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Abstract
We propose a framework for certified computation on hyperspaces by formalizing various higher-order
data types and operations in a constructive dependent type theory. Our approach builds on our
previous work on axiomatization of exact real computation where we formalize nondeterministic
first-order partial computations over real and complex numbers. Based on the axiomatization, we
first define open, closed, compact and overt subsets in an abstract topological way that allows short
and elegant proofs with computational content coinciding with standard definitions in computable
analysis. From these proofs we extract programs for testing inclusion, overlapping of sets, et cetera.

To improve extracted programs, our framework specializes the Euclidean space Rm making use of
metric properties. To define interesting operations over hyperspaces of Euclidean space, we introduce
a nondeterministic version of a continuity principle valid under the standard type-2 realizability
interpretation. Instead of choosing one of the usual formulations, we define it in a way similar to an
interval extension operator, which often is already available in exact real computation software.

We prove that the operations on subsets preserve the encoding, and thereby define a small
calculus to built new subsets from given ones, including limits of converging sequences with regards
to the Hausdorff metric. From the proofs, we extract programs that generate drawings of subsets of
Rm with any given precision efficiently. As an application we provide a function that constructs
fractals, such as the Sierpinski triangle, from iterated function systems using the limit operation,
resulting in certified programs that errorlessly draw such fractals up to any desired resolution.
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1 Introduction

In exact real computation, real numbers are often presented as abstract data type hiding
tedious multi-precision computations used to eliminate rounding errors in the background from
the user. Extensionally to the user, the real numbers resemble the classical structure of real

© Michal Konečný, Sewon Park, and Holger Thies;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 59; pp. 59:1–59:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2374-9017
https://orcid.org/0000-0002-6443-2617
https://orcid.org/0000-0003-3959-0741
https://doi.org/10.4230/LIPIcs.MFCS.2023.59
https://github.com/holgerthies/coq-aern
https://archive.softwareheritage.org/swh:1:dir:6bfc91ee518681f328e69d08125f48ac0db1ffad;origin=https://github.com/holgerthies/coq-aern;visit=swh:1:snp:3dd6e25069a2b3d35a088ecfa0a9d8ab2e1f5801;anchor=swh:1:rev:4de77299999bcc648bf7ac25d5b870e9fc467ac0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


59:2 Formalizing Hyperspaces for Extracting Efficient Exact Real Computation

numbers which makes reasoning procedures more intuitive, emancipating the programmers
from tracking artificial numerical errors. The theoretical framework to study computability
of algorithms in this context is computable analysis [16, 28]. Recent developments in
implementations demonstrate the usefulness of this approach in practice [1, 20, 15].

The project cAERN [14] aims to provide an axiomatic formalization of exact real number
computations in a constructive type theory, modeling real numbers similar as observed
by users of exact real computation software; cf., [2, 25] where explicit representations are
required for computations. Instead of being constructed as sequences of approximations, real
numbers are axiomatized in a way that two reals are provably equal when they represent
the same numbers; cf., [3, 9, 26]. This can be regarded as a modification of the classical
real numbers by replacing uncomputable operations (e.g., rounding to nearest integers) and
computably invalid axioms (e.g., the law of trichotomy) with their computable variants.
As the axiomatization is representation irrelevant, reals appear similar to the classical real
numbers allowing many classical results to be transported into our setting (see [14, Section 6]).
At the same time, by allowing only computably valid axioms, it admits a program extraction
mechanism built on top of an existing exact real computation framework.

The extraction is achieved by mapping the axiomatic real type R to the abstract data
type of real numbers CReal and axioms to primitive operations in AERN, a Haskell library
for exact real number computation which is being developed by one of the authors [15].
Thus, we do not need to focus on the concrete representation of real numbers and its efficient
implementation which is challenging on its own (see e.g. [19]).

More concretely, in our system a proof of a theorem of the form

Π(x : R). MΣ(y : R). P x y

yields a nondeterministic AERN function of type CReal → CReal. Here, M : Type →
Type formalizes nondeterminism, which is an inevitable effect of identifying real numbers
extensionally [17].1

The theory formalized in cAERN is sufficient to build interesting first-order nondetermin-
istic functions [13]. Many applications in exact real computation, e.g. reachability questions
for dynamical systems, computing integrals and solving differential equations, however deal
with higher order objects such as hyperspaces of functions and subsets as primitive data
type [8]. Such applications are often safety-critical and a framework for formally proving
correctness of algorithms on such higher-order objects is thus highly desirable.

In this paper, we extend our previous axiomatic formalization towards higher-order exact
real computations. Based on the axiomatization of real numbers, partial lazy Boolean, and
nondeterminism, we define various higher-order types including Euclidean spaces, classical
subsets, open subsets, closed subsets, compact subsets and overt subsets. Furthermore, we
provide various operations on these sets, including limit operations on compact sets based
on Hausdorff distance. We further provide a rich theory of subsets of Euclidean spaces and
operations on them, encoding them in a way that lets us efficiently generate verified drawings.

An important fact in computable analysis is that every computable function is continuous.
When we operate on higher-order objects, this fact becomes computationally relevant. To
make continuity available in our system, we include an axiomatic formalization of the
continuity principle saying that any function from real numbers nondeterministically admits
a modulus of continuity function. As the goal of the project is to use axioms to model

1 Nondeterminism in this context is also called multivaluedness [28] or non-extensionality [5].
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functionality that is typically available in exact real computation, instead of assuming a
continuity principle by saying that any functional (N → N) → N is continuous and then
derive various continuity lemmas on X → Y by reasoning on specific constructions of the
types X and Y , decomposing them to the natural numbers, we formalize the continuity
principle directly on our axiomatic types in terms of an interval extension. Such an operation
is natural in exact real computation software and our continuity principle can be extracted
to a simple operation in AERN.

Using the continuity principle, we show that our efficient encoding of euclidean subsets is
computationally equivalent to a more general way to represent subsets. We further show
that it can be used to generate verified drawings of images of functions on certain subsets.

As an application we devise a general construction of fractals defined by a recurrence
relation on compact sets. The recurrence relation can be used to define the structure, which
then can be drawn exactly up to any desired resolution using the drawing operation. We
further can use the limit operator for a simple and elegant formulation of the theorem.

This paper is organized as follows. In Section 2 we briefly summarize the background
from our previous work, introduce notations used throughout the paper and explain some
extensions to the theory necessary for the current work. In Section 3 we define the continutity
principle and prove some of its consequences. We define open, closed, compact and overt
subsets in a generic setting and prove some of the properties in Section 4. We consider
subsets of Euclidean space for which we use specialized encodings in Section 5 and finally
show some applications to generate certified drawings of two-dimensional sets in Section 6.

All statements in this paper except for those in Appendix A have been implemented and
fully formally verified in the Coq proof assistant as part of the cAERN library2. We extend
the program extraction mechanism so that the newly added axioms, including the continuity
principle, are mapped to appropriate AERN functions. The constructive content of the
proofs can thus be extracted to AERN programs using Coq’s Haskell program extraction
functionality and mapping axiomatically defined operations to basic operations in AERN
providing a certified module in AERN for defining and manipulating higher-order objects.

2 Preliminaries

2.1 Type Theory and Realizability
As in [14] we assume to work in a simple type theory with basic types 0, 1, 2, N, Z, a universe
of classical propositions Prop, and a universe of types Type. We assume that the identity
types = are in Prop and that Prop is a type universe closed under →, ×, ∨, ∃, Π, containing
two types True, False : Prop which are the unit and the empty type respectively. We denote
by P ∨ Q : Prop the classical fact that P or Q holds, and by P + Q : Type the fact that there
is a computational procedure deciding if P or Q holds. Similarly, when we have a family of
classical propositions P : X → Prop, the type ∃(x : X). P x : Prop belonging to Prop denotes
the classical existence of x : X satisfying P x while the ordinary dependent pair type (also
called Σ-type), Σ(x : X). P x : Type belonging to Type denotes the constructive existence.

We assume enough axioms that make Prop indeed a universe of classical propositions and
that are valid under this interpretation. That includes the law of excluded middle

Π(P : Prop). P ∨ ¬P

2 https://github.com/holgerthies/coq-aern
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where ¬P is defined by P → False and propositional extensionality

Π(P, Q : Prop). (P → Q) → (Q → P ) → P = Q.

These axioms allow us to reason classically when we are dealing with classical statements
such as ∃(x : X). P x : Prop. Furthermore, we assume a general (dependent) function
extensionality

Π(P : X → Type). Π(f, g : Π(x : X). P x). (Π(x : X). f x = g x) → f = g.

Based on this foundational setting of a constructive type theory we axiomatically formalize
various types and operations for real number computation that are briefly introduced in the
next subsections. The soundness of the basic setting of type theory and the newly introduced
axioms are justified by extending a realizability interpretation in the category of assemblies
over Kleene’s second algebra [11, 23] by mapping each axiom to a computable operation in
computable analysis.

2.2 Kleenean and Sierpinski Spaces
One important characteristic of exact real computation, besides exact operations, is nonter-
mination. As real numbers are expressed exactly using infinite representations, comparing
real numbers is a partial operation where testing x < y does not terminate when x = y

regardless of the specific representations that are used [28, Theorem 4.1.16]. To deal with
such partiality, instead of making computations continue indefinitely when the same numbers
are compared, AERN and other exact real computation software provide a data type for
lazy Boolean {ff , tt, ⊥}, generalizing Booleans by adding a third element ⊥ as an explicit
state of divergence. The third value ⊥ is an admissible value that a variable can store whose
nontermination is delayed until it is required to test whether the value is tt or ff .

Observing that the space satisfies the algebraic structure of Kleene’s three-valued logic
where ⊥ is the third truth value for indeterminacy, the data type is also often called Kleenean.
In particular, we assume that there are three distinct constants true, false, bot : K, although
we do not assume that they are the only elements by adding an induction rule. We write ⌈k⌉
for k = true.

Later we often need to deal with infinite sequences of Kleenean expressions. This has not
yet been considered in our previous work and requires to characterize the Kleeneans further
by assuming some additional axioms. The nondeterministic countable choice principle is an
axiom of the following type:

Π(x : N → K). (∃(n : N). ⌈x n⌉ → MΣ(n : N). ⌈x n⌉) . (1)

Here, M is a nondeterminism monad such that for any type X : Type, we automatically get a
type MX : Type modelling the result of a nondeterministic computation in X. The axiom
says whenever we have a sequence of Kleenean terms x and know that there (classically) is at
least one index n such that x n is true, then we can nondeterministically find such an index.

Sometimes we only need to know if there is an element of the sequence that is true. For
this, we add the following axiom.

Π(x : N → K). Σ(k : K). (⌈k⌉ ↔ ∃(n : N). ⌈x n⌉) .

That is, we can find a k : K that is true iff any of the sequence elements is true and can be
false or bot otherwise. To see that the axiom is valid, it suffices to show that such a k is
computable which can be done by iterating over all the outputs of the realizers of x n in
parallel.
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A space similar to the Kleenean that is more commonly used in computability theory is
the Sierpinski space. Sierpinski space is the topological space {↓, ↑} whose only nontrivial
open is {↓}. In a certain way, K can be seen as an extension of Sierpinski space by adding
another decidable element false. However, as the type of Kleenean K already exists in our
system, we instead consider Sierpinski as a subtype of K by defining it as

S :≡ Σ(b : K). b ̸= false

and name ↓:≡ (true, t↓) and ↑:≡ (bot, t↑) where the t↓ is the unique proof term for true ̸= false
and t↑ is the unique proof term for ⊥ ≠ false. The uniqueness of the proof terms is due to
the Prop axioms. From the computational point of view, S can be thought of as K where it
is promised that false does not appear.

As a further axiom, we assume that the first projection proj1 : S → K admits a retraction
KtoS : K → S. Observe that the assumption can be validated by a program on the Kleenean
that on its input b : K checks if b = true or false and simply diverges when b = false.

2.3 Real Numbers and Euclidean Space
We assume real numbers by declaring that there is a type R for real numbers containing
two distinct constants 0 and 1, the standard arithmetical operators and a semi-decidable
K-valued comparison operator. From this axiomatization we can define further operations
such as max(x, y), |x|, etc. Again, the full axiomatization can be found in [14]. For any
m : N we further define the type Rm simply as an m-element list of R with maximum norm
∥ · ∥, and define the vector space operations point-wise.

We often approximate real numbers by elements of a countable dense subset. We call a
type X enumerable if there exists a map f : N → X that is surjective in the classical sense.
We define dyadic numbers by pairs D := Z × N and identify the pair (z, n) with the real
z ·2−n. It is not hard to show that D is enumerable. Similarly we write Dm for the m-element
list of D when m : N and suppose that the trivial coercion from Dm to Rm is taken implicitly.

We use dyadic numbers to approximate real numbers. In our theory, we can prove that D
is indeed dense in R in the sense that for any real number x, we can nondeterministically
find a dyadic rational approximation up to any prescribed error 2−p. More generally, we can
prove the following statement in the Euclidean space:

Π(x : Rm). Π(p : N). MΣ(d : Dm). ∥x − d∥ ≤ 2−p.

3 Continuity

Exact real computation software often internally represents real numbers by converging
sequences of intervals with dyadic rational endpoints. Thus, for any function f : R → S,
whenever (f x)↓, there is some dyadic interval containing x that made the software computing
f x return ⊤. We thus formulate continuity on an abstract level similar to the above without
referring to specific constructions of continuous types.

The Sierpinski space has two open subsets {↓} and {↓, ↑}. An interval extension of a
function f : R → S is a discrete function that indicates in which of the two open sets all values
for f lie for any dyadic interval. As there are exactly two values, we can represent {↓} and
{↓, ↑} space by the Boolean constants true and false, respectively. We can then see a map f̂ of
type D×N → B as a set-valued function from dyadic intervals: f̂ returns a subset of Sierpinski
space on its argument (d, n) : D × N representing the interval (d − 2−n, d + 2−n) ⊂ R.

MFCS 2023
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For a map f : R → S, we say that a set-valued function on dyadic intervals f̂ is an interval
extension of f when it satisfies the inclusion property:

incl f̂ :≡ Π(d : D). Π(n : N). f̂ (d, n) = true →
(
Π(x : R). |x − d| ≤ 2−n → (f x)↓

)
.

In words, whenever the interval extension f̂ of f returns true on the pair (d, n), (fx)↓ for all
x ∈ (d − 2−n, d + 2−n).

However, not all interval extensions are interesting as the inclusion property holds also
for the trivial map f̂ that returns false for all inputs. We say that a map f̂ : D × N → B seen
as an interval extension of f : R → S is tight if whenever (f x)↓, there (classically) exists an
interval containing x for which f̂ indicates that ↓ is the only valid answer on that interval:

tight f̂ :≡ Π(x : R). (f x)↓→ ∃(d : D). ∃(n : N). |x − d| < 2−n ∧ f̂ (d, n) = true

Our continuity principle is the following axiom saying that for any map f : R → S, there
nondeterministically exists an interval extension of it that is tight:

Π(f : R → S). MΣ(f̂ : D × N → bool). incl f̂ ∧ tight f̂ .

It is realized by the trivial operation that given f extracts the realizer f̂ of f assuming
that the underlying exact real computation is done via dealing real numbers by converging
sequences of intervals with dyadic rational endpoints. Since a single function admits several
different realizers, the procedure of extracting realizers is nondeterministic.

From the above, we can derive the more standard form of the continuity principle which
says that there exists a modulus function:

Π(f : R → S). Π(x : R). (f x)↓→ MΣ(n : N). Π(y : N). |x − y| < 2−n → (f y)↓ .

To derive this version of the principle, assume that we are given x with f x ↓. Due to
the continuity axiom, we further have nondeterministically a tight interval extension f̂ .
From the tightness, we then know that there (classically) exist d, n such that |d − x| < 2−n

and f̂ (d, n) = true. Though f̂ is Boolean-valued, we can post-compose the embedding
from B to S and use the nondeterministic countable choice principle in Equation (1) to
nondeterministically find such d and n. We then (again nondeterministically) choose some
m such that 2−m < 2−n − |x − d|. As for any y with |x − y| < 2−m, |y − d| < 2−n holds, it
is guaranteed that f y ↓ by the properties of the interval extension. Thus, any such m fulfills
the condition.

Further, we can derive a continuity principle for real valued functions f : R → R:

Π(x : R). Π(m : N). MΣ(n : N). Π(y : N). |x − y| < 2−n → |(f x) − (f y)| < 2−m

To prove that this continuity principle holds, take any f : R → R, x : R, and m : N, and define
a function gx,m : R → S by gx,m :≡ λ(y : R). |(f x) − (f y)| < 2−m. Here, we let (x < y) be
the embedding of the Kleenean valued comparison to Sierpinski space, i.e. such that (x < y)↓
if and only if x < y holds. The continuity principle on Sierpinski valued functions yields

|(f x) − (f x)| < 2−m → MΣ(n : N). Π(y : R). |x − y| < 2−n → |(f x) − (f y)| < 2−m .

As |(f x) − (f x)| < 2−m is trivially true, we get the desired bound.
As a last application, consider any discrete type X having decidable equality Π(x, y :

X). (x = y) + (x ̸= y). We can then prove that any f : R → X is constant: Π(x : R). Π(y :
R). f x = f y. Similarly as above, assuming x : R, we define a function gx where (gx y) is
defined if (f x) = (f y) and undefined if (f x) ̸= (f y), constructed based on the decidability
of elements of X. Again, applying the continuity principle, we get
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MΣ(n : N). Π(y : R). |x − y| < 2−n → (f x) = (f y) .

Since we can prove that any locally constant function from R is constant in the classical part
of our system, we can conclude that f is constant.

All results can be easily generalized to arbitrary Euclidean space Rm by replacing the
absolute value with the maximum norm and proofs are contained in our formal development.

4 Subsets

For any type X, we first express subsets classically as predicates X → Prop. That is, we set

csubset(X) :≡ X → Prop

and define classical operations on classical subsets such as ∈, ∪, ∩, ⊆, . . . in the obvious way.
For example, (x ∈ S) :≡ S x, S ∩ T :≡ λ(x : X). x ∈ S ∧ x ∈ T , and so on.

Our goal is to assign computational content to classically defined subsets which in turn
allows to extract programs that perform operations on these sets. In computable analysis,
computational content is given by defining representations for certain spaces of subsets [22, 8]
and perform computations on these representations. This can be done in a very general
setting without restricting to specific spaces, although the computational procedures are
usually extremely inefficient and not useful for practical applications.

While we are mostly interested in subsets of Euclidean spaces for which we can specialize
the theorems and get more efficient algorithms, the general results are still interesting
mathematically and can be used for basic facts that are not meant to be used computationally.

Classically, a subset A ⊆ X of a topological space X is open iff its characteristic function
χA : X → S is continuous. We thus identify open sets with their characteristic function:

open A :≡ Σ(f : X → S). Π(x : X). (f x)↓ ↔ x ∈ A .

Similarly, we define closed sets as their complement

closed A :≡ Σ(f : X → S). Π(x : X). (f x)↓ ↔ x ̸∈ A .

Computationally for an open set we can verify (i.e. semi-decide) if a point is contained in
the set and for a closed set we can verify if a point is outside.

We state some simple properties of open and closed sets. We omit the proofs here, but
pen and paper proofs can e.g. be found in [22] and full formal proofs can be found in our
Coq development.
1. If (Ai)i∈N are open then so is the countable union

⋃
Ai.

2. If A and B are open then so is their finite intersection A ∩ B.
3. If A and B are closed then so is their finite union A ∪ B.
4. If (Ai)i∈N are closed then so is the countable intersection

⋂
Ai.

Other classes of subsets that are often considered in computable analysis are the compact
and overt subsets. (Computably) compact subsets are those for which we can effectively
verify that an open set covers them. That is, a subset A ⊆ X is compact iff

Σ(f : open X → S). Π(U : open X). (f U)↓ ↔ A ⊆ U.

MFCS 2023
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Overtness is a dual notion to compactness. For a (computably) overt subset, we can
effectively verify if an open set touches it. That is, a subset A ⊆ X is overt iff

Σ(f : open X → S). Π(U : open X). (f U)↓ ↔ A ∩ U ̸= ∅.

The notion of overtness is less known to classical mathematicians as it does not carry any
information outside a constructive or computational context (i.e. any set is classically overt).

Another way to look at these notions is that for a compact subset A it can be verified
that a semidecidable property P holds for each point, i.e. if ∀x ∈ A, P x and for an overt
subset it can be verified that it holds for at least one point, i.e. if ∃x ∈ A, P x.

Similar as for open and closed sets, we prove several properties of compact and overt sets
in our Coq development but omit the details here for space reasons.

5 Subsets of Euclidean Space

Using basic properties of the Kleenean and Sierpinski spaces, we get short and elegant
proofs for simple properties of open sets. However, from the point of view of doing actual
computations, using Sierpinski valued functions to represent basic objects is often far from
optimal and programs extracted from the proofs are inefficient. As we are interested in
extracting exact real computation programs, our main focus is on subsets of Euclidean spaces.
Most statements in this section can be proven in a much more general setting (and our Coq
development contains some of them). However, the proofs in this section are optimized to
encode efficient algorithms by making use of particular properties of the representation.

5.1 Characterization of Euclidean Subsets
We prove the following characterization for subsets A ⊆ Rm of Euclidean space:

open A ↔ MΣ(F : N → Rm × R)).
Π(n : N). B((F n)) ⊆ A

∧ Π(x : Rm). x ∈ A → ∃(n : N). x ∈ B((F n))).

Here, B(x, r) encodes a ball with radius r around x. That is, a subset A ⊆ Rm is open iff we
can find a sequence of (possibly empty) balls, all contained in A, that eventually cover all A.

To show the equivalence let us call the statement on the right of the equivalence Euclidean
open. Thus, first assume that A is open in the sense of the previous section, that is, there
is a function f : Rm → S such that (f x)↓ iff x ∈ A. We can enumerate all possible inputs
Dd × N and define a sequence of balls by choosing B(d, 2−n) whenever (f̂ d n) = True. By
the properties of the interval extension, any such ball is contained in A and for any x ∈ A

we will find at least one ball that contains x.
Now assume A is Euclidean open. For any x, y, r, testing if x ∈ B(y, r) is semidecidable

as we only need to check if d(x, y) < r. Thus, given x : R we define a sequence s : N → S
such that (s n)↓ iff x ∈ B((F n)). Then ∃(n : N). (s n)↓↔ x ∈ A, i.e., we need to check if
there is at least one element in the sequence that is defined, which is again semidecidable.

For practical purposes, we are mostly interested in Euclidean subsets that are both
compact and overt. Such sets (and some variations) have been considered in constructive
mathematics and computable analysis under different names, sometimes using the same
terminology for slightly different concepts. In Bishop’s constructive mathematics, a set
is compact if it is closed and totally bounded [10]. Here, totally bounded means that it
can be covered by finitely many subsets of fixed size. Brattka and Weihrauch [4] define a
representation νmin−cover for compact sets based on such coverings.
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We only consider subsets of Euclidean space that are classically closed and characterize
their subsets in terms of “drawings” with arbitrary precision, meaning that for each n we
can generate a picture of A in terms of “pixels” (i.e. small boxes or closed balls) of size
2−n. It turns out that subsets for which such drawings exist are precisely those that are
both compact and overt. It can further shown that they coincide with the located subsets,
i.e., the subsets for which the distance of the set and a real number is computable (cf. [27,
§12] and [24]). We thus use the term located for these subsets. We can define a closed ball
B(c, r) ⊆ Rm with center c and radius r (w.r.t. the maximum norm) simply as the tuple
(c, r) : Rm × R. We denote the type of all such balls by B and use [B] to denote finite lists of
balls. For any b : B we further let ||b|| denote its radius. We then formally define the located
sets by

located A :≡ Π(n : N). Σ(L : [B]).

Π(b ∈ L). ||b|| ≤ 2−n (fast convergence)

∧ Π(b ∈ L). b ∩ A ̸= ∅ (intersection)

∧
⋃

b∈L b ⊇ A (cover).
Thus, a set is located if for each n we get a finite list of closed balls, each with radius at most
2−n so that their union covers the whole set A and such that each ball intersects A. Note
that we need to restrict to classically closed subsets as the coverings only define a set up
to its closure. The empty set is located as we allow closed balls to be empty (encoded by a
negative radius).

We call the set defined by the union of the elements of the n-th list of the sequence the
n-th approximation or the n-th covering of A and denote it by An.

For A ⊆ Rm and x ∈ Rm, let us write d(x, A) for infy∈A ∥x − y∥.
The Hausdorff distance dH(A, B) of two sets is defined by

dH(X, Y ) = max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)
}

.

Note that the set defined by the n-th approximation has Hausdorff distance at most 2−n to
the set that is approximated. In fact, the other direction also holds, i.e. we can show

located A ↔ Π(n : N). Σ(L : [B]). dH(A,
⋃
b∈L

b) ≤ 2−n.

To see this, assume for each n ∈ N we can get a list of balls L such that dH(A,
⋃

b∈L b) ≤ 2−n.
We take the (n + 1)-st list and double the radius of each of the balls. This guarantees that
the resulting set covers A while still being small enough.

Note that center and radius of the balls can be arbitrary real numbers, as in the context of
exact real computation it is more convenient to work with real numbers than with rationals.
However, decidable equality on balls can be useful. Restricting to only dyadic rationals for
center and radius does not make a difference as we can approximate real numbers arbitrarily
well by dyadic rationals and thus can convert any real covering to a dyadic covering.

It can be shown that a set is located if and only if it is compact and overt. Although a
formal proof of the equivalence could be used to prove that some of the subset operations
preserve locatedness, recall that the main goal of our project is to extract efficient programs
from proofs. It is thus reasonable to have different proofs using the more efficient representa-
tion, and a formal proof of the equivalence is less important. While the algorithmic content
of the proofs is rather simple, showing correctness of the procedures needs some facts from
classical analysis complicating the formalization of the proof. We therefore only give a pen
and paper proof of the equivalence in Appendix A and state the fact as a meta-theorem.
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5.2 Operations on located subsets

Let us first show that we can effectively get the distance of a point and a located set. For
any nonempty located sets we can compute the distance function. That is,

located A ∧ A ̸= ∅ → Π(x : Rm). Σ(r : R). r = d(x, A).

For any ball b = B(c, r), the distance d(b, x) is given by max{0, ∥x − c∥ − r}. We choose the
n-th approximation and take the minimum over all d(b, x). This gives a 2−n approximation
of d(A, x). Taking the limit of all the approximations for each n thus corresponds to d(A, x).

Let us next show that several standard operations on located subsets preserve locatedness.
Although the results already follow from located sets being both compact and overt, our
proofs encode more efficient algorithms, making use of the representation of located sets. The
extracted programs can be used as a small calculus to combine subsets using set operations.

The properties stated below mostly can be shown by directly applying the operations on
the coverings. We thus state them without proof.
1. For located sets A, B their union A ∪ B is located.
2. For a located set A and any λ > 0, the scaled set λA := {λx : x ∈ A} is located.
3. For a located set A and any v : Rm, the set A + v := {x + v : x ∈ A} is located.

Using the continuity principle on real numbers we can generalize the above to images of
arbitrary real functions. For any set A ⊆ Rm, and function f : Rm → Rk let us define the
image f [A] ⊆ Rk by y ∈ f [A] :↔ ∃(x : A). f(x) = y. Then we can show that the image of
located sets is again located:

Π(A ⊆ Rm). Π(f : Rm → Rk). located A → located f [A]

To show this, for each n ∈ N, we need to find a covering of f [A] with balls with radius at
most 2−n. We can use the continuity principle on real functions to define an extension f̂ that
maps balls b ⊆ Rm to balls (with possibly infinite radius) b′ ⊆ Rk such that f [b] ⊆ b′. We
can further show that the radius of f̂(b) goes to zero when the radius of b goes to zero. Thus
we generate all coverings, apply f̂ to each of the balls of the coverings and check if the radius
of each of them is bounded by 2−n which we know will eventually happen. While generating
images under arbitrary functions is very powerful, the procedure is obviously quite inefficient
and thus generating sets using the above specialized operations is preferred.

Another very useful operation that lets us easily generate more complicated sets from
simple ones is the limit operation. Here, by limit operation we mean that we are given a
sequence of located sets which converge to another set in terms of Hausdorff distance. That
is, a set K is defined to be the limit of a sequence of located sets if

isLim K :≡ Π(n : N). Σ(X : located Rm). dH(X, K) ≤ 2−n

holds. We can show that the limit of a sequence of located sets is again located, i.e.

isLim K → located K.

To see this, let Xi denote the i-th set in the sequence and Xi,j denote its j-th covering. As
dH(Xi, K) ≤ 2−i and d(Xi,j , Xi) ≤ 2−j it suffices to take Xn+1,n+1 and double the radius
of each of the balls to guarantee that the resulting set covers K.
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Figure 1 Approximations of the triangle.

6 Examples

From a proof that a set is located in our Coq implementation, we can extract an AERN
program that computes the coverings. We implemented the examples below in Coq and
extracted programs to generate for each n a finite list of real numbers, encoding the center
and radii of each ball in the n-th covering. We can then use AERN to give us arbitrarily exact
rational approximations of these real numbers, which we in turn can output and visualize by
drawing the approximate boxes.

6.1 A Simple Triangle
Let us start with a simple example. We define a triangle T ⊆ R2 by

(x, y) ∈ T ↔ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 1.

To show that the set is located, let bi,j,n := B(( 2i+1
2n+1 , 2j+1

2n+1 ), 2−n). We define the n-th covering
as the list L containing all bi,j,n with i + j < 2n. Figure 1 shows the coverings defined by this
procedure. All of the balls have radius 2−n by definition and each ball intersects the triangle
as i+j < 2n implies 2i+1+2j+1

2n+1 ≤ 1. Each point of the triangle is contained in one of the bi,j,n

as for any x ∈ [0, 1] and n ∈ N we can find some k ∈ N such that 2−nk ≤ x < 2−n(k + 1).
We can thus find such coordinates (i, j) for a point (x, y) ∈ T and as x + y ≤ 1 it follows
that i + j < 2−n as claimed.

6.2 Fractals
As a more interesting application, let us look at a procedure to generate certified drawing
of fractals. We consider simple self-similar fractals generated by iterated function systems
(IFPs) without rotation. For simplicity we only consider fractals that are contained in the
unit cube [0, 1]m. For a finite set of points D := (d1, d2, . . . , dk) ⊆ [0, 1]m we define a classical
subset I(D) ⊆ Rm as the smallest subset such that
1. D ⊆ I(D), and
2. Π(x : I(D)). Π(d : D). x+d

2 ∈ I(D).
Classically it can be shown that there is a unique compact subset with these properties. We
show that any set defined in this way is located. To do so, we need to define a sequence
of coverings of the set. We start with the first covering L0 being the list containing only
the unit disc. As each d ∈ D is contained in the unit disc, the intersection and covering
properties hold. We then recursively define the covering Ln+1 from the previous covering
Ln by following the construction rule, i.e., by making for each d ∈ D a copy of the previous
covering where the center of each ball is moved halfway towards d and has half the radius.

MFCS 2023
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Figure 2 Approximations of the Sierpinski triangle.

Obviously, each of the balls in Ln+1 has radius 2−(n+1). To show that this procedure
preserves the intersection property, let b ∈ Ln+1. Then there is some b′ ∈ Ln and d ∈ D such
that x ∈ b iff there is an x′ ∈ b′ with x = x′+d

2 . As Ln has the intersection property, there is
some x′ ∈ b′ with x′ ∈ I(D). By definition of I(D), then x′+d

2 ∈ I(D), i.e., b ∩ I(D) ̸= ∅.
Similarly, to show that the covering property is preserved, assume x ∈ I(D). Then by
definition either x = d for some d ∈ D or there is some x′ ∈ I(D) and some d ∈ D such that
x = x′+d

2 . Any d ∈ D is contained in Ln+1 as d ∈ Ln and d = d+d
2 . In the other case, there

is some b ∈ Ln such that x′ ∈ b as Ln is a covering. But then by definition of the procedure,
there is some b′ ∈ Ln+1 that contains x.

A more elegant way to prove the locatedness of I(D) is using the limit operation. We
can define a sequence of located sets (Ti)i∈N by letting T0 be the unit disc and then applying
the iteration given by the IFP. It is not hard to show that each Ti has Hausdorff distance at
most 2−i to the fractal and thus applying the limit operation suffices. However the extracted
program is slightly less efficient than the direct encoding as the limit uses Tn+1 to get the
n-th approximations and increases the radius leading to coverings where balls overlap.

As an application of the result, consider the Sierpinski triangle which is defined as the
two dimensional subset I(D) with D = {(−1, −1), (1, −1), (0,

√
3 − 1)}.

From the above we get a proof that the set is located, from which we can extract a Haskell
program computing the coverings. Figure 2 is a plot of the output of the extracted program
for increasing n. To generate the plot, AERN has been used to approximate the real numbers
for center and radius in the n-th approximation with error bounded by 2−n. The overlap at
the top and bottom of the boxes is due to the approximation of the real number

√
3 − 1.

7 Conclusion and future work

We considered procedures to work with different classes of subsets in a computational setting.
Currently, we only consider simple operations on subsets to build new subsets and extract
programs for certified drawings up to any desired resolution. Producing coverings yields a
representation that is easy to manipulate computationally and efficient if our goal is to draw
the whole set or do other operations that require global knowledge. However, naturally the
size of the list of coverings grows exponentially when increasing the precision. One might
argue that high precision approximations are more useful locally, i.e. instead of getting a
picture of the whole set one might want to zoom into a small part of the set and draw it
with arbitrarily high precision.

Instead of outputting the whole set, the list can be replaced by a nondeterministic test
function, that tests whether a ball is close enough to the set or not:

Π(x : Rd). Π(r : R). M
(
(d(x, A) < r) + (d(x, A) > 2r)

)
.
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That is, given a ball with center x and radius r, the function tells us if the ball intersects the
set or not, but it is allowed to slightly over-approximate the set, i.e., both answers are possible
if a ball with twice the radius intersects the set. Similar representations are often used in
complexity theory (e.g. [6, 7]). In future work, we plan to include such representations in
our development and show the equivalence to the covering representation for located sets.

More interesting operations can be achieved from computing images of arbitrary functions.
Currently, we only have a simple implementation using the continuity principle on real
numbers which is not efficient enough to be used in actual applications. Similar to the
representations of Euclidean subsets, we can think of more efficient representations for the
space of real functions. One possibility that comes to mind is using polynomial models such
as Taylor models [18]. This would also allow for extensions to more advanced operations like
integration and solution operators for ordinary differential equations [12, 21].
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A Equivalence of representations

We prove that a classically closed set is located if and only if it is both compact and overt.
Since the if part is straightforward, let us focus on the only if direction.

Let us assume that A is compact and overt and show that A is located as well. We need
to find for any natural n a finite set of balls of radius at most 2−n, each intersecting A, and
collectively covering A. We will also assume n ≥ 1 and assign to n = 0 the same set of balls
as for n = 1.

As A is computationally compact, we can find a ball containing A. Without loss of
generality, assume A ⊆ B(0, 1).

Let J be the set of all d-dimensional integer vectors j whose integer components ji satisfy
−m ≤ ji ≤ m where m = 3 · 2n−1. The points cj = j/m for j ∈ J form a uniform grid over
the (max-norm) unit ball B(0, 1). Therefore the union of balls of radius r = 1/2m around cj

covers B(0, 1) and therefore A:

A ⊆ B(0, 1) ⊂
⋃
j∈J

B(cj , r) (2)

We will apply compact A and overt A on open and closed sets, respectively, derived from
the above cover of A, except that we increase the radius to 3r = 3/2m = 2−n. This will
make the cover sufficiently redundant to compensate for potential non-termination of the
compactness and overtness applications on specific sets.
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For each j ∈ J , let

disjointj = compact A
(
A ∩ B(cj , 3r)

)
intersectsj = overt A (A ∩ B(cj , 3r))
haveinfoj = emptyj ⊔ nonemptyj

Note that as disjointj , intersectsj , haveinfoj ∈ S, their computation may not terminate.
Moreover, haveinfoj terminates iff either of the other two terminate.

We compute all haveinfoj computations in parallel until enough of them succeed to cover
A, more precisely, until for the set of terminated indices JT ⊆ J , it holds:

B(0, 1) ⊆
⋃

j∈JT

B(cj , 3r) (3)

Once Equation (3) holds, the set {B(cj , 3r) | j ∈ JT ∧ intersectsj} is the desired covering,
namely, the balls have sufficiently small radius, each of them intersects A, and their union
covers A thanks to Equation (3) and the definition of disjointj , which means that we omit
only balls that are disjoint from A.

It remains to prove that Equation (3) must hold in finite time. This will follow from
Equation (2) when we show that for each j ∈ J the ball B(cj , r) is covered by some B(ck, 3r)
such that haveinfok terminates. Note that the ball B(cj , r) is covered by B(ck, 3r) for all
k ∈ J with ||j − k|| ≤ 1, i.e., the “neighbouring” indices in addition to j itself.

Now, if haveinfoj does not terminate, i.e., if both emptyj and nonemptyj do not terminate,
the ball B(cj , 3r) is not disjoint from A but its interior is disjoint from A. This means that
there is a ∈ A with ||cj − a|| = 3r as illustrated in Figure 3.

−1 1

−1

1

cj

a
ck

Figure 3 B(cj , r) covered by B(ck, 3r); n = 1, m = 3, r = 1/6, j = (−1, −1).

Let us define the vector k component-wise as follows:

ki =


ji + 1 ai − (cj)i = 3r

ji − 1 ai − (cj)i = −3r

ji |ai − (cj)i| < 3r

(4)

Note that k is a “neighbour” of index j. Now, k ∈ J because if it was not, some component
ki would be outside the interval [−m, m], which would mean that either ai = 1 + 3r or
ai = −1 − 3r, which would contradict A ⊆ B(0, 1).
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Using the same three cases as in Equation (4), we get:

|ai − (ck)i| =


|ai − (cj)i − 1/m| = 3r − 1/m < 3r ki = ji + 1
|ai − (cj)i + 1/m| = | − 3r + 1/m| < 3r ki = ji − 1
|ai − (cj)i| < 3r ki = ji

(5)

In all three cases we have |(ck)i − ai| < 3r. Over all i, we get a ∈ B(ck, 3r).
Finally, a ∈ B(ck, r) implies that nonemptyk terminates, and therefore B(cj , r) is covered

by B(ck, 3r) in Equation (3) as illustrated in Figure 3.
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