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Abstract
For any finite set H = {H1, . . . , Hp} of graphs, a graph is H-subgraph-free if it does not contain any
of H1, . . . , Hp as a subgraph. In recent work, meta-classifications have been studied: these show that
if graph problems satisfy certain prescribed conditions, their complexity can be classified on classes
of H-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time
solutions on classes that have bounded treewidth or maximum degree at most 3 and examine their
complexity on H-subgraph-free graph classes where H is a connected graph. With this approach,
we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected
Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems.

We highlight that, to establish that Independent Feedback Vertex Set belongs to this
collection of problems, we first show that it can be solved in polynomial time on graphs of maximum
degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each
graph in this class has a minimum size feedback vertex set that is also an independent set.
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1 Introduction

A graph G contains a graph H as a subgraph if H can be obtained from G by vertex deletions
and edge deletions; else G is said to be H-subgraph-free. If H can be obtained from G using
only vertex deletions, then H is an induced subgraph of G, and if not then G is H-free. There
are few studies of complexity classifications of graph problems for H-subgraph-free graphs
(compare the greater attention given to problems on H-free graphs). There are results for
Independent Set, Dominating Set and Longest Path [1], Max-Cut [13] and List
Colouring [10] (see also [11] for a shorter alternative proof of the result for Independent
Set). In these papers, complete classifications are presented giving the complexity of the
problems even for H-subgraph-free graphs, where H is any finite set of graphs (for a set of
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57:2 Complexity Framework for Forbidden Subgraphs

graphs H, a graph G is H-subgraph-free if G is H-subgraph-free for every H ∈ H). Such
classifications seem difficult to obtain. For example, for Colouring, there is only a partial
classification[11]. For this reason – and also noting that the classifications for the problems
above were all the same – a systematic approach was developed in [12] with the introduction
of a new framework which we will describe after introducing some terminology.

For an integer k ≥ 1, the k-subdivision of an edge e = uv of a graph replaces e by a
path of length k + 1 with endpoints u and v (and k new vertices). The k-subdivision of a
graph G is the graph obtained from G after k-subdividing each edge. For a graph class G
and an integer k, let Gk consist of the k-subdivisions of the graphs in G. Let Π be a graph
problem. We say that Π is NP-complete under edge subdivision of subcubic graphs if there
exists an integer k ≥ 1 such that the following holds for the class of subcubic graphs G: if
Π is NP-complete for G, then Π is NP-complete for Gkp for every integer p ≥ 1. A graph
problem Π is a C123-problem (belongs to the framework) if it satisfies the three conditions:
C1. Π is polynomial-time solvable for every graph class of bounded treewidth;
C2. Π is NP-complete for the class of subcubic graphs; and
C3. Π is NP-complete under edge subdivision of subcubic graphs.

As shown in [12], C123-problems allow for full complexity classifications for H-subgraph-free
graphs (as long as H has finite size). A subdivided claw is a graph obtained from a claw
(4-vertex star) after subdividing, separately, each of its edges zero or more times. The disjoint
union of two vertex-disjoint graphs G1 and G2 has vertex set V (G1) ∪ V (G2) and edge set
E(G1) ∪ E(G2). The set S consists of the graphs that are disjoint unions of subdivided claws
and paths. Now, let Π be a C123-problem. For a finite set H, the problem Π on H-subgraph-
free graphs is polynomial-time solvable if H contains a graph from S and NP-complete
otherwise. [12].

Examples of C123-problems include Independent Set, Dominating Set, List Colour-
ing, Odd Cycle Transversal, Max Cut and Steiner Tree; see [12] for a comprehensive
list. Thus we see the power of the framework to aid progress in deciding the complexity of
problems on H-subgraph-free graphs. But there are still many graph problems that are not
C123. In [15], results were obtained for problems that satisfy C1 and C2 but not C3. Such
problems are called C12-problems and include k-Induced Disjoint Paths, C5-Colouring,
Hamilton Cycle and Star 3-Colouring [15]. We consider the research question:

How do C13-problems – that is, problems that satisfy C1 and C3 but not C2 – behave for
H-subgraph-free graphs? Can we still classify their computational complexity?

Let us immediately note some redundancy in the definition of C13-problems: if a problem
does not satisfy C2, then C3 is implied. Nevertheless we retain the terminology to preserve the
link to the approach of [12]. To show a problem is a C13 problem there are two requirements:
that the problem is polynomial-time solvable both on classes of bounded treewidth and on
subcubic classes. In fact, the tractable cases for C123 problems rely on that the problems
satisfy C1.

▶ Theorem 1 ([12]). Let Π be a problem that satisfies C1. For a finite set H, the problem Π
on H-subgraph-free graphs is polynomial-time solvable if H contains a graph from S.

As an important step towards a full dichotomy for C13 problems, we restrict ourselves to
considering H-subgraph-free graphs where H is connected. We focus on five well-known
NP-complete problems that we will see are not C123 but C13-problems: Feedback Vertex
Set, Independent Feedback Vertex Set, Connected Vertex Cover and Matching
Cut. We introduce these problems below. With one exception, we can recognize that they
are C13 problems using known results.
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For a graph G = (V, E), a set W ⊆ V is a feedback vertex set of G if every cycle in
G contains a vertex of W . Moreover, W is an independent feedback vertex set if W is an
independent set. We note that G has a feedback vertex set of size k if and only if the
2-subdivision of G has an independent feedback vertex set of size k. A graph G might contain
no independent feedback vertex set: consider, for example, a complete graph on four or more
vertices. The (Independent) Feedback Vertex Set problem is to decide if a graph G

has an (independent) feedback vertex set of size at most k for some given integer k.
A set W ⊆ V is a connected vertex cover of G if every edge of E is incident with a

vertex of W , and moreover W induce a connected subgraph. The Connected Vertex
Cover problem is to decide if a graph G has a connected vertex cover of size at most k for a
given integer k. A k-colouring of G is a function c : V → {1, . . . , k} such that for each edge
uv ∈ E, c(u) ̸= c(v). The Colouring problem is to decide if a graph G has a k-colouring
for some given integer k. A matching cut of a connected graph is a matching (set of pairwise
non-adjacent edges) that is also an edge cut, i.e., its removal creates a disconnected graph.
The Matching Cut problem is to decide if a connected graph has a matching cut.

1.1 Our Results
Both Feedback Vertex Set and Independent Feedback Vertex Set satisfy C1 [21].
Whereas Feedback Vertex Set does have a polynomial-time algorithm on subcubic
graphs [22] and thus does not satisfy C2, a polynomial-time algorithm for Independent
Feedback Vertex Set on subcubic graphs was not previously known. In Section 2, we
prove the following result addressing this gap in the literature.

▶ Theorem 2. A minimum size independent feedback vertex set of every connected subcubic
graph G ̸= K4 is also a minimum size feedback vertex set of G. Moreover, it is possible to
find a minimum independent feedback vertex set of G in polynomial time.

Hence, both Feedback Vertex Set and Independent Feedback Vertex Set are C13.
The other problems are also C13. Namely, Connected Vertex Cover satisfies C1 [2] and
is polynomial-time solvable on subcubic graphs [22] so does not satisfy C2, while Colouring
also satisfies C1 [2] but not C2 due to Brooks’ Theorem [4]. Finally, Matching Cut satisfies
C1 [3] but not C2, due to a polynomial-time algorithm for subcubic graphs [5].

The star K1,s is the connected graph that contains a vertex of degree s whose neighbours
each have degree 1. A subdivided star is obtained from a star by subdividing one or more of
its edges.

▶ Definition 3. An Sw,x,y,z is a graph formed by subdividing each edge of a K1,4, w − 1, x −
1, y − 1, and z − 1 times. Each of the subdivided edges is called a tentacle. The vertex of
degree 4 is the centre.

In Section 3, we investigate the structure of H-subgraph-free graphs when H is a subdivided
star and use this in Section 4 to show a general approach to C13 problems that requires some
additional properties (that they can be solved componentwise after, possibly, the removal of
bridges). This is sufficient to obtain the following result.

▶ Theorem 4. Let q and r be positive integers. The following problems can be solved in
polynomial time on S1,1,q,r-subgraph-free graphs: Feedback Vertex Set, Independent
Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut.

In Section 5, we obtain a hardness result.

▶ Theorem 5. Feedback Vertex Set and Independent Feedback Vertex Set are
NP-complete on the class of S2,2,2,2-subgraph free graphs that have maximum degree 4.

MFCS 2023
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1.2 State-of-the-Art Summaries
We now state complexity classifications for each of the problems. These results, proved in
Section 6, combine the results above with a number of other results from [5, 7, 8, 9, 11, 14,
17, 19, 20]. None of these papers presented general results for C13 problems. However, we
note, for example, that hardness when H contains a cycle follows from past results on classes
of bounded girth which were proved separately for each problem, but often using a similar
technique. There are other results that just apply to one or two of the problems.

▶ Theorem 6. Let H be a connected graph. On H-subgraph-free graphs, Feedback Vertex
Set and Independent Feedback Vertex Set are solvable in polynomial time if H ∈
S ∪ {S1,1,q,r | q ≥ r ≥ 1}. They are NP-complete if H contains a cycle or more than one
vertex of degree at least 3 or H ∈ {K1,5, S2,2,2,2}.

▶ Theorem 7. Let H be a connected graph. On H-subgraph-free graphs, Connected
Vertex Cover is solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}. It is
NP-complete if H contains a cycle or H = K1,5.

The following result refers to trees defined in Figure 1.

▶ Theorem 8. Let H be a connected graph. On H-subgraph-free graphs, Colouring is
solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1} or if H is a forest with
maximum degree 4 and at most seven vertices. It is NP-complete if H contains a cycle, or
H ∈ {K1,5, S2,2,2,2}, or if H contains a subdivision of the tree T1 as a subgraph, or H contains
as a subgraph the tree obtained from T2 after subdividing the edge st p times, 0 ≤ p ≤ 9, or
H contains one of the trees S2,2,2,2, T4, T5, T6 as a subgraph.

t

T3T2T1 T4

T5 T6

s

Figure 1 Illustration of the trees T1, . . . , T6 reproduced from [11]; note that T3 = S2,2,2,2.

▶ Theorem 9. Let H be a connected graph. On H-subgraph-free graphs, Matching Cut is
solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}. It is NP-complete if H contains
a cycle or H = K1,5.

2 Independent Feedback Vertex Sets of Subcubic Graphs

In [22], Ueno, Kajitani and Gotoh gave a polynomial-time algorithm for Feedback Vertex
Set on subcubic graphs. In this section, we prove Theorem 2 by showing that Independent
Feedback Vertex Set is also polynomial-time solvable on subcubic graphs by demon-
strating that the problems are alike as, for any subcubic graph, one can find a minimum size
feedback vertex set that is also an independent set (with a single exceptional case). As the
problems can be solved componentwise, we consider only connected graphs.
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In fact, we are going to prove a result that is an expansion of Theorem 2 that will come
in handy later. We need some definitions. A cactus is a graph in which no two cycles have an
edge in common. A cactus is nice if no two cycles have a vertex in common (every subcubic
cactus is nice since if two cycles share a vertex but not an edge, we can find a vertex of
degree at least 4). A cactus is very nice if every vertex belongs to exactly one cycle.

▶ Theorem 10. Let G ̸= K4 be a connected subcubic graph. Then a minimum size independent
feedback vertex set of G is also a minimum size feedback vertex set of G. Moreover, there is
a minimum size independent feedback vertex set of G that contains only vertices of degree 3
if and only if G is not a very nice cactus. There is a polynomial-time algorithm to find a
minimum size independent feedback vertex set and if G is not a very nice cactus it finds a
set that contains only vertices of degree 3.

We observe that the theorem fails if G = K4.

Proof. It will be seen that the proof implies a polynomial-time algorithm for finding an
independent feedback vertex set of the size no greater than a given feedback vertex set.

A feedback vertex set of K4 must contain at least two vertices and so K4 has no
independent feedback vertex set. In a very nice cactus, the minimum size of a feedback vertex
set is equal to the number of cycles and one can easily find such a set that is independent if
one permits the inclusion of degree 2 vertices. (For example, pick an arbitrary vertex v and
form an independent feedback vertex set by taking the vertex in each cycle that is farthest
from v.) If there are k (disjoint) cycles, then, considering the tree-like structure of a very
nice cactus, there are 2(k − 1) vertices of degree 3 that can be considered as k − 1 adjacent
pairs. Thus no set of k vertices of degree 3 is independent.

So suppose that G ̸= K4 is not a very nice cactus. Of course, we may also assume that G

is not a tree, else the empty set is an independent feedback vertex set. Let F be a feedback
vertex set of G. To prove the theorem, we must show that we can find an independent
feedback vertex set of G that is no larger than F . We can assume that F contains only
vertices of degree 3 since any vertex of degree 2 can be replaced by a nearest vertex of
degree 3. As G is neither a tree nor a cycle (a cycle is a very nice cactus), we know that G

has vertices of degree 3.
Let J = ∅. Our approach is to add vertices to J until it forms an independent feedback

vertex set. We make some trivial but useful statements:
1. F is a feedback vertex set containing only vertices of degree 3,
2. J ⊆ F , and
3. J is a nonseparating independent set of G; that is, no pair of vertices of J are joined by

an edge and G − J is connected.
We will repeatedly modify F and J in such a way that these three statements remain true
and the size of F does not increase and it remains a feedback vertex set. We can make the
following changes without contradicting the three statements.

We can add a vertex x ∈ F \ J to J if x has no neighbour in J and is not a cutvertex
in G − J .
If x ∈ F \ J , we can redefine F as (F \ {x}) ∪ {y} if y is a vertex that belongs to every
cycle of G − (F \ {x}) and has degree 3 (that is, y belongs to every cycle of G that
contains x but no other vertex of F ).

Our initial aim is to make changes so that G − J is a graph where no two cycles have a
vertex in common; that is, it is a nice cactus.

▷ Claim 11. We can modify F and J until G − J is a nice cactus.

MFCS 2023
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Proof. Assume G − J contains two cycles with a common vertex, and, therefore, as G is
subcubic, a common edge, else we are done. Consider a subgraph K induced by two cycles of
G − J that have a common edge (so K is 2-connected and has no cutvertex). Of course, F

must contain at least one vertex of K; let r be such a vertex.
If r has degree 3 in K, then we can add it to J since it has three neighbours in G − J (so

none in J) and is not a cutvertex in G − J since K − {r} is connected.
Otherwise r has degree 2 in K. Traversing edges of K away from r in either direction,

let p and q be the first vertices of degree 3 in K that are reached (and p ̸= q by the definition
of K). Let r′ be the first vertex of degree 3 in G reached from r on the path in K towards p.

If r has a neighbour j ∈ J , then we can redefine F as F \ {r} ∪ {r′} since every cycle
in G containing r also contains either j or r′. Suppose instead that r has no neighbour in J .
Let r′′ be the neighbour of r in G − J but not K. If r is not a cutvertex in G − J , then we
can add r to J . If r is a cutvertex in G − J , then no cycle of G − J includes the edge rr′′.
Thus, again, we can redefine F as F \ {r} ∪ {r′}.

So we either add a vertex to J or modify F by replacing a vertex with another that is
closer in K to p. By repetition, we either add a vertex to J or modify F to include p in
which case, as noted above, we can add p to J . Therefore, if G − J contains two cycles with
a common edge, we can increase the size of J and so, ultimately, we can assume that G − J

contains no such pair of cycles and is a nice cactus. This completes the proof of Claim 11.
◁

Let H = G − J . By Claim 11, the cycles of H are vertex disjoint and the graph has a
treelike structure: if one replaces each cycle by a single vertex, then a tree is obtained. As F

must contain at least one vertex of each cycle of H, if we add to J one vertex chosen from
each cycle of H (in any way), it will be no larger than F . If we can do this in such a way
that J is an independent set and each vertex has degree 3, then the proof will be complete.
Thus we must describe how to choose a degree 3 vertex from each cycle of H such that
the union of these vertices and J is an independent set, possibly after some further minor
modifications. The reasoning about these modifications will require that H is connected so
the requirement above that J be nonseparating was needed.

If H contains no cycles, then J is already an independent feedback vertex set and there
is nothing to prove. Otherwise, let C be a cycle of H. Let S(C) be the set of vertices that
contains, for each cycle C ′ of H other than C, the vertex of C ′ that is nearest to C in H. See
Figure 2. Each vertex v of S(C) has degree 3 in H since it has two neighbours in a cycle C ′

and a neighbour not in C ′ on the path from v to C. Thus no vertex of S(C) has a neighbour
in J . Moreover, clearly S(C) is an independent set. Thus J ∪ S(C) is an independent set
that covers every cycle of G except C. For a vertex v in C, let F (v) = J ∪ S(C) ∪ {v}. If we
can find a cycle C that contains a vertex v of degree 3 not adjacent to J or to another cycle
in H, then F (v) is an independent feedback vertex set and we are done.

Suppose instead that no such cycle can be found. Notice that this implies that every
vertex of H belongs to a cycle. (If there was a vertex w not in a cycle, then let v be a nearest
vertex to w in a cycle and then F (v) is an independent feedback vertex set of degree 3
vertices; again, see Figure 2.) So H is a very nice cactus and, by assumption, J ̸= ∅.

Let j be a vertex in J with neighbours v1, v2 and v3 in H. Suppose that these three vertices
are in the same cycle C of H. If C is a 3-cycle, then {j, v1, v2, v3} induces K4, a contradiction.
So we can assume that v1 and v2 are not adjacent. Then J1 = J \ {j} ∪ {v1, v2} ∪ S(C) is
an independent feedback vertex set of degree 3 vertices and |J2| = |F |. Quick check: all
cycles are covered by J1 since v1 and S(C) cover the cycles of H and every cycle containing
j includes at least one of v1 and v2; J1 is independent as v1 and v2 have degree 2 in H so no
other neighbour in J and are not adjacent to vertices, such as those of S(C), that do not
belong to C, and the vertices of S(C) have degree 3 in H so no neighbours in J .
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C
w

v

Figure 2 A nice subcubic cactus. The central 5-cycle is denoted C and the white vertices form
the set S(C). Note that w does not belong to any cycle and v is the nearest vertex to w in a cycle.
Thus S(C) ∪ {v} is an independent feedback vertex set for the graph.

Suppose instead that v1, v2 and v3 do not all belong to the same cycle. Let C be the
cycle that contains v1 and suppose that v2 and v3 do not belong to the same cycle as each
other (one might belong to C). Then J2 = J \ {j} ∪ {v1} ∪ S(C) is an independent feedback
vertex set of degree 3 vertices and |J1| = |F | − 1. Quick check: all cycles are covered by J2
since v1 and S(C) cover the cycles of H and every cycle containing j includes either v1 or
both v2 and v3 and all the paths from v2 to v3 (that do not include j) go through either a
vertex of J or a vertex of S(C) as they are in different cycles in H; J2 is independent as v1
has degree 2 in H so, as before, no other neighbour in J or S(C), and the vertices of S(C)
have degree 3 in H so no neighbours in J . ◀

3 Graphs Excluding Subdivided Stars as a Subgraph: Structure

Recall that the treedepth of a graph G is the minimum height of a forest F such that for
every pair of adjacent vertices in G, one is the ancestor of the other in F . It is well-known
that the treewidth of a graph is at most its treedepth. In this section, we aim to show
that H-subgraph-free graphs, for certain H, have bounded treedepth. Then we know that
problems that are tractable on classes of bounded treewidth are also tractable on these
classes. Before presenting our results, we need the following result from [18].

▶ Theorem 12 ([18]). Let G be a graph of treedepth at least d. Then G has a subgraph
isomorphic to a path of length at least d.

Our next two theorems consider graphs Sw,x,y,z. By Definition 3, this graph is four paths
sharing an endvertex. In a small abuse of terminology, we will use leaf to mean only a vertex
of degree 1 that is adjacent to the centre.

▶ Proposition 13. Let r be a positive integer. Then the subclass of connected S1,1,1,r-
subgraph-free graphs that are not subcubic has bounded treedepth.

Proof. Let G be a connected S1,1,1,r-subgraph-free graph that is not subcubic so contains a
vertex v0 with neighbours v1, v2, v3, v4. We will show that G has treedepth at most 2r + 2.
Suppose instead that the treedepth of G is at least 2r + 3. The graph G \ {v0, v1, v2, v3, v4}
must have treedepth at least 2r − 2 (since adding a vertex to a graph cannot increase the

MFCS 2023
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treedepth by more than one), and therefore, by Theorem 12, it must contain a path P of
length 2r − 2. Let Q be a shortest path in G between P and v0 (which must exist as G is
connected). Let z be the vertex where P and Q meet. Let P ′ be the longest subpath of P of
which z is an endvertex. As P ′ is at least half the length of P , and Q contains at least one
edge, the path P ′ ∪Q contains at least r edges. Thus there exists in G a subgraph isomorphic
to S1,1,1,r; the centre is v0, P ′ ∪ Q is the tentacle of length r, and three of v1, v2, v3, v4 are
the three leaves (since at most one of these four vertices can belong to Q and none belong
to P ′). This contradiction completes the proof. ◀

The assumption that the graphs are connected is needed: the class of all graphs that are
each a disjoint union of a path and a K1,4 is not subcubic but has unbounded treedepth.

Consider now the class of all connected graphs that are each obtained from a K1,4 after
subdividing exactly one of its edges zero or more times. This is a class of graphs that are
connected, not subcubic and S1,1,q,r-subgraph-free for all r ≥ q ≥ 2 and again has unbounded
treedepth. Thus, in the following analogue of Proposition 13, we need an additional property.
A bridge is proper if neither incident vertex has degree 1. A graph is quasi-bridgeless if it
contains no proper bridge.

▶ Theorem 14. Let q and r be positive integers. Then the subclass of connected S1,1,q,r-
subgraph-free graphs that are not subcubic and are quasi-bridgeless has bounded treedepth.

Proof. Let G be a connected quasi-bridgeless S1,1,q,r-subgraph-free graph that is not subcubic
so contains a vertex v0 with neighbours v1, v2, v3, v4. We will show that G has treedepth at
most 2(q + r + 3)2 + 6. Suppose instead that the treedepth of G is at least 2(q + r + 3)2 + 7.
The graph J = G \ {v0, v1, v2, v3, v4} must have treedepth at least 2(q + r + 3)2 + 2 and
therefore, by Theorem 12, it must contain a path P of length 2(q + r + 3)2 + 2. Let z be the
middle vertex of P . We prove the following claim.

▷ Claim 15. If there is a cycle C in G that contains z and also a vertex v ̸= z that has two
neighbours a and b not on C, then G contains a subgraph isomorphic to S1,1,q,r.

Proof. A big adorned cycle is a graph that contains a cycle with at least q + r + 1 edges
and two further vertices each joined by an edge to the same vertex on the cycle; the latter
vertex is called the centre. If we find a big adorned cycle in G we are done as it contains a
subgraph isomorphic to S1,1,q,r (the centre is the same and it is obtained by deleting one or
more edges of the cycle). Let C+ be the union of C and the vertices a and b and the edges
va and vb. If |C| ≥ q + r + 1, then C+ is a big adorned cycle.

So suppose that |C| ≤ q + r. Consider the intersections of P with V (C+). A maximal
subpath of P whose internal vertices are not in V (C+) is called an interval of P . Note
that P has at most |C+| + 1 ≤ q + r + 3 intervals. If all intervals of P have length at most
q + r − 1, then P itself has length at most (q + r + 3)(q + r − 1) < (q + r + 3)2, a contradiction.
Hence, at least one of the intervals has length at least q + r; we call such an interval long.
See Figure 3 for an illustration.

Suppose that there is a long interval L of which both endvertices x and y are in V (C+).
Then there are shortest (possibly trivial) paths S and T on C+ from v to x and y respectively
that are vertex disjoint except for v. As x and y are distinct, the union of L, S and T is a
cycle on at least q + r + 1 edges. As v has four neighbours in C+, two of them do not belong
to this cycle and considering these two neighbours (and the incident edges that join them to
v) with the cycle, we have a big adorned cycle centred at v.

Hence, there is no long interval with both endvertices in V (C+) and we can assume any
long interval has just one endvertex in V (C+). Suppose that there are two long intervals
L1 and L2 whose endvertices in C+ are x and y respectively. If x = y, then L1 and L2 are
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x x xy

a b a b a b

Figure 3 The cycle C and path P from the proof of Claim 15 illustrating the three cases (a)
there is a long interval with both endvertices in P , (b) there are two vertex-disjoint long intervals,
and (c) there are two long intervals that meet in a single vertex.

the only intervals and their union is P . This implies that P only intersects C+ in x and
so we must have x = z. Then there exists in G a subgraph isomorphic to an S1,1,q,r with
z as its centre, the neighbours of z on C as the leaves and subpaths of L1 and L2 as the
tentacles. If x ̸= y, then there are shortest paths S, T on C+ from v to x and y respectively
that are vertex disjoint except for v. Then there exists in G a subgraph isomorphic to an
S1,1,q,r with v as its centre, the paths S and T , possibly extended by subpaths of L1 and L2,
as the tentacles and two neighbours of v in C+ that do not belong to S or T as the leaves.

Hence, there is only one long interval L. As the other intervals are short, they have total
length at most |C+| · (q + r) < (q + r + 3)2. Hence, L has length at least (q + r + 3)2 + 2.
As L contains more than half the vertices of P , the middle vertex of P is an internal vertex
of L and so does not belong to C+. This contradicts that z is the middle vertex of P and
completes the proof of the claim. ◁

We now apply the claim. Note that v0 and z are distinct as z belongs to J but v0 does
not. Since G is quasi-bridgeless and neither v0 nor z has degree 1, it follows from Menger’s
Theorem [16] that there exist two edge-disjoint paths S, T from v0 to z. If S and T are
internally vertex-disjoint paths, then their union forms a cycle that contains z. We can
assume that each of S and T contain only one neighbour of v0 else we can find shortcuts and
redefine them. Hence, v0 has two neighbours not in the cycle and we can apply Claim 15.
If S and T are not internally vertex-disjoint, let v′ be a vertex of (V (S) ∩ V (T )) \ {z} that
is furthest from v0 on T . Consider the subpath T ′ of T from v′ to z and the subpath S′ of
S from v′ to z. Since T ′ does not intersect S by definition, S′ and T ′ are internally vertex
disjoint. Hence, their union forms a cycle that contains z. Moreover, v′ has degree at least
four, of which two neighbours are not on S′ or T ′. Hence, we can apply Claim 15. ◀

4 Graphs Excluding Subdivided Stars as a Subgraph: Algorithms

We present several applications of the structural results of the previous section.
We note that Feedback Vertex Set, Independent Feedback Vertex Set and

Colouring can be solved componentwise. In a sense, so can Connected Vertex Cover
and Matching Cut since disconnected graphs are no instances (except possibly for Con-
nected Vertex Cover instances with edgeless components but these can be ignored).

▶ Theorem 16. Let r be a positive integer. A problem Π can be solved in polynomial time
on S1,1,1,r-subgraph-free graphs if the following hold:

i) Π can be solved in polynomial time on subcubic graphs,
ii) Π can be solved in polynomial time on graphs of bounded treedepth, and
iii) Π can be solved componentwise on disconnected graphs.
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Proof. Let C be a connected component of a S1,1,1,r-subgraph-free graph G. If C is subcubic,
then the problem can be solved in polynomial time. Otherwise, by Proposition 13, C has
bounded treedepth and again the problem can be solved in polynomial time. Finally, the
solutions for its connected components can be merged in polynomial time. ◀

▶ Theorem 17. Let q and r be positive integers. A problem Π can be solved in polynomial
time on S1,1,q,r-subgraph-free graphs if the following hold:

i) Π can be solved in polynomial time on subcubic graphs,
ii) Π can be solved in polynomial time on graphs of bounded treedepth, and
iii) Π can be solved on graphs with proper bridges using a polynomial-time reduction to a

family of instances on graphs that are either of bounded treedepth or subcubic.

Proof. Let H be one of the family of instances obtained from an instance G of Π. As H is
either of bounded treedepth or subcubic, the problem can be solved in polynomial time. As
we have a reduction, once solved on all the family of instances, we can solve Π on G. ◀

The simplest way to apply Theorem 17 is to show that if it is possible to solve Π on each
of the family of components obtained by deleting the proper bridges of an instance, then these
solutions combine to provide a solution for the initial instance (since the components are
quasi-bridgeless and so certainly either of bounded treedepth or subcubic by Theorem 14.)

We now use Theorem 17 to prove Theorem 4. We do not apply Theorem 16 in this
paper, as the results it would give us would just be special cases of those we have obtained
using Theorem 17. Nevertheless, there are potential applications of Theorem 16 as there
might be C13 problems that can be solved componentwise but cannot be solved by finding
the reduction required by Theorem 17. We will see, in the proof below, that to solve
Independent Feedback Vertex Set via a reduction requires an intricate argument and
the careful analysis of possible solutions on subcubic graphs that was provided by Theorem 10.

▶ Theorem 4 (restated). Let q and r be positive integers. The following problems can
be solved in polynomial time on S1,1,q,r-subgraph-free graphs: Feedback Vertex Set,
Independent Feedback Vertex Set, Connected Vertex Cover, Colouring and
Matching Cut.

Proof. To show that the result follows immediately from Theorem 17, we can show that the
problems can be solved by deleting bridges and considering the resulting graph componentwise;
this will be trivial for some problems, but for others we will need to find a different reduction.

For Feedback Vertex Set, as bridges do not belong to cycles, the problem is unchanged
when they are deleted.

For Independent Feedback Vertex Set such a straightforward approach is not
possible as if we simply delete bridges and solve the problem on the components, the merged
solution might not be independent (since we might choose both endvertices of a deleted
bridge). We must argue a little more carefully. Let G be a S1,1,q,r-subgraph-free graph and
consider the treelike structure of G when thinking of its blocks – the connected components
when the bridges are deleted. In fact, consider a subgraph of G that is a block plus all its
incident bridges. Some of these subgraphs might be subcubic; let us call these C-type. For
those that are not, we can assume, by Theorem 14, that there is a constant c such that their
treewidth is at most c; let us call these subgraphs T-type (note that this is a weaker claim
that the Theorem 14 provides, as we could assume that the treedepth was bounded). If such
a subgraph is both subcubic and has treewidth at most c, we will think of it as T-type. We
can assume c ≥ 3 so a very nice cactus (with pendant edges) is T-type. If subgraphs of
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the same type overlap (because they are joined by a bridge), we observe that their union
is also of that type (since the union is also either, respectively, subcubic or of treewidth at
most c). So, merging overlapping subgraphs of the same type as much as possible we can
consider G as being made up of C- and T-type subgraphs and bridges that each join a C-type
subgraph to a T-type subgraph. As Independent Feedback Vertex Set can be solved
in polynomial time on graphs of bounded treewidth [21] as well as on subcubic graphs by
Theorem 2, we can solve it on these subgraphs. Before we solve it on a C-type subgraph,
we can delete pendant bridges (that link to a T-type subgraph in G) so the incident vertex
now has degree at most 2. As a very nice cactus is being considered as a T-type subgraph,
we know, by Theorem 10, that the solutions we find for C-type subgraphs do not use the
vertices incident with the bridges. Thus the solutions can be merged for a solution for G

that is also independent.
For Connected Vertex Cover, let G be a S1,1,q,r-subgraph-free graph. Clearly, we

may assume G is connected, or it has no connected vertex cover. As for Independent
Feedback Vertex Set consider each subgraph J that is a block of G and also include
the bridges of G incident with the block. Observe that J is quasi-bridgeless and S1,1,q,r-
subgraph-free. Noticing that a connected vertex cover W of G must contain both vertices
incident with any proper bridge, we see that the restriction of W to the vertices of J is
a connected vertex cover of J that includes vertices incident with bridges of G. And the
construction of J means its connected vertex covers will include these vertices adjacent to
bridges in G. Thus we see that have a reduction and can solve the problem on G.

For Colouring if, for a graph G, we colour the components of the graph obtained by
deleting bridges, then we can merge these into a colouring of G. If the two endvertices of a
bridge have been coloured alike, then we just permute the colours on one of the components.
This might create new clashes, but we move to the adjacent components and permute there.
By the definition of bridge, we will never have to permute the colours on a component more
than once so the process terminates.

For Matching Cut, if a graph contains a bridge, then we have immediately that it is a
yes instance. ◀

5 Graphs Excluding Subdivided Stars as a Subgraph: Hardness

We prove Theorem 5.

▶ Theorem 5 (restated). Feedback Vertex Set and Independent Feedback Vertex
Set are NP-complete on the class of S2,2,2,2-subgraph free graphs that have maximum degree 4.

Proof. Both problems belong to NP. We shall show a reduction from the following NP-
complete problem 2P1N-3SAT [6].

2P1N-3SAT
Instance: A CNF formula Φ where each clause contains at most three literals and each

variable occurs twice positively and once negatively.
Question: Does Φ have a satisfying assignment?

Given an instance of 2P1N-3SAT with on variables {v1, . . . , vn}, we construct a graph G

as follows. For each variable vi, we construct the gadget shown in Figure 4. The triangles
xx′a and yy′b represent the positive occurrences of the variable, while the diamond zstc

represents the negative occurrence. For each clause Cj , we construct a hexagon if the clause
has size 3 and a square if the clause has size 2 (we may assume that no clause has size 1).
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Figure 4 The variable and clause gadgets (for clauses of size 3) from the proof of Theorem 5.
The vertices x, y, and z of a variable gadget will be identified with the (labeled) vertices of clause
gadgets.

Alternate vertices of this clause gadget represent literals and are identified with a vertex x, y

or z of the corresponding variable gadget. Clearly this can be done in such a way each vertex
x and y of each variable gadget is identified with exactly one vertex from a clause gadget
that represents a positive literal, and each vertex z of each variable gadget is identified with
exactly one vertex from a clause gadget that represents a negative literal. Note that G has
maximum degree 4.

▷ Claim 18. G does not contain S2,2,2,2 as a subgraph.

Proof. Let us consider where we might find the centre vertex of a S2,2,2,2 in G. Clearly a
vertex v cannot be the centre vertex if its 2-neighbourhood in G contains a cut of size 3 (that
is, if there are 3 vertices each of distance at most 2 from v that form a cut in G). The centre
vertex cannot be the vertices p or q of a variable gadget, because the set {a, b, c} of the same
gadget forms a cut of size 3 in the 2-neighbourhood of p and q. The centre vertex cannot
be the vertices a, b, or c of a variable gadget either, because {x, p, q}, {y, p, q} and {z, p, q}
respectively form cuts of size 3 in their 2-neighbourhoods. The vertices x, y, and z cannot
be the centre vertex as in their 2-neighbourhood is a cut of size 3 that contains their two
neighbours in a clause gadget and, respectively, a, b and c. The remaining vertices of G have
degree less than 4. The claim is proved. ◁

Any feedback vertex set of a variable gadget has size at least 4, because it contains four
disjoint cycles. So any feedback vertex set of G must contain at least 4n vertices. It only
remains to show that G has an (independent) feedback vertex set of size at most 4n if and
only if Φ is satisfiable.

Assume that Φ has a satisfying assignment. We construct a feedback vertex set F of G.
If a variable is true, then the vertices x, y, p, and t of the variable gadget belong to F . If
a variable is false, then instead z, a, b, and c belong to F . Thus F is an independent set
(vertices of distinct variable gadgets are not adjacent) and its size is exactly 4n.

▷ Claim 19. F is a feedback vertex set.

Proof. Notice that if a literal of a clause is satisfied, then, in the clause gadget, the cor-
responding vertex is in F . Thus, as clause is satisfied, each cycle contained in a single
variable or clause gadget contains a vertex of F . Consider a cycle of G that is not contained
within a single gadget. It must include a non-trivial path of some variable gadget where the
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endvertices are two of {x, y, z}. If it includes x it must also include a and if it includes y

it must also include b. But F contains one of {x, a} and one of {y, b} so such a cycle also
intersects F . Thus F intersects all the cycles of G. ◁

Conversely, suppose that G has a feedback vertex set F of size at most 4n. Again, each
variable gadget contains at least four vertices of F and so contains exactly four vertices of F .
Notice that F cannot contain either {x, z} or {y, z} as, in each case, there are three disjoint
cycles of the gadget that would need to be covered by just two vertices.

Let us describe a satisfying assignment of Φ. If, for a variable gadget, either x or y belongs
to F , we let the variable be true. If z belongs to F , we let it be false. By the preceding
argument, there is no possibility that we must set a variable to be both true and false. If
none of {x, y, z} belong to F , we set the value of the variable arbitrarily. This is a satisfying
assignment as every clause gadget (which is a cycle) must have at least one vertex in F and
the corresponding variable is satisfied. ◀

6 Proofs of the Classifications

We prove Theorems 6–9. Noting that the theorems contain some analogous results, and
wishing to avoid repetition, we make a few general comments that apply to all proofs.

We state again that the five problems under consideration are C13 problems. Thus when
H ∈ S, each theorem follows from Theorem 1. When H = S1,1,q,r, we apply Theorem 4. Thus,
except for Theorem 8 on Colouring, the following proofs need only cover the NP-complete
cases.

Proof of Theorem 6. We note again that Feedback Vertex Set reduces to Independent
Feedback Vertex Set after subdividing each edge so here we consider only the former.

By Poljak’s construction [19], for every integer g ≥ 3, Feedback Vertex Set is NP-
complete for graphs of girth at least g (the girth of a graph is the length of its shortest
cycle). Thus Feedback Vertex Set is NP-complete for H-subgraph-free graphs whenever
H contains a cycle.

Suppose that H has m vertices and more than one vertex of degree at least 3. From any
graph G, if we we subdivide each edge m times, we obtain a graph J that is H-subgraph
free since the distance between any pair of vertices of degree more than 2 is at least m + 1.
In finding in a minimum size feedback vertex set of J , we may as well restrict ourselves
to selecting vertices of G. This implies that Feedback Vertex Set is NP-complete for
H-subgraph-free graphs.

The problem is NP-complete on planar graphs of maximum degree 4 [20] (so for K1,5-
subgraph-free graphs).

Theorem 5 completes the proof. ◀

Proof of Theorem 7. For every integer g ≥ 3, Connected Vertex Cover is NP-complete
for graphs of girth at least g [17], so also for H-subgraph-free graphs whenever H contains
a cycle. It is NP-complete on graphs of maximum degree 4 [8], so for K1,5-subgraph-free
graphs. ◀

Proof of Theorem 8. For every integer g ≥ 3, Colouring is NP-complete for graphs of
girth at least g [14], so also for H-subgraph-free graphs whenever H contains a cycle. In [9],
it was shown that Colouring is NP-complete on (planar) graphs of maximum degree 4,
and so too for K1,5-subgraph-free graphs. The other cases are all proved in [11] ◀
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Proof of Theorem 9. For every integer g ≥ 3, Matching Cut is NP-complete for graphs
of girth at least g [7], so also for H-subgraph-free graphs whenever H contains a cycle. It is
NP-complete on graphs of maximum degree 4 [5], so for K1,5-subgraph-free graphs. ◀

7 Conclusions

We made significant progress towards classifying the complexity of five well-known C13-
problems on H-subgraph-free graphs, extending previously known results. In particular, we
identified a gap in the literature, and provided a polynomial-time algorithm for Independent
Feedback Vertex Set for subcubic graphs.

If H is connected, then we narrowed the gap for these problems to the open case where
H = S1,p,q,r, so H is a subdivided star with one short leg and three arbitrarily long legs. To
obtain a result for connected S1,p,q,r-subgraph-free graphs similar to our previous results, we
would need the graphs to be 3-edge-connected. Indeed, the statement is false without this
assumption. Consider the class of all graphs that are each the union of a path and a K1,4
two of whose leaves are identified with distinct end-vertices of the path and whose other
two leaves are made adjacent. This is a class of graphs that are bridgeless, not subcubic
and S1,p,q,r-subgraph-free and again has unbounded treedepth. It is not yet clear whether a
suitably modified theorem statement would indeed hold. In addition, it is unclear whether
this would yield a result that could be applied in the same way as Proposition 13 and
Theorem 14 were above. We leave the case H = S1,p,q,r as future research.

Finally, we also leave determining the complexity of Connected Vertex Cover and
Matching Cut on S2,2,2,2-subgraph-free graphs as an open problem.
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