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Abstract
The concept of Roman domination has recently been studied concerning enumerating and counting
in F. N. Abu-Khzam et al. (WG 2022). More technically speaking, a function that assigns 0, 1, 2 to
the vertices of an undirected graph is called a Roman dominating function if each vertex assigned
zero has a neighbor assigned two. Such a function is called minimal if decreasing any assignment
to any vertex would yield a function that is no longer a Roman dominating function. It has been
shown that minimal Roman dominating functions can be enumerated with polynomial delay, i.e.,
between any two outputs of a solution, no more than polynomial time will elapse. This contrasts
what is known about minimal dominating sets, where the question whether or not these can be
enumerated with polynomial delay is open for more than 40 years. This makes the concept of Roman
domination rather special and interesting among the many variants of domination problems studied
in the literature, as it has been shown for several of these variants that the question of enumerating
minimal solutions is tightly linked to that of enumerating minimal dominating sets, see M. Kanté
et al. in SIAM J. Disc. Math., 2014. The running time of the mentioned enumeration algorithm
for minimal Roman dominating functions (Abu-Khzam et al., WG 2022) could be estimated as
O(1.9332n) on general graphs of order n. Here, we focus on special graph classes, as has been also
done for enumerating minimal dominating sets before. More specifically, for chordal graphs, we
present an enumeration algorithm running in time O(1.8940n). It is unknown if this gives a tight
bound on the maximum number of minimal Roman dominating functions in chordal graphs. For
interval graphs, we can lower this time bound further to O(1.7321n), which also matches the known
lower bound concerning the maximum number of minimal Roman dominating functions. We can
also provide a matching lower and upper bound for forests, which is (incidentally) the same, namely
O∗(

√
3n). Furthermore, we present an optimal enumeration algorithm running in time O∗( 3√3n) for

split graphs and for cobipartite graphs, i.e., we can also give a matching lower bound example for
these graph classes. Hence, our enumeration algorithms for interval graphs, forests, split graphs and
cobipartite graphs are all optimal. The importance of our results stems from the fact that, for other
types of domination problems, optimal enumeration algorithms are not always found.

Interestingly, we use a different form of analysis for the running times of our different algorithms,
and the branchings had to be tailored and tweaked to obtain the intended optimality results. Our
Roman dominating functions enumeration algorithm for trees and forests is distinctively different
from the one for minimal dominating sets by Rote (SODA 2019).Our approach also allows to give
concrete formulas for counting minimal Roman dominating functions on more concrete graph families
like paths.
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6:2 Roman Census

1 Introduction

Roman Domination comes with a nice (hi)story, on how to position armies on the various
regions to secure the Roman Empire with the smallest cost, measured in the number of
armies. “To secure” means that either (1) a region r has at least one army or (2) a region r′

neighboring r contains two armies, so that it can afford sending one army to the region r

without diminishing r′’s self-defense capabilities.
It is easy to view Roman Domination as a graph-theoretic problem, where the map

is modeled as a graph. Roman Domination has received notable attention in the last
two decades [7, 17, 23, 26, 40, 41, 44, 48, 49, 51]. Relevant to our work is the development
of exact algorithms: Roman Domination can be solved in O(1.5014n) time (and space),
see [40,52,54]. More combinatorial studies can be found in [16,18,25,35,39,42,43,47,55,56,57]
as well as in the more recent chapter on Roman domination of [34]. Although independently
introduced in [46], the differential of a graph is tightly related, see also [1,8, 9, 10]. To briefly
summarize all these findings, in many ways concerning complexity, Roman Domination and
Dominating Set behave exactly the same. There are two notable and related exceptions,
as delineated in [2], concerning extension problems and output-sensitive enumeration.

Extension problems often arise from search-tree algorithms for their optimization coun-
terpart as follows. Assume that a search-tree node corresponds to a partial solution (or
pre-solution) U and instead of proceeding with the search-tree algorithm (by exploring all
the possible paths from this node onward) we ask whether we can extend U to a meaningful
solution S. In the case of Dominating Set, this means that S is an inclusion-wise minimal
dominating set that contains U . Unfortunately, this Extension Dominating Set problem
and many similar problems are NP-hard, see [6, 12, 14, 15, 37, 38, 45]. Even worse: when
parameterized by the “pre-solution size,” Extension Dominating Set is one of the few
problems known to be complete for the parameterized complexity class W[3], as shown in [11].
This blocks any progress on the Hitting Set Transversal Problem by using extension
test algorithms, which is the question whether all minimal hitting sets of a hypergraph can be
enumerated with polynomial delay (or even output-polynomial) only. This question is open
for four decades by now and is equivalent to several enumeration problems in logic, database
theory and also to enumerating minimal dominating sets in graphs, see [22,24,29,36].

By way of contrast and quite surprisingly, with an appropriate definition of the notion of
minimality, the extension variant of Roman Domination is solvable in polynomial time [3].
This was the key observation to show that enumerating all minimal Roman dominating
functions is possible with polynomial delay. This triggered further interest in looking
into enumerating minimal Roman dominating functions on graph classes, as also done in
the case of Dominating Set, see [5, 20, 21, 30, 32, 33]. The basis of the output-sensitive
enumeration result of [2] was several combinatorial observations. Here, we find ways how to
use the underlying combinatorial ideas for non-trivial enumeration algorithms for minimal
Roman dominating functions in split graphs, cobipartite graphs, interval graphs, forests
and chordal graphs and for counting these exactly for paths. All these graph classes will
be explained in separate sections below. These exploits constitute the main results of this
paper. More details can be found at the end of the next section. Due to lack of space,
further technical details can be found in [4]. We summarize known bases of lower and upper
bounds on the number of minimal (Roman) dominating sets (resp. functions) in the next
table; new results are shown with boxes; for matching bounds, only one number is displayed;
c.f. [2, 21, 27, 33]. Polynomial delay is achievable for the mentioned special graph classes
for enumerating minimal dominating sets [36, 38], but it is unclear how to combine these
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approaches with good input-sensitive enumeration, while all input-sensitive results concerning
minimal Roman dominating functions can also be implemented with polynomial delay, by
interleaving extension tests with branching.

graph class: general chordal split interval forests cobipartite
domination 1.5704 / 1.7159 3√3 / 1.5048 3√3 3√3 13√95 1.3195 / 1.3674
Roman dom. 1.7441 / 1.9332

√
3 / 1.8940 3√3

√
3

√
3 3√3

2 Definitions and Known Results

Let N = {1, 2, 3, . . . } be the set of positive integers. For n ∈ N, let [n] = {m ∈ N | m ≤ n}.
We only consider undirected simple graphs. Let G = (V, E) be a graph. For U ⊆ V , G[U ]
denotes the graph induced by U . For v ∈ V , NG(v) := {u ∈ V | {u, v} ∈ E} denotes the
open neighborhood of v, while NG[v] := NG(v) ∪ {v} is the closed neighborhood of v. |NG(v)|
is called the degree of v; a vertex of degree 1 is known as a leaf. We extend such set-valued
functions X : V → 2V to X : 2V → 2V by setting X(U) =

⋃
u∈U X(u). Subset D ⊆ V

is a dominating set, or ds for short, if NG[D] = V . For D ⊆ V and v ∈ D, define the
private neighborhood of v ∈ V with respect to D as PG,D (v) := NG [v] \ NG [D \ {v}]. A
function f : V → {0, 1, 2} is called a Roman dominating function, or rdf for short, if for each
v ∈ V with f (v) = 0, there exists a u ∈ NG (v) with f (u) = 2. Simplifying notation, we set
Vi (f) := {v ∈ V | f (v) = i} for i ∈ {0, 1, 2}. The weight wf of a function f : V → {0, 1, 2}
equals |V1| + 2|V2|. The Roman Domination problem asks, given G and an integer k, if
there exists an rdf of weight at most k. Connecting to the original motivation, G models a
map of regions, and if the region vertex v belongs to Vi, then we place i armies on v.

For defining the problem Extension Roman Domination, we first need to define the
order ≤ on {0, 1, 2}V : for f, g ∈ {0, 1, 2}V , let f ≤ g if and only if f (v) ≤ g (v) for all v ∈ V .
Thus, we extend the usual linear ordering ≤ on {0, 1, 2} to functions mapping to {0, 1, 2} in
a pointwise manner. We call a function f ∈ {0, 1, 2}V a minimal Roman dominating function
if and only if f is an rdf and there exists no rdf g, g ̸= f , with g ≤ f . The weights of minimal
rdfs can vary considerably. Consider for example a star K1,n with center c. Then, f1(c) = 2,
f1(v) = 0 otherwise; f2(v) = 1 for all vertices v; f3(c) = 0, f3(u) = 2 for one u ≠ c, f3(v) = 1
otherwise, define three minimal rdfs with weights wf1 = 2, and wf2 = wf3 = n + 1.

In [2], several combinatorial properties of minimal Roman dominating functions were
derived that were central for obtaining a general algorithmic enumeration result and that are
also important when studying special graph classes. This is summarized as follows.

▶ Theorem 2.1. Let G = (V, E) be a graph, f : V → {0, 1, 2} and abbreviate G′ :=
G [V0 (f) ∪ V2 (f)]. Then, f is a minimal rdf if and only if the following conditions hold:
1. NG [V2 (f)] ∩ V1 (f) = ∅,
2. ∀v ∈ V2 (f) : PG′,V2(f) (v) ⊈ {v}, also called privacy condition, and
3. V2 (f) is a minimal dominating set of G′.

This combinatorial result has been the key to show a polynomial-time decision procedure
for the extension problem (Given a graph G = (V, E), a function f : V → {0, 1, 2}, the
question is if there is minimal rdf g with f ≤ g). It can also be used to design enumeration
algorithms that are input-sensitive. The simplest exploit is to branch on all vertices whether
or not a vertex should belong to V2(f). Once V2(f) is fixed, its neighborhood will form V0(f)
and the remaining vertices will be V1(f). For better running times, this approach has to be
refined, see Section 5. We obtain estimates of running times for branching algorithms as
explained in [28], including an introduction into the Measure-and-Conquer analysis.

MFCS 2023
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3 Enumerating Minimal RDFs in Split and in Cobipartite Graphs

A split graph G = (V, E) consists of a bipartition of V as C and I, such that C forms a clique
and I is an independent set. Let f : V → {0, 1, 2} be a minimal rdf of G. If V2(f) contains
both a vertex vc from C and a vertex vi from I, then vi cannot find a private neighbor
in G, contradicting the minimality of f . We can hence first branch to decide if V2(f) ⊆ C

or if V2(f) ⊆ I. After dealing with the simple case that |V2(f) ∩ C| = 1 separately, we can
assume that all private neighbors of V2(f) ⊆ C are in I and that all private neighbors of
V2(f) ⊆ I are in C. We will describe a simple branching algorithm in which we can assume to
immediately delete vertices that are assigned the value 0, as they will be always dominated.

Case 1. One element of C is assigned a value of 2. We can guess this element in O(n) and
proceed as follows.
1. Elements of C with no neighbors in I are assigned a value of zero.
2. Pick v ∈ C with at least two neighbors in I and branch by either setting f(v) = 2 and

assign 0 to vertices in N(v) ∩ I or f(v) = 0 (this leads to the branching vector (3, 1)).
3. When all elements of C have exactly one neighbor in I, pick some v ∈ C with

N(v) ∩ I = {w}. Distinguish two cases.
3.1 w has at least one other neighbor x ∈ C. Then either f(v) = 2, f(w) = f(x) = 0 (in

fact, all neighbors of w are assigned 0), or f(v) = 0 (this leads to a (3, 1) branch).
3.2 N(w) = {v}: either f(v) = 2, f(w) = 0 or f(v) = 0, f(w) = 1 (this leads to the

branching vector (2, 2)).

Case 2. No element of C is assigned a value of 2.
1. Then any isolated element of I is automatically assigned a value of 1 and can be

deleted. Moreover, any element of C with no neighbors in I is assigned a value of 1
and deleted.

2. Pick a vertex v of degree at least two in I and branch by either setting f(v) = 2 and
assigning 0 to all its neighbors or set f(v) = 1 (this leads to the branching vector
(3, 1)).

3. When all elements of I are leaves, pick v ∈ I with N(v) ∩ C = {w}. Distinguish 2
cases.

3.1 w has at least one more neighbor x ∈ I: either f(v) = 2, f(w) = 0, f(x) = 1 or
f(v) = 1 (delete v) (this leads to the branching vector (3, 1)).

3.2 N(w) ∩ I = {v}: either f(v) = 2, f(w) = 0 or f(v) = f(w) = 1 (this leads to the
branching vector (2, 2)).

Notice that the analysis of the recursion is very simple: an rdf f is gradually defined,
and the branching vectors describe the number of newly defined vertices. The worst-case
branching vector is (1, 3), which leads to the following claim.

▶ Proposition 3.1. All minimal rdfs in a split graph of order n are enumerable in O∗(1.4656n).

▶ Remark 3.2. For cobipartite graphs, a similar reasoning applies. Now, it could be possible
that one vertex x of the bipartition side X finds its private neighbor px in X itself and that
one vertex y of the other bipartition side Y finds its private neighbor py in Y , such that
the edges xpy and ypx do not exist. If G contains no universal vertices, then irrespectively
whether the V2(f)-vertices lie only in X or in Y , there must be at least one other vertex in
V2(f) on the same side. But this means that they must find their private neighbors on the
other side. The branching is hence analogous to the split graph case.
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CP,2,n =

{
n − 1 if n ∈ [2]
CP,2,n−2, if n > 2

CP,2,n =

{
n if n ∈ [3]
CP,2,n−1 + CP,2,n−2 + CP,2,n−3 + CP,2,n−3, if n > 3

Figure 1 The mutual recurrences for determining the number of minimal rdfs on a path Pn.

The previous arguments are invalid in the case of bipartite graphs. Here, we conjecture that
the general case is not really easier than the bipartite case, as with minimal ds enumeration.

However, we can boost our algorithm and its simple analysis to actually prove an optimal
enumeration result. In order to do this, a rather straightforward refinement of the previous
case analysis suffices. Together with Remark 3.2 as well as the trick of interleaving the
branching with extension tests as described in [2], this refined branching algorithm proves:

▶ Theorem 3.3. All minimal rdfs in a split graph or a cobipartite graph of order n can be
enumerated in time O∗( 3

√
3n), using polynomial space and polynomial delay only.

We can complement Theorem 3.3 by showing lower bound examples in the following that
prove that our simple branching algorithm analysis is optimal for split and cobipartite graphs.

▶ Theorem 3.4. There exist split and cobipartite graphs of order n with Ω( 3
√

3n) many
minimal rdfs.

Proof. We consider the graph Gt = (Ct ∪ It, Et) with Ct = {c1, . . . , c2t}, It = {v1, . . . , vt},
3t = n = |Ct ∪ It| and Et =

(
Ct

2
)

∪ {{c2i−1, vi}, {c2i, vi} | i ∈ [t]} (for the cobipartite
case, It is also a clique). Thus, vi ∈ It has degree 2. If V2(f) ⊆ Ct, there are three
ways to Roman-dominate any vi ∈ It, c2i−1, c2i ∈ Ct with a minimal rdf f : f(c2i) = 2,
f(c2i−1) = f(vi) = 0 or f(c2i−1) = 2, f(c2i) = f(vi) = 0 or f(vi) = 1, f(c2i−1) = f(c2i) = 0
(resp. f(c2i−1) = f(c2i) = 1, if V2(f) = ∅). This yields 3t = 3

√
3n many minimal rdfs. There

can be at most 2t = 3
√

2n minimal rdfs f on Gt with V2(f) ⊆ It. Hence, Gt is a graph of
order n = 3t that has 3

√
3n + 3

√
2n − 1 ∈ Ω( 3

√
3n) many minimal rdfs. ◀

Minimal dominating sets in cobipartite graphs where all dominating set vertices belong to
one clique only correspond to minimal rdfs with no vertex assigned 1. So, we can use our rdf
enumeration algorithm to enumerate minimal dominating sets on cobipartite graphs. This
improves on the hitherto best published algorithm from [19] but would be worse than [53].

4 Counting Minimal Roman Dominating Functions on Paths

The following is the main result of this section, devoted to counting.

▶ Proposition 4.1. The number of minimal Roman dominating functions of a path Pn grows
as O∗(cn

RD,P), with cRD,P ≤ 1.6852.

This should be compared with the recursion of Bród [13] that yields the following
asymptotic behavior for the number of minimal dominating sets of a path with n vertices:

▶ Corollary 4.2 (follows from [13]). The number of minimal dominating sets of a path Pn

grows as O∗(cn
D,P), with cD,P ≤ 1.4013.

As every minimal dominating set D ⊆ V of a graph G = (V, E) corresponds to the minimal
rdf f : V → {0, 1, 2} with V2(f) = D and V0(f) = V \ D, it is clear that cD,P ≤ cRD,P.

MFCS 2023



6:6 Roman Census

Proof of Proposition 4.1. Let CP,n count the number of minimal rdfs of a Pn. Furthermore,
let CP,2,n and CP,2,n denote the number of minimal rdfs of a Pn where the first vertex
is assigned 2, or where it is decided that the first vertex is not assigned 2, respectively.
Clearly, CP,n = CP,2,n + CP,2,n . Consider Pn = (Vn, En) with Vn = {vi | i ∈ [n]} and
En = {vivi+1 | i ∈ [n − 1]}. Let n ≥ 3 and f : Vn → {0, 1, 2} be a minimal rdf.
If f(v1) = 2, then f(v2) = 0. Also f(v3) ̸= 2, as v1 would not have a private neighbor but
itself for f(v3) = 2. This shows (including trivial initial cases) the left-hand side of Figure 1.
If f(v1) ̸= 2, then we have two subcases: (a) if f(v1) = 1, then we know f(v2) ̸= 2; (b) if
f(v1) = 0, then f(v2) = 2 is enforced. But we know more compared to the initial situation: v2
has already a private neighbor, namely v1. Thus, we have further possibilities for v3: f(v3) = 2
or f(v3) = 0. The first subcase is as before: v3 has no private neighbor. If f(v3) = 0, then
either f(v4) = 2 and v4 has no private neighbor, or f(v4) ̸= 2; hence the recursions on the right-
hand side of Figure 1. Keeping in mind that CP,n−3 = CP,2,n−3 + CP,2,n−3, we see CP,n =
CP,2,n + CP,2,n = CP,2,n−2 + CP,2,n−1 + CP,2,n−2 + CP,n−3 = CP,2,n−1 + CP,n−2 + CP,n−3.
Conversely, CP,n = CP,2,n + CP,2,n = CP,2,n−2 + CP,2,n. Hence,

CP,n = CP,2,n + CP,2,n−2 = CP,2,n−1 + (CP,2,n−2 + CP,2,n−4) + (CP,2,n−3 + CP,2,n−5),

which gives, ignoring the cases for small values of n, the following single recursion:

CP,2,n = CP,2,n−1 + CP,2,n−3 + CP,2,n−4 + CP,2,n−5 ≈ 1.6852n

As CP,n = CP,2,n−2 + CP,2,n, the same asymptotic behavior holds for CP,n. ◀

We will further extend this result towards forests and towards interval graphs in the next
sections, starting with a more general description of such branching algorithms.

5 A General Approach to Branching for Minimal RDFs

In this section, we sketch the general strategy that we apply for enumerating minimal rdfs.
In most cases, the branching will look for a yet undecided vertex v (that we will call active
henceforth) and will decide to label it with 2 in one branch and not to label it with 2 in the
other branch. Now, in the first branch, we can say something about the neighbors of v as
well: according to Theorem 2.1, they cannot be finally labelled with 1. We express this and
similar properties by (always) splitting the vertex set V of the current graph G = (V, E) into:

A: active vertices. In the very beginning of the branching, all vertices are active.
Vi: vertices that cannot be assigned a value of i, i ∈ {1, 2}, due to previous decisions.
V0: set of vertices assigned a value of zero that are not yet dominated.

Sometimes, the branching also considers a vertex from V1, which will be assigned 0 (and
hence is deleted) in the branch when it is not assigned 2. We can also call extendibility tests
before doing the branching in order to achieve polynomial delay; see [2].

Possibly, we can also (temporarily) have (and speak of) vertex sets Vi (with i ∈ {1, 2})
with the meaning that each vertex in Vi is assigned the value i. Our algorithms will preserve
the invariant that a vertex v ∈ V1 must have a neighbor put into V2 (in the original graph),
i.e., N(v)∩V2 ≠ ∅, which is a property that can be exploited in our analysis. Namely, a vertex
is put into V1 only if one of its neighbors has been put into V2. However, notice that once the
effect (mostly implied by Theorem 2.1) of putting a vertex v into Vi on its neighborhood N(v)
has been taken care of, such a vertex v can be deleted from the “current graph” to simplify
the considerations. More precisely, for i ∈ {1, 2}, our algorithms automatically delete vertices
assigned a value of i after making sure the neighbors are placed in V3−i. It could happen
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that the neighbor of a vertex w ∈ V2 is assigned the value 2. Then, w must be assigned 0;
as it is dominated, it can and will be deleted. Similarly, if the neighbor of a vertex w ∈ V1
is assigned the value 1, w must be assigned 0 and is hence deleted. Only finally, it should
be checked if a function f : V → {0, 1, 2} that is constructed during branching is indeed a
minimal rdf, as possibly some vertices assigned 2 do not have a private neighbor. During the
course of our algorithm, whenever we speak of the degree of a vertex (in the current graph)
in the following, we only count in neighbors in A ∪ V1 ∪ V2. In most stages of our algorithms,
we can assume V1 = ∅, as we will explain.

Reduction rules are an important ingredient of any branching algorithm, as also shown
in [28]. We will make use of the following reduction rules. Similar rules appeared in [2].
▶ Reduction Rule 5.1. If v ∈ V2 with N(v) ⊆ V2, then set f(v) = 1 and delete v.
▶ Reduction Rule 5.2. If v ∈ V1 with N(v) ⊆ V1, then set f(v) = 0 and delete v.
▶ Reduction Rule 5.3. If v ∈ A with N(v) ⊆ V1, then put v into V2.

▶ Lemma 5.1. The three presented reduction rules are sound.

In contrast to our approach in Section 3, we will now perform a Measure-and-Conquer
analysis of the branching algorithms that we will describe. As a measure, we take

µ(A, V1, V2, V0) = |A| + ω1 |V1| + ω2 |V2|

for the “current graph” with vertex set partitioned as A ∪ V1 ∪ V2 ∪ V0. Hence, whenever
we measure our graph, we can assume V1 = ∅. In the beginning of the algorithm, A = V

and V1 = V2 = V0 = V1 = ∅. To explain the work of the reduction rules, consider an isolated
vertex (in the very beginning). The reduction rules will first move it into V2 and then into V1
to finally delete it. We will choose the constants ω1, ω2 ∈ [0, 1] to assess the running times of
our algorithms best possible, hence also delivering upper bounds on the number of minimal
rdfs of graphs of order n belonging to a specific graph class.

Concerning the reduction rules, we can easily observe that their application will never
increase the measure. We will list in the following several branching rules (for the different
graph classes) and we always assume that the rules are carried out in the given order.

6 Enumerating Minimal RDFs on Interval Graphs and Forests

Recall that an interval graph can be described as the intersection graph of a collection of
intervals on the real line. This means that the vertices correspond to intervals and that
there is an edge between two such vertices if the intervals have a non-empty intersection. We
assume in the following that G = (V, E) is an interval graph with the interval representation
I = {Iv := [lv, rv]}v∈V , i.e., lv is the left border and rv is the right border of the interval
representing the vertex v. We call v ∈ U leftmost in U ⊆ V if it is a vertex from U that has
the smallest value of ru among all vertices in U . A vertex leftmost in V is simply called
leftmost. Notice that this notion of a leftmost vertex will be used in many places in the rules
exhibited in the following and is not available in the setting of general graphs as investigated
in [3] but relies on the interval graph structure. Our algorithm always branches on the
leftmost vertex. Then, it simply considers all cases. We now present more details.
The reduction rules from Section 5 imply that each vertex in v ∈ A has at least one neighbor
in A ∪ V2. Concerning the measure, we will have ω1 = 1 and set ω2 = ω = 0.57. We will
present the branching rules that constitute the backbone of our algorithm for enumerating
minimal rdfs on interval graphs. We often provide illustrations of the different branching
scenarios. In our figures, we adhere to the following drawing conventions:

MFCS 2023



6:8 Roman Census

v

u

...

(a) v is already dominated.

v
...

(b) v ∈ A has neighbors in V2.

Figure 2 Branching Rules 6.1 and 6.2. Here (and elsewhere in these illustrations) we only sketch
important parts of a subgraph, not necessarily covering all cases of the rules within the drawings.

v
...

(a) v ∈ A has neighbors in A.

v

u

...

(b) v ∈ A has neighbors in V2 and in A.

Figure 3 Branching Rules 6.3 and 6.4.

are vertices in A, are vertices in V1, are vertices in A ∪ V1.
are vertices in V2.
are vertices in A ∪ V2, for which the exact set is not further defined.
are vertices in A ∪ V1 ∪ V2, for which the exact set is not further defined.

▶ Branching Rule 6.1. Let v be the leftmost vertex in V1 and let u be the leftmost vertex in
N(v) ∩ (A ∪ V2) and branch as follows: (1) Put v in V0. (2) Put v in V2 and u in V0.

▶ Lemma 6.1. The branching of Branching Rule 6.1 is a complete case distinction. Moreover,
it leads at worst to the following branching vector: (1, 1 + ω) .

One can formulate and prove similar lemmas for the other branching rules that we present;
see [4]. The branching vectors and branching numbers are summarized in Table 1.
▶ Branching Rule 6.2. Let v be the leftmost vertex in (A ∪ V2). If v ∈ A and N(v) ∩ A = ∅
hold, branch as follows: (1) Put v in V2 and N(v) ∩ V2 in V0. (2) Put v in V1.
▶ Branching Rule 6.3. Let v be leftmost in (A ∪ V2). If v ∈ A and |N(v) ∩ A| ≥ 2 hold,
branch as follows: (1) Put v in V2 and all vertices in N(v) ∩ A into V0. (2) Put v in V2.

▶ Branching Rule 6.4. Let v be the leftmost vertex in (A ∪ V2). If v ∈ A, |N(v) ∩ V2| ≥ 1
and |N(v) ∩ A| = 1 with u ∈ N(v) ∩ A hold, then branch: (1) Put v in V2, N(v) ∩ ({u} ∪ V2)
in V0. (2) Put u in V2 and {v} ∪ (N(v) ∩ V2) in V0. (3) Put v in V0 and u in V2.
▶ Branching Rule 6.5. Let v be the leftmost vertex in (A ∪ V2). If N [v] ∩ A = {v, u} with
N [v] ∩ V2 = ∅ and |N(u) ∩ A| ≥ 3, branch as follows:
(1) Put v in V2, u in V0 and N(u) \ {v} in V2. (2) Put v in V2.

▶ Branching Rule 6.6. Let v1 be the leftmost vertex in (A ∪ V2). If N [v1] ∩ A = {v1, v2} with
N [v1] ∩ V2 = ∅, N(v2) ∩ A = {v1, v3} and if there exists a u ∈ N(v3) such that N(u) = {v3},
then branch as follows: (1) Put v1 in V2, v2 in V0 and v3 in V2. (2) Put v1 in V1, v2 in V2.
(3) Put v2 in V2 and v1, v3 in V0 and u in V1. (4) Put v2, v3 in V2 and v1, u in V0.
▶ Branching Rule 6.7. Let v1 be the leftmost vertex in (A∪V2), such that N [v1]∩A = {v1, v2},
with N [v2]∩V2 = ∅ and N(v2)∩ (A∪V2) = {v1, v3}. If there is a u leftmost in A\{v1, v2, v3},
with {v3} ⊊ N(u), then branch as follows: (1) Put v1 in V2 and v2 in V0 and v3 in V2. (2)
Put v1 in V1, v2 in V2. (3) Put v1 in V0, v2 in V2 and v3 in V2. (4) Put v2, v3 in V2 and v1, u

in V0 and N(u) \ {v3} in V2.
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v u
...

(a) v1 ∈ A has only on neighbor in A which
has degree bigger than 2.

v1 v2

v3

u

...

(b) v1, v2, v3 ∈ A is a path and v3 has a leaf neighbor.

Figure 4 Branching Rules 6.5 and 6.6.

v1 v2 v3 u

w1

w2

...

(a) v1, v2, v3 ∈ A is a path and there exists a
u ∈ A ∩ N(v3) with one more neighbor.

v

u1

u2

...

(b) v ∈ V2 is the leftmost vertex.

Figure 5 Rules 6.7 and 6.8.

▶ Branching Rule 6.8. Let v be the leftmost vertex in (A ∪ V2). If v ∈ V2, branch like: (1)
For each u ∈ N(v) ∩ A: u in V2 and N [v] \ {u} into V0. (2) Put v in V1 and N(v) ∩ A in V2.

▶ Theorem 6.2. All minimal rdfs of an interval graph of order n can be enumerated in time
O∗

(√
3n

)
, with polynomial delay and in polynomial space.

This result is optimal, as there are interval graphs that have
√

3n many minimal rdfs, namely
collections of paths on two vertices: x − y can be Roman-dominated by f(x) = f(y) = 1 or
by assigning two to one vertex and zero to the other one, i.e., we get three possibilities per
two vertices. For optimally enumerating minimal ds in interval graphs, see [31].
Recall that a forest is an acyclic undirected graph. A branching scenario that is similar to,
but slightly more complex than, that of interval graphs can be used for forests (see [4]).

▶ Theorem 6.3. A forest of order n has at most
√

3n many minimal rdfs. They can also be
enumerated in time O∗

(√
3n

)
, with polynomial delay and in polynomial space.

Table 1 Branching scenarios on interval graphs.

rule branching vector branching number
6.1 & 6.2 (1, 1 + ω) 1.7314

6.3 (3, 1 − ω) 1.6992
6.4 (2 + ω, 2 + ω, 2 − ω) 1.6829
6.5 (4 − 2ω, 1 − ω) 1.7274
6.6 (3 − ω, 2 − ω, 4, 4) 1.6877
6.7 (3 − ω, 2 − ω, 3, 5 − ω) 1.7315
6.8 (ω + |N(v) ∩ A|, . . . , ω + |N(v) ∩ A|︸ ︷︷ ︸

|N(v)∩A| many times

, ω + (1 − ω) · |N(v) ∩ A|) ≤
√

3 ≤ 1.7321

MFCS 2023
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Table 2 Branching rules and their vectors and numbers for chordal graphs; worst cases in red.

Rule branching vector branching number
7.1 (1 − ω2, 1 + 3 min(1 − ω1, ω2)) 1.8940
7.2 (1 + ω1 + ω2, 1 − ω2) 1.8014
7.3 (ω1, ω1 + 2ω2) 1.8940
7.4 (ω1, 2 − ω1 + min(1 − ω1, ω2)) 1.8940

7.5 & 7.16 (ω1, 2ω1 + ω2) 1.7915
7.6 (ω1 + ω2, ω1 + ω2) 1.8321

7.7 & 7.14 (1 + ω2, 1 + ω2) never worse than Branching Rule 7.6
7.8 (1 + ω2 + min(1 − ω2, ω1), 1) 1.6181
7.9 (2, 1 − ω2) 1.8471
7.10 (1 + ω2, 1) 1.779
7.11 (1 + ω1 + 2(1 − ω2), ω1) 1.5743
7.12 (1 + 2ω2, 1) never worse than Branching Rule 7.10
7.13 (2 + ω2, 1 − ω2) 1.7249

7.15 & 7.17 (2 − ω1 + ω2, 2 + ω2, 2 − ω2) 1.8005

v

(a) v ∈ A has at least 3 neighbors in A ∪ V2.

v

u

w

...

(b) v ∈ A has one neighbor w ∈ V2 and at least one
neighbor in V1 that has only further neighbors in V1.

Figure 6 Branching Rules 7.1 and 7.2.

This result is again optimal, as there are forests that have
√

3n many minimal rdfs, namely
collections of P2. A similar optimality result was obtained by Rote [50] for enumerating
minimal dominating sets in forests by using different techniques: there are (at most) 13

√
95n

many of them in forests of order n.

7 Enumerating Minimal RDFs in Chordal Graphs

Recall that a graph is chordal if the only induced cycles it might contain have length three.
In this quite technical section, we explain the following result whose optimality is open.

▶ Theorem 7.1. All minimal Roman dominating functions of a chordal graph of order n

can be enumerated with polynomial delay and in polynomial space in time O(1.8940n).

We are following the general approach sketched in Section 5. We adopt as a measure
µ = |A| + ω1 |V1| + ω2 |V2|. To obtain our result, we set ω1 = 0.710134 and ω2 = 0.434799.

Initially, all vertices are in A. Each branching rule assumes the preceding rules have been
applied exhaustively and none of their conditions is applicable anymore. We omit stating
correctness lemmas and lemmas concerning branching vectors but refer to Table 2. These
lemmas are in general quite simple.
▶ Branching Rule 7.1. If v ∈ A has at least three neighbors in A ∪ V2, then we branch as
follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to V2.
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v

(a) v ∈ V2 is simplicial with at least 2
neighbors.

v

w

...

(b) v ∈ V2 has exact one neighbor in V1, possibly
more neighbors in V2.

v w

...

(c) v ∈ A is a leaf with a neighbor in V2
which has only further neighbors in V2.

v w

(d) v ∈ A is a leaf with a neighbor w ∈ V2 with at
least one neighbor in A ∪ V1.

Figure 7 Branching Rules 7.5, 7.6, 7.7 and 7.8.

From now on, we can assume that a vertex from A of degree at least 3 has a neighbor in V1.

▶ Branching Rule 7.2. If v ∈ A has at least one neighbor w in V2 and at least one neighbor u

in V1 such that all neighbors of u (but v and possibly w) are in V1, then we branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to V2.

Knowing (by our invariants) that elements of V1 are guaranteed to have neighbors in V2, the
next two branching rules apply to some elements of V1 (illustration can be found in [4]):

▶ Branching Rule 7.3. If v ∈ V1 has at least two neighbors in V2, then we branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

▶ Branching Rule 7.4. If v ∈ V1 has at least three neighbors in A ∪ V2 then we branch as
follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

From now on, we discuss branching on simplicial vertices (or sometimes on vertices in the
neighborhood of simplicial vertices as in [5]).

▶ Observation 7.2. Simplicial vertices in V1 can only have neighbors in A ∪ V2 ∪ V1. As we
already considered vertices in V1 with ≥ 3 neighbors in A ∪ V2, in the following branchings, a
vertex in V1 has ≤ 2 neighbors in A ∪ V2, not both of them in V2 due to Branching Rule 7.3.

▶ Branching Rule 7.5. If v ∈ V1 is simplicial and of degree at least two, then branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

▶ Observation 7.3. We note that an isolated pair of adjacent leaves, say v, w, give rise to
a path, which has already been studied. However, assuming previous branching rules have
resulted in such a path, the worst case is when v ∈ V2 and w ∈ V1. To see this, note that if
both v and w are in V2 or both in V1, they would be deleted by Reduction Rules 5.1 or 5.2.

▶ Branching Rule 7.6. If v ∈ V2 is a vertex with exactly one neighbor w ∈ V1 and possibly
more neighbors in V2, then we branch as follows: (1) Set f(w) = 2, f(v) = 0 and update the
neighbors of w accordingly. (2) Set f(w) = 0 and f(v) = 1 and delete v, w.

▶ Branching Rule 7.7. Let v ∈ A with N(v) = {w}, w ∈ V2, with N(w) \ {v} ⊆ V2. Then,
branch as follows: (1) Set f(v) = 2 and f(w) = 0. (2) Set f(v) = f(w) = 1 and delete v, w.

MFCS 2023
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v

w

...

(a) v ∈ A with exactly one neighbor
in A and possible other neighbors in V1.

v

(b) v ∈ V2 is a leaf with
a neighbor in A.

v w

(c) v ∈ V1 is a leaf with
a neighbor in A.

v

...

(d) v ∈ A is simplicial and
has only neighbors in V2.

v

w

...

(e) v ∈ A is a simplicial vertex of degree
at least 3 and at least one neighbor in A.

Figure 8 Branching Rules 7.9, 7.10,7.11, 7.12 and 7.13.

▶ Branching Rule 7.8. If v ∈ A with N(v) = {w} and w ∈ V2 and if there is at least one
further neighbor of w that belongs to A ∪ V1, then we branch as follows: (1) Set f(v) = 2
and f(w) = 0 and update all neighbors of w to V2 or to V0. (2) Set f(v) = 1 and delete v.

The following rule again deals with a leaf vertex as a special case.

▶ Branching Rule 7.9. Let v ∈ A with N(v) ∩ A = {w} and N(v) \ {w} ⊆ V1. Then, branch:
(1) Set f(v) = 2 and f(w) = 0, update all neighbors of w to V2 or to V0. (2) Add v to V2.

▶ Branching Rule 7.10. If v ∈ V2 with N(v) = {w}, w ∈ A, then we branch as follows: (1)
Set f(w) = 2 and f(v) = 0; update N(w) accordingly. (2) Add w to V2 and set f(v) = 1.

▶ Branching Rule 7.11. If v ∈ V1 with N(v) = {w}, w ∈ A and |N(w) ∩ A| = 2, then branch:
(1) Set f(v) = 2, f(w) = 0 and put the neighbors of w into V2. (2) Set f(v) = 0 and delete v.

▶ Branching Rule 7.12. If v ∈ A is simplicial, of degree ≥ 2 with N(v) ⊂ V2, then branch: (1)
Set f(v) = 2 and assign zero to all its neighbors (delete N [v]). (2) Set f(v) = 1 and delete v.

▶ Branching Rule 7.13. If v ∈ A is simplicial, with |N(v)| ≥ 2 and N(v) ∩ A ̸= ∅, then we
branch as follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to V2.

Finally, we consider simplicial vertices in V2 of degree ≥ 2, now covering the remaining cases.

▶ Branching Rule 7.14. Let v ∈ V2 be a simplicial vertex of degree two with a neighbor
w ∈ A. If the other neighbor w′ of v is in V2, then we branch as follows: (1) Set f(w) = 2
and f(v) = f(w′) = 0. (2) Add w to V2, set f(v) = 1 and delete v.

▶ Branching Rule 7.15. If v ∈ V2 is simplicial with two neighbors w, w′ ∈ A, then we branch as
follows: (1) Set f(w) = 2, f(v) = 0 and add w′ to V1. (2) Set f(w′) = 2 and f(w) = f(v) = 0.
(3) Add w and w′ to V2 and set f(v) = 1.

▶ Branching Rule 7.16. If v ∈ V2 is simplicial, of degree at least two, with a neighbor w such
that N [w] \ {v} ⊆ V1, then we branch as follows: (1) Set f(w) = 2, f(v) = 0 and delete N [v].
(2) Set f(w) = 0 and delete it.

▶ Branching Rule 7.17. If v ∈ V2 is simplicial, with neighbors w, w′ ∈ V1 s.t. N [w] ⊂ N [w′],
then branch: (1) Set f(w′) = 2, f(v) = f(w) = 0. (2) Set f(w′) = 0 and delete it.

▶ Lemma 7.4. Our rules cover all possible cases for chordal graphs.
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It remains open whether enumeration on chordal graphs can be improved further, so we
hereby pose it as an open problem, or whether one can obtain a higher lower bound, which
might also be a gap-improvement on general graphs. So far, the best lower bound for general
graphs is a collection of C5’s [2], which is clearly not a chordal graph. The worst-case example
for chordal graphs is a collection of P2’s, see Section 4 and our discussions on interval graphs.
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