the recurrence relation of success probability is

T (b, k, n) ≥ (1
4 + ci) · T (b− 1, k − 1, n− 1) + (3

4 − ci) · T (b− 1, k, n− 1).

Now, using Observation 8, we can write

T (b, k, n) ≥ 1
4 · T (b− 1, k − 1, n) + 3

4 · T (b− 1, k, n). (1)
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Since n is an invariant in the above recurrence relation, we can rewrite 1 as

T (b, k) ≥ 1
4 · T (b− 1, k − 1) + 3

4 · T (b− 1, k). (2)

It can be easily seen that two trivial base cases of the recurrence 2 are the following.
i) T (b, k) = 0 when b < 0, and ii) T (b, k) = 1 when k = 0 and b ≥ 0.

4.1 Solution of recurrence relation 2 and proof of Theorem 6
To solve the recurrence 2, we make use of the results in [15]. Let, a recurrence relation define
a function p : Z× N→ [0, 1] satisfying the following equations.

p(b, k) = min{1≤j≤N |k̄j≤k}
∑rj

i=1 γ̄j
i · p

(
b− b̄j

i , k − k̄j
i

)
p(b, k) = 0 ∀b < 0, k ∈ N
p(b, 0) = 1 ∀b ≥ 0,

(3)

where N ∈ N, and for any 1 ≤ j ≤ N the following hold: b̄j ∈ Nrj

+ , k̄j ∈ Nrj and γ̄j ∈ Rrj

+
with

∑rj

i=1 γ̄j
i = 1. We say that k̄j ≤ k if k̄j

i ≤ k,∀1 ≤ i ≤ rj . We refer to the recurrence
relation in 3 as the composite recurrence of

{(
b̄j , k̄j , γ̄j

)
| 1 ≤ j ≤ N

}
. Note that for the

recurrence to be properly defined, there must be 1 ≤ j ≤ N such that k̄j ≤ 1 (otherwise the
min operation in 3 may be taken over an empty set). Also notice that the recurrence 2 is
a composite recurrence with N = 1 (and thus j = 1), rj = r = 2, γ̄1 = 1

4 , γ̄2 = 3
4 , b̄1 = 1,

b̄2 = 1, k̄1 = 1 and k̄2 = 0. Throughout this subsection, we use the word term when referring
to triples of the form

(
b̄j , k̄j , γ̄j

)
.

We say that a vector q̄ ∈ Rr
≥0 is a distribution if

∑r
i=1 q̄i = 1 and use D(·∥·) to denote

Kullback-Leibler divergence [7] 2 3.
To state the main result of [15], we need the next definition. For short, associate the

term (b̄, k̄, γ̄) with the expression
∑r

i=1 γ̄i · p
(
b− b̄i, k − k̄i

)
.

▶ Definition 9. Let b̄ ∈ Nr
+, k̄ ∈ Nr and γ̄ ∈ Rr

≥0 with
∑r

i=1 γ̄i = 1. Then for α > 0, the α

branching number of the term (b̄, k̄, γ̄) is the optimal value M∗ of the following minimization
problem over q̄ ∈ Rr

≥0 :

M∗ = min
{

1∑r
i=1 q̄i · k̄i

D(q̄∥γ̄) |
r∑

i=1
q̄i · b̄i ≤ α

r∑
i=1

q̄i · k̄i, q̄ is a distribution
}

.

If the optimization above does not have a feasible solution then M∗ =∞.

The main result of [15] is the following.

▶ Theorem 10 ([15]). Let p be the composite recurrence of
{(

b̄j , k̄j , γ̄j
)
| 1 ≤ j ≤ N

}
,

and α > 0. Denote by Mj the α-branching number of
(
b̄j , k̄j , γ̄j

)
, and let M =

max {Mj | 1 ≤ j ≤ N}. If M <∞ then

lim
k→∞

log p(⌊αk⌋, k)
k

= −M.

2 Formally, for c̄, d̄ ∈ Rk define D(c̄||d̄) =
∑k

i=1 c̄i log c̄i

d̄i
.

3 Throughout the paper we refer by log to the natural logarithm.
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As said earlier, for the recurrence 2, we have N = 1, and thus, j will always have only
one value, so we just ignore j. Also, we have rj = r = 2, γ̄1 = 1

4 , γ̄2 = 3
4 , b̄1 = 1, b̄2 = 1,

k̄1 = 1 and k̄2 = 0. The α-branching number of (b̄, k̄, γ̄) is,

M = min
{

1∑2
i=1 q̄i · k̄i

D(q̄∥γ̄) |
2∑

i=1
q̄i · b̄i ≤ α

2∑
i=1

q̄i · k̄i, q̄ is a distribution
}

.

So, we have to minimize

1∑2
i=1

q̄i·k̄i

D(q̄∥γ̄) (4)

with respect to the constraint,∑2
i=1 q̄i · b̄i ≤ α

∑2
i=1 q̄i · k̄i (5)

Also, since q̄ is a distribution, we have

q̄1 + q̄2 = 1 (6)

So, using 6 in 5 we get,

q̄1 + q̄2 ≤ αq̄1 =⇒ q̄1 ≥ 1
α

(7)

Now, from 4, we get,

1∑2
i=1 q̄i · k̄i

D(q̄∥γ̄) = 1
q̄1

(
q̄1 log q̄1

γ̄1
+ q̄2 log q̄2

γ̄2

)
=
(

log 4q̄1 + (1− q̄1)
q̄1

log 4(1− q̄1)
3

)
.

Notice that, the above expression is a function of q̄1 only. Let us consider the function,
f : [ 1

α , 1]→ R such that,

f(x) =
(

log 4x + 1− x

x
log 4(1− x)

3

)
.

Since we want a factor (1 + ϵ) approximation for every ϵ ∈ (0, 1), we are interested for
1 < α < 2 only and in this range of α, 1

α > 1
2 . Now, to compute M , we need to minimize

f(x).
Here, derivative of f(x),

f′(x) = − 1
x2 log 4(1− x)

3 ≥ 0,∀x ∈
[

1
4 , 1
]

.

This implies that the function f is a monotonically increasing function on the domain of
our interest ( i.e., where 1

α > 1
2 ). Hence, f(x) is minimum at x = 1

α and this implies

M = f
(

1
α

)
= log

(
4
α

(
4

3α
(α− 1)

)(α−1)
)

.

By Theorem 10,

p(αk, k) =
(

4
α

(
4

3α
(α− 1)

)(α−1)
)−k

.

Now, from recurrence relation 2 and putting α = (1 + ϵ), we get,

T ((1 + ϵ)k, k) ≥
((

4
1 + ϵ

)(1+ϵ)
·
( ϵ

3

)ϵ
)−k

.
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Proof of Theorem 6. Showing that T (b, k, n) ≥
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)−k

shows that

given a Yes-instance (G, k) of FVS, Algorithm 2 succeeds with probability at least((
4

1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)−k

. Now, the proof follows along the lines of the proof of Theorem 3,

and by repeating Algorithm 2
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k

times, we get success probability at

least 1/e. Since Algorithm 2 runs in polynomial time, the running time of RPAS2 is

O∗

(((
4

1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k
)

. ◀

5 Algorithm III

In this section, we present the third randomized (1 + ϵ) approximation algorithm for FVS
for every ϵ ∈ (0, 1). Given an instance (G, k) of FVS, we first apply reduction rules 2-4 on
the graph. After this, we pick all the vertices with self-loops into the set S1. If no vertex
has a self-loop, then we pick an edge uniformly at random, select an endpoint v of this edge
uniformly at random, and add this vertex v into S1. Then we delete S1 from the graph
and repeat the same process until G− S1 becomes acyclic or the size of S1 crosses (1− ϵ)k.
Next, we check whether G− S1 is acyclic and |S1| ≤ (1 + ϵ)k. If yes, then we just return S1
as a solution. Otherwise, we apply a 2-approximation algorithm [1] for FVS on the graph
G− S1. If the 2-approximate solution, say S2, of G− S1 is of size at most 2(k − |S1|) then
we return S1 ∪ S2 as a solution, otherwise we return No. We describe the algorithm formally
in Algorithm 3. Now we state the main result of this section.

▶ Theorem 11. There exists a randomized algorithm running in O∗ (4(1−ϵ)k
)

time such that,
given an FVS instance (G, k) and ϵ ∈ (0, 1), it either reports a failure or finds a feedback
vertex set of G of size at most (1 + ϵ)k. Moreover, if the algorithm is given a Yes-instance,
it returns a solution of size at most (1 + ϵ)k with probability at least 1/e.

Let us call the algorithm of Theorem 6 RPAS3. Just like RPAS1 and RPAS2, it is
obtained by repeating Algorithm 3 multiple times to get a constant success probability. So
before we give the proof of Theorem 11, we need to prove some lemmas about Algorithm 3.

▶ Lemma 12. If Algorithm 3 returns a set S then S is a feedback vertex set in G of size at
most (1 + ϵ)k.

Proof. The returned solution will be either of the form S1 or of the form S1 ∪ S2 for some
vertex set S1, and S2. If it is only S1, then by the algorithm, it is clear that G−S1 is acyclic
and |S1| ≤ (1 + ϵ)k.

Now, if the returned solution is of the form S1 ∪ S2, then S2 is a 2-approximate solution
for the graph G− S1. Thus, by the correctness of 2-approximation algorithm for Feedback
Vertex Set, we can say S2 is a feedback vertex set in G−S1, and this implies, S = S1 ∪S2
is a feedback vertex set in G.

Now from Algorithm 3, we can see, |S1| ≥ (1− ϵ)k. Again, Algorithm 3 returns a solution
of the form S1 ∪ S2 only when |S2| ≤ 2(k − |S1|). Thus, we get,

|S| = |S1|+ |S2| ≤ |S1|+ 2(k − |S1|) = 2k − |S1| ≤ 2k − (1− ϵ)k = (1 + ϵ)k. ◀

▶ Lemma 13. Given an Yes-instance of FVS, Algorithm 3 returns a solution of size at most
(1 + ϵ)k with probability at least 4−(1−ϵ)k.

MFCS 2023
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Algorithm 3 Third randomized (1 + ϵ)-approximation algorithm for FVS.

Input : An instance (G, k) of FVS and ϵ ∈ (0, 1).
1 Initialize, S1 ← ∅;
2 while |S1| < (1− ϵ)k & G− S1 is not acyclic do
3 apply reduction rules 2-4 exhaustively to G− S1;
4 if there is a self-loop then
5 S1 = S1 ∪ {v : there is a self-loop on v};
6 else
7 pick an edge e u.a.r from E(G− S1);
8 pick a vertex v u.a.r. from the endpoints of e;
9 S1 = S1 ∪ {v};

10 end
11 if G− S1 is acyclic & |S1| ≤ (1 + ϵ)k then
12 return S1;
13 end
14 end
15 apply 2-approximation for FVS on G− S1;
16 Let S2 be returned solution;
17 if |S2| > 2(k − |S1|) then
18 return No;
19 else
20 return S1 ∪ S2;
21 end

Proof. Let the given instance (G, k) be a Yes instance, that is, there is a feedback vertex set
in G of size at most k. Let S1

1 and S2
1 be the set of vertices we add in S by the line number

5 and 9 of Algorithm 3, respectively. Notice that we add vertices to S1
1 only when there

are some self-loops in the graph (i.e., reduction rule 1 is applicable). By the correctness of
reduction rule 1, if (G, k) is a Yes instance, then there exists a feedback vertex set of size at
most k containing S1

1 . Now, when we add a vertex in S2
1 , from the pseudocode of Algorithm 3,

we can see none of the reduction rules are applicable and thus, we can assume the minimum
degree of the graph to be at least 3. Now if we pick an edge uniformly at random and then we
pick one of its endpoints, v uniformly at random into S2

1 then Lemma 2 says that, v is a part
of any feedback vertex set with probability at least 1

4 . Thus, for some feedback vertex set F of
size at most k, pr[S1 = S1

1 ∪ S2
1 ⊆ F ] ≥ 1

4 ·
1
4 ·

1
4 · · ·

1
4 (|S2

1 |times) = 1
4|S2

1 | . Since, Algorithm 3
adds at most one vertex to S2

1 at every execution of the while loop and the while loop runs
for at most (1− ϵ)k steps, so,|S2

1 | ≤ (1− ϵ)k. Therefore, pr[S1 = S1
1 ∪ S2

1 ⊆ F ] ≥ 1
4(1−ϵ)k . If

S1 = F , then S1 is a feedback vertex set in G and |S1| ≤ k ≤ (1 + ϵ)k and Algorithm 3 will
return a solution. Else if S1 ⊂ F then F \S1 is a feedback vertex set in G−S1 of size k−|S1|.
Hence, the size of the 2-approximate solution S2 will be at most 2(k− |S1|) and Algorithm 3
will return a solution S = S1 ∪ S2. So, if the given instance (G, k) is a yes-instance then for
some feedback vertex set F in G of size at most k, S1 ⊆ F with probability at least 1

4(1−ϵ)k

and when S1 ⊆ F , Algorithm 3 always returns a solution. Hence the proof. ◀

Proof of Theorem 11. There is a polynomial time 2-approximation algorithm for FVS
that can be found in [1]. Also, every step under the while loop in Algorithm 3 takes only
polynomial time and the while loop runs for at most (1− ϵ)k times. So, overall Algorithm 3



S. Jana, D. Lokshtanov, S. Mandal, A. Rai, and S. Saurabh 56:13

runs in polynomial time. RPAS3 calls Algorithm 3 for 4(1−ϵ)k times to achieve constant
success probability, and the remainder of the proof follows from Lemma 12 and Lemma 13
along the lines of proofs of Theorem 3 and Theorem 6. ◀

6 Comparison of RPAS1, RPAS2, and RPAS3, and proof of Theorem 1

In this section we compare the running times of the algorithms in Theorem 3, Theorem 6, and
Theorem 11, which we have named RPAS1, RPAS2, and RPAS3 respectively. We observe
that each of RPAS1, RPAS2 and RPAS3 performs better than the other two when ϵ lies in
the intervals (0, 0.176), (0.176, 0.674), and (0.674, 1) respectively. For ϵ = 0.176, the running
times of RPAS1 and RPAS2 are the same, while for ϵ = 0.674, the running times of RPAS2
and RPAS3 turn out to be the same. The following table gives the running time of the three
algorithms for different values of ϵ for comparison. Now we are ready to give the proof of
Theorem 1.

No. ϵ
Approximation
factor

RPAS1
run time

RPAS2
run time

RPAS3
run time

Better
run time

1 0.05 1.05 2.66k 3.319k 3.732k 2.66k

2 0.10 1.10 2.62k 2.945k 3.482k 2.62k

3 0.15 1.15 2.581k 2.676k 3.482k 2.581k

4 0.176 1.176 2.561k 2.561k 3.134k 2.561k

5 0.20 1.20 2.543k 2.467k 3.031k 2.467k

6 0.25 1.25 2.505k 2.3k 2.828k 2.3k

7 0.30 1.30 2.468k 2.16k 2.639k 2.16k

8 0.35 1.35 2.431k 2.043k 2.462k 2.043k

9 0.40 1.40 2.395k 1.942k 2.297k 1.942k

10 0.45 1.45 2.359k 1.855k 2.144k 1.855k

11 0.50 1.50 2.324k 1.778k 2k 1.778k

12 0.55 1.55 2.289k 1.71k 1.866k 1.71k

13 0.60 1.60 2.255k 1.649k 1.741k 1.649k

14 0.65 1.65 2.222k 1.595k 1.624k 1.595k

15 0.674 1.674 2.206k 1.571k 1.571k 1.571k

16 0.70 1.70 2.188k 1.546k 1.516k 1.516k

17 0.75 1.75 2.156k 1.502k 1.414k 1.414k

18 0.80 1.80 2.124k 1.462k 1.32k 1.32k

19 0.85 1.85 2.092k 1.426k 1.231k 1.231k

20 0.9 1.90 2.061k 1.392k 1.149k 1.149k

21 0.95 1.95 2.03k 1.362k 1.072k 1.072k

Proof of Theorem 1. Given an instance (G, k) and an ϵ ∈ (0, 1), the algorithm runs one
of RPAS1, RPAS2, and RPAS3 depending upon which of them performs the best for that
value of ϵ (for ϵ = 0.176, we can choose either of RPAS1 or RPAS2 and for ϵ = 0.674, we
can choose either of RPAS2 or RPAS3). The running time and the correctness follows from
Theorem 3, Theorem 6, and Theorem 11. ◀
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