
Parameterized Max Min Feedback Vertex Set
Michael Lampis #

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France

Nikolaos Melissinos #

Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic

Manolis Vasilakis #

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France

Abstract
Given a graph G and an integer k, Max Min FVS asks whether there exists a minimal set of vertices
of size at least k whose deletion destroys all cycles. We present several results that improve upon
the state of the art of the parameterized complexity of this problem with respect to both structural
and natural parameters.

Using standard DP techniques, we first present an algorithm of time twO(tw)nO(1), significantly
generalizing a recent algorithm of Gaikwad et al. of time vcO(vc)nO(1), where tw, vc denote the input
graph’s treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms
are essentially optimal, since a vco(vc)nO(1) algorithm would refute the ETH.

With respect to the natural parameter k, the aforementioned recent work by Gaikwad et al.
claimed an FPT branching algorithm with complexity 10knO(1). We point out that this algorithm is
incorrect and present a branching algorithm of complexity 9.34knO(1).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases ETH, Feedback vertex set, Parameterized algorithms, Treewidth

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.62

Related Version Full Version: https://arxiv.org/abs/2302.09604

Funding This work is partially supported by ANR projects ANR-21-CE48-0022 (S-EX-AP-PE-AL)
and ANR-18-CE40-0025-01 (ASSK).
Nikolaos Melissinos: Supported by the CTU Global postdoc fellowship program.

Acknowledgements Work primarily conducted while Nikolaos Melissinos was affiliated with Univer-
sité Paris-Dauphine.

1 Introduction

We consider a MaxMin version of the well-studied feedback vertex set problem where, given
a graph G = (V, E) and a target size k, we are asked to find a set of vertices S with the
following properties: (i) every cycle of G contains a vertex of S, that is, S is a feedback
vertex set (ii) no proper subset of S is a feedback vertex set, that is, S is minimal (iii)
|S| ≥ k. Although much less studied than its minimization cousin, Max Min FVS has
recently attracted attention in the literature as part of a broader study of MaxMin versions
of standard problems, such as Max Min Vertex Cover and Upper Dominating Set.
The main motivation of this line of research is the search for a deeper understanding of the
performance of simple greedy algorithms: given an input, we would like to compute what is
the worst possible solution that would still not be improvable by a simple heuristic, such as
removing redundant vertices. Nevertheless, over recent years MaxMin problems have been
found to possess an interesting combinatorial structure of their own and have now become
an object of more widespread study (we survey some such results below).

© Michael Lampis, Nikolaos Melissinos, and Manolis Vasilakis;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michail.lampis@dauphine.fr
https://orcid.org/0000-0002-5791-0887
mailto:nikolaos.melissinos@fit.cvut.cz
https://orcid.org/0000-0002-0864-9803
mailto:emmanouil.vasilakis@dauphine.eu
https://orcid.org/0000-0001-6505-2977
https://doi.org/10.4230/LIPIcs.MFCS.2023.62
https://arxiv.org/abs/2302.09604
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Parameterized Max Min Feedback Vertex Set

It is not surprising that Max Min FVS is known to be NP-complete and is in fact
significantly harder than Minimum FVS in most respects, such as its approximability or its
amenability to algorithms solving special cases. Given the problem’s hardness, in this paper
we focus on the parameterized complexity of Max Min FVS, since parameterized complexity
is one of the main tools for dealing with computational intractability1. We consider two
types of parameterizations: the natural parameter k; and the parameterization by structural
width measures, such as treewidth. In order to place our results into perspective, we first
recall the current state of the art.

Previous work. Max Min FVS was first shown to be NP-complete even on graphs of
maximum degree 9 by Mishra and Sikdar [32]. This was subsequently improved to NP-
completeness for graphs of maximum degree 6 by Dublois et al. [20], who also present an
approximation algorithm with ratio n2/3 and proved that this is optimal unless P=NP. A
consequence of the polynomial time approximation algorithm of [20] was the existence of
a kernel of order O(k3), which implied that the problem is fixed-parameter tractable with
respect to the natural parameter k. Some evidence that this kernel size may be optimal was
later given by [2]. We note also that the problem can easily be seen to be FPT parameterized
by treewidth (indeed even by clique-width) as the property that a set is a minimal feedback
vertex set is MSO1-expressible, so standard algorithmic meta-theorems apply.

Given the above, the state of the art until recently was that this problem was known
to be FPT for the two most well-studied parameterizations (by k and by treewidth), but
concrete FPT algorithms were missing. An attempt to advance this state of the art and
systematically study the parameterized complexity of the problem was recently undertaken
by Gaikwad et al. [23], who presented exact algorithms for this problem running in time
10knO(1) and vcO(vc)nO(1), where vc is the input graph’s vertex cover, which is known to be
a (much) more restrictive parameter than treewidth. Leveraging the latter algorithm, [23]
also present an FPT approximation scheme which can (1 − ε)-approximate the problem in
time 2O(vc/ε)nO(1), that is, single-exponential time with respect to vc.

Our contribution. We begin our work by considering Max Min FVS parameterized by
the most standard structural parameter, treewidth. We observe that, using standard DP
techniques, we can obtain an algorithm running in time twO(tw)nO(1), that is, slightly super-
exponential with respect to treewidth. Note that this slightly super-exponential running
time is already present in the vcO(vc)nO(1) algorithm of [23], despite the fact that vertex
cover is a much more severely restricted parameter. Hence, our algorithm generalizes the
algorithm of [23] without a significant sacrifice in the running time.

Despite the above, our main contribution with respect to structural parameters is not
our algorithm for parameter treewidth, but an answer to a question that is naturally posed
given the above: can the super-exponential dependence present in both our algorithm and
the algorithm of [23] be avoided, that is, can we obtain a 2O(tw)nO(1) algorithm? We show
that this is likely impossible, as the existence of an algorithm running in time vco(vc)nO(1) is
ruled out by the ETH (and hence also the existence of a two(tw)nO(1) algorithm). This result
is likely to be of wider interest to the parameterized complexity community, where one of
the most exciting developments of the last fifteen years has arguably been the development
of the Cut&Count technique (and its variations). One of the crowning achievements of this

1 Throughout the paper we assume that the reader is familiar with the basics of parameterized complexity,
as given in standard textbooks [16].

M. Lampis, N. Melissinos, and M. Vasilakis 62:3

technique is the design of single-exponential algorithms for connectivity problems – indeed an
algorithm running in time 3twn for Minimum FVS is given in [17]. It has therefore been of
much interest to understand which connectivity problems admit single-exponential algorithms
using such techniques (see e.g. [7] and the references within). Curiously, even though several
cousins of Minimum Feedback Vertex Set have been considered in this context (such as
Subset Feedback Vertex Set and Restricted Edge-Subset Feedback Edge Set),
for Max Min FVS, which is arguably a very natural variant, it was not known whether a
single-exponential algorithm for parameter treewidth is possible. Our work thus adds to the
literature a natural connectivity problem where Cut&Count can provably not be applied
(under standard assumptions). Interestingly, our lower bound even applies to the case of
vertex cover, which is rare, as most problems tend to become rather easy under this very
restrictive parameter.

We then move on to consider the parameterization of the problem by k, the size of the
sought solution. Observe that a kO(k)nO(1) algorithm can easily be obtained by the results
sketched above and a simple win/win argument: start with any minimal feedback vertex
set S of the given graph G: if |S| ≥ k we are done; if not, then tw(G) ≤ k and we can solve
the problem using the algorithm for treewidth. It is therefore only interesting to consider
algorithms with a single-exponential dependence on k. Such an algorithm, with complexity
10knO(1), was claimed by [23]. Unfortunately, as we explain in detail in Section 5, this
algorithm contains a significant flaw2.

Our contribution is to present a corrected version of the algorithm of [23], which also
achieves a slightly better running time of 9.34knO(1), compared to the 10knO(1) of the (flawed)
algorithm of [23]. Our algorithm follows the same general strategy of [23], branching and
placing vertices in the forest or the feedback vertex set. However, we have to rely on a more
sophisticated measure of progress, because simply counting the size of the selected set is not
sufficient. We therefore measure our progress towards a restricted special case we identify,
namely the case where the undecided part of the graph induces a linear forest. Though
this special case sounds tantalizingly simple, we show that the problem is still NP-complete
under this restriction, but obtaining an FPT algorithm is much easier. We then plug in our
algorithm to a more involved branching procedure which aims to either reduce instances into
this special case, or output a certifiable minimal feedback vertex set of the desired size.

Finally, motivated by the above we note that a blocking point in the design of algorithms
for Max Min FVS seems to be the difficulty of the extension problem: given a set S0,
decide if a minimal fvs S that extends S0 exists. As mentioned, Casel et al. [13] showed
that this problem is W[1]-hard parameterized by |S0|. Intriguingly, however, it is not even
known if this problem is in XP, that is, whether it is solvable in polynomial time for fixed
k. We show that this is perhaps not surprising, as obtaining a polynomial time algorithm
in this case would imply the existence of a polynomial time algorithm for the notorious
k-in-a-Tree problem: given k terminals in a graph, find an induced tree that contains them.
Since this problem was solved for k = 3 in a breakthrough by Chudnovsky and Seymour [15],
the complexity for fixed k ≥ 4 has remained a big open problem (for example [29] states
that “Solving it in polynomial time for constant k would be a huge result”). It is therefore
perhaps not surprising that obtaining an XP algorithm for the extension problem for minimal
feedback vertex sets of fixed size is challenging, since such an algorithm would settle another
long-standing problem.

2 Saket Saurabh, one of the authors of [23], confirmed so via private communication with Michael Lampis.

MFCS 2023

62:4 Parameterized Max Min Feedback Vertex Set

Other relevant work. As mentioned, Max Min FVS is an example of a wider class of
MaxMin problems which have recently attracted much attention in the literature, among
the most well-studied of which are Maximum Minimal Vertex Cover [2, 11, 12, 34] and
Upper Dominating Set (which is the standard name for Maximum Minimal Dominating
Set) [1, 3, 5, 21]. Besides these problems, MaxMin or MinMax versions of cut and separations
problems [19, 26, 30], knapsack problems [22, 24], matching problems [14], and coloring
problems [6] have also been studied.

The question of which connectivity problems admit single-exponential algorithms param-
eterized by treewidth has been well-studied over the last decade. As mentioned, the main
breakthrough was the discovery of the Cut&Count technique [16], which gave randomized
2O(tw)nO(1) algorithms for many such problems, such as Steiner Tree, Hamiltonicity,
Connected Dominating Set and others. Follow-up work also provided deterministic
algorithms with complexity 2O(tw)nO(1) [8]. It is important to note that the discovery of
these techniques was considered a surprise at the time, as the conventional wisdom was that
connectivity problems probably require twO(tw) time to be solved [31]. Naturally, the topic
was taken up with much excitement, in an attempt to discover the limits of such techniques,
including problems for which they cannot work. In this vein, [33] gave a meta-theorem
capturing many tractable problems, and also an example problem that cannot be solved in
time 2o(tw2)nO(1) under the ETH. Several other examples of connectivity problems which
require slightly super-exponential time parameterized by treewidth are now known [4, 27],
with the most relevant to our work being the feedback vertex set variants studied in [7, 10],
as well as the digraph version of the minimum feedback vertex set problem (parameterized
by the treewidth of the underlying graph) [9]. The results of our paper seem to confirm the
intuition that the Cut&Count technique is rather fragile when applied to feedback vertex set
problems, since in many variations or generalizations of this problem, a super-exponential
dependence on treewidth is inevitable (assuming the ETH).

2 Preliminaries

Throughout the paper, we use standard graph notation [18]. Moreover, for vertex u ∈ V (G),
let degX(u) denote its degree in G[X ∪ {u}], where X ⊆ V (G). A multigraph G is a graph
which is permitted to have multiple edges with the same end nodes, thus, two vertices may
be connected by more than one edge. Given a (multi)graph G, where e = {u, v} ∈ E(G) is a
not necessarily unique edge connecting distinct vertices u and v, the contraction of e results
in a new graph G′ such that V (G′) = (V (G) \ {u, v}) ∪ {w}, while for each edge {u, x} or
{v, x} in E(G), there exists an edge {w, x} in E(G′). Any edge e ∈ E(G) not incident to
u, v also belongs to E(G′). If u and v were additionally connected by an edge apart from e,
then w has a self loop.

For i ∈ N, [i] denotes the set {1, . . . , i}. A feedback vertex set S of G is minimal if and
only if ∀s ∈ S, G[(V (G) \ S) ∪ {s}] contains a cycle, namely a private cycle of s [21]. Lastly,
we make use of a weaker version of ETH, which states that 3-SAT cannot be determined in
time 2o(n), where n denotes the number of the variables [28].

Finally, note that the proofs of all lemmas and theorems marked with (⋆) are present in
the full version of the paper.

3 Treewidth Algorithm

Here we will present an algorithm for Max Min FVS parameterized by the treewidth of
the input graph, arguably the most well studied structural parameter. As a corollary of the
lower bound established in Section 4, it follows that the running time of the algorithm is
essentially optimal under the ETH.

M. Lampis, N. Melissinos, and M. Vasilakis 62:5

▶ Theorem 1. (⋆) Given an instance I = (G, k) of Max Min FVS, as well as a nice tree
decomposition of G of width tw, there exists an algorithm that decides I in time twO(tw)nO(1).

Proof sketch. The main idea lies on performing standard dynamic programming on the
nodes of the nice tree decomposition. To this end, for each node, we will consider all the
partial solutions, corresponding to (not necessarily minimal) feedback vertex sets of the
subgraph induced by the vertices of the nodes of the corresponding subtree of the tree
decomposition. We will try to extend such a feedback vertex set to a minimal feedback
vertex set of G, that respects the partial solution. For each partial solution, it is imperative
to identify, apart from the vertices of the bag that belong to the feedback vertex set, the
connectivity of the rest of the vertices in the potential final forest. In order to do so, we
consider a coloring indicating that, same colored vertices of the forest of the partial solution,
should be in the same connected component of the potential final forest. Moreover, we keep
track of which vertices of the forest of the partial solution are connected via paths containing
forgotten vertices. Finally, for each vertex of the feedback vertex set of the partial solution,
we need to identify one of its private cycles. To do so, we first guess the connected component
of the potential final forest that “includes” such a private cycle, while additionally keeping
track of the number of edges between the vertex and said component. ◀

4 ETH Lower Bound

In this section we present a lower bound on the complexity of solving Max Min FVS
parameterized by vertex cover. Starting from a 3-SAT instance on n variables, we produce
an equivalent Max Min FVS instance on a graph of vertex cover O(n/ log n), hence
any algorithm solving the latter problem in time vco(vc)nO(1) would refute the ETH. As
already mentioned, vertex cover is a very restrictive structural parameter, and due to known
relationships of vertex cover with more general parameters, such as treedepth and treewidth,
analogous lower bounds follow for these parameters. We first state the main theorem.

▶ Theorem 2. There is no vco(vc)nO(1) time algorithm for Max Min FVS, where vc denotes
the size of the minimum vertex cover of the input graph, unless the ETH fails.

Before we present the details of our construction, let us give some high-level intuition.
Our goal is to “compress” an n-variable instance of 3-SAT, into an Max Min FVS instance
with vertex cover roughly n/ log n. To this end, we will construct log n choice gadgets, each
of which is supposed to represent n/ log n variables, while contributing only n/ log2 n to the
vertex cover. Hence, each vertex of each such gadget must be capable of representing roughly
log n variables.

Our choice gadget may be thought of as a variation of a bipartite graph with sets L, R, of
size roughly n/ log2 n and

√
n respectively. If one naively tries to encode information in such

a gadget by selecting which vertices of L ∪ R belong in an optimal solution, this would only
give 2 choices per vertex, which is not efficient enough. Instead, we engineer things in a way
that all vertices of L ∪ R must belong in the forest in an optimal solution, and the interesting
choice for a vertex ℓ of L is with which vertex r of R we will place ℓ in the same component.
In this sense, a vertex ℓ of L has |R| choices, which is sufficient to encode the assignment for
Ω(log n) variables. What remains, then, is to add machinery that enforces this basic setup,
and then clause checking vertices which for each clause verify that the clause is satisfied by
testing if an ℓ vertex that represents one of its literals is in the same component as an r

vertex that represents a satisfying assignment for the clause.

MFCS 2023

62:6 Parameterized Max Min Feedback Vertex Set

4.1 Preliminary Tools
Before we present the construction that proves Theorem 2, we give a variant of 3-SAT from
which it will be more convenient to start our reduction, as well as a basic force gadget that
we will use in our construction to ensure that some vertices must be placed in the forest in
order to achieve an optimal solution.

3P3SAT. We first define a constrained version of 3-SAT, called 3-Partitioned-3-SAT
(3P3SAT for short), and establish its hardness under the ETH.

3-Partitioned-3-SAT
Input: A formula ϕ in 3-CNF form, together with a partition of the set of its variables V

into three disjoint sets V1, V2, V3, with |Vi| = n, such that no clause contains more than
one variable from each Vi.
Task: Determine whether ϕ is satisfiable.

▶ Theorem 3. (⋆) 3-Partitioned-3-SAT cannot be decided in time 2o(n), unless the ETH
fails.

Force gadgets. We now present a gadget that will ensure that a vertex u must be placed
in the forest in any solution that finds a large minimal feedback vertex set. In the remainder,
suppose that A is a sufficiently large value (we give a concrete value to A in the next section).
When we say that we attach a force gadget to a vertex u, we introduce A + 1 new vertices
ū, u1, . . . , uA to the graph such that the vertices ui form an independent set, while there
exist edges {u, ui}, {ū, ui} for all i ∈ [A], as well as the edge {u, ū}. We refer to vertex ū as
the gadget twin of u, while the rest of the vertices will be referred to as the gadget leaves of
u. Intuitively, the idea here is that if u (or ū) is contained in a minimal feedback vertex set,
then none of the A leaves of the gadget can be taken, because these vertices cannot have
private cycles. Hence, setting A to be sufficiently large will allow us to force u to be in the
forest.

u

ū

u1

u2

...

uA

Figure 1 Force gadget attached to vertex u.

4.2 Construction
Let ϕ be a 3P3SAT instance of m clauses, where |Vp| = n for p ∈ [3] and, without loss of
generality, assume that n is a power of 4 (this can be achieved by adding dummy variables
to the instance if needed). Partition each variable set Vp to log n subsets V q

p of size at most
⌈ n

log n ⌉, where p ∈ [3] and q ∈ [log n]. Let L = ⌈ n
log2 n

⌉. Moreover, partition each variable
subset V q

p into 2L subsets Vp,q
α of size as equal as possible, where α ∈ [2L]. In the following

M. Lampis, N. Melissinos, and M. Vasilakis 62:7

we will omit p and q and instead use the notation Vα, whenever p, q are clear from the
context. Define R =

√
n, A = n2 + m and k = (4AL + AR + 2LR) · 3 log n + m. We will

proceed with the construction of a graph G such that G has a minimal feedback vertex set
of size at least k if and only if ϕ is satisfiable.
For each variable subset V q

p , we define the choice gadget graph Gq
p as follows:

V (Gq
p) = {ℓi, ℓ′

i, κi, λi | i ∈ [2L]} ∪ {rj | j ∈ [R]} ∪ {mi
j | i ∈ [2L], j ∈ [R]},

all the vertices ℓi, ℓ′
i and rj have an attached force gadget,

for i ∈ [2L], N(κi) = Mi ∪ {λi} and N(λi) = Mi ∪ {κi}, where Mi = {mi
j | j ∈ [R]},

for i ∈ [2L] and j ∈ [R], mi
j has an edge with ℓi, ℓ′

i and rj .
We will refer to the set Xi = Mi ∪ {κi, λi} as the choice set i.

Intuitively, one can think of this gadget as having been constructed as follows: we start
with a complete bipartite graph that has on one side the vertices ℓi and on the other the
vertices rj ; we subdivide each edge of this graph, giving the vertices mi

j ; for each i ∈ [2L] we
add ℓ′

i, κi, λi, connect them to the same mi
j vertices that ℓi is connected to and connect κi to

λi; we attach force gadgets to all ℓi, ℓ′
i, rj . Hence, as sketched before, the idea of this gadget

is that the choice of a vertex ℓi is to pick an rj with which it will be in the same component
in the forest, and this will be expressed by picking one mi

j that will be placed in the forest.

ℓi

ℓ′
i

mi
1

mi
2

...

mi
R

r1

r2

...

rR

κi λi

(a) Part of the construction concerning Xi.

ℓ2L

ℓ′
2L

...

ℓ1

ℓ′
1

m2L
1

...

m2L
R

m1
1

...
m1

R

κ2L λ2L

κ1 λ1

r1

...

rR

(b) The whole choice gadget graph Gq
p.

Figure 2 Black vertices have a force gadget attached.

Each vertex ℓα of Gq
p is used to represent a variable subset Vp,q

α ⊆ V q
p containing at most

|Vp,q
α | ≤

⌈
|V p,q|

2L

⌉
≤

⌈
⌈ n

log n ⌉
2L

⌉
=

⌈
n

2L log n

⌉
≤

⌈
n

2 n
log2 n

log n

⌉
=

⌈
log n

2

⌉
= log n

2

variables of ϕ, where we used Theorem 3.10 of [25], for f(x) = x/2L. We fix an arbitrary
one-to-one mapping so that every vertex mα

β , where β ∈ [R], corresponds to a different
assignment for this subset, which is dictated by which element of Mα was not included in the
final feedback vertex set. Since R = 2log n/2 =

√
n, the size of Mα is sufficient to uniquely

encode all the different assignments of Vα.
Finally, introduce vertices ci, where i ∈ [m], each of which corresponds to a clause of ϕ,

and define graph G as the union of these vertices as well as all graphs Gq
p, where p ∈ [3]

and q ∈ [log n]. For a clause vertex c, add an edge to ℓα when Vα contains a variable
appearing in c, as well as to the vertices rβ for each such ℓα, such that mα

β /∈ S corresponds
to an assignment of Vα satisfying c, where S denotes a minimal feedback vertex set. Notice

MFCS 2023

62:8 Parameterized Max Min Feedback Vertex Set

that since no clause contains multiple variables from the same variable set Vi, due to the
refinement of the partition of the variables, it holds that all the variables of a clause will be
represented by vertices appearing in distinct Gq

p.

4.3 Correctness

Having constructed the previously described instance (G, k) of Max Min FVS, it remains
to prove its equivalence with the initial 3-Partitioned-3-SAT instance.

▶ Lemma 4. (⋆) Any minimal feedback vertex set S of G of size at least k has the following
properties:

(i) S does not contain any vertex attached with a force gadget or its gadget twin,
(ii) |Mi \ S| ≤ 1, for every Gq

p and i ∈ [2L],
(iii) |S ∩ V (Gq

p)| = 4AL + AR + 2LR,
where p ∈ [3] and q ∈ [log n].

▶ Lemma 5. (⋆) If ϕ has a satisfying assignment, then G has a minimal feedback vertex set
of size at least k.

▶ Lemma 6. (⋆) If G has a minimal feedback vertex set of size at least k, then ϕ has a
satisfying assignment.

▶ Lemma 7. (⋆) It holds that vc(G) = O(n/ log n).

Using the previous lemmas, we can prove Theorem 2.

Proof of Theorem 2. Let ϕ be a 3-Partitioned-3-SAT formula. In polynomial time, we
can construct a graph G such that, due to Lemmas 5 and 6, deciding if G has a minimal
feedback vertex set of size at least k is equivalent to deciding if ϕ has a satisfying assignment.
In that case, assuming there exists a vco(vc) algorithm for Max Min FVS, one could decide
3-Partitioned-3-SAT in time

vco(vc) =
(

n

log n

)o(n/ log n)
= 2(log n−log log n)o(n/ log n) = 2o(n),

which contradicts the ETH due to Theorem 3. ◀

Since for any graph G it holds that tw(G) ≤ vc(G), the following corollary holds.

▶ Corollary 8. There is no two(tw)nO(1) time algorithm for Max Min FVS, where tw denotes
the treewidth of the input graph, unless the ETH fails.

5 Natural Parameter Algorithm

In this section we will present an FPT algorithm for Max Min FVS parameterized by the
natural parameter, i.e. the size of the maximum minimal feedback vertex set k. The main
theorem of this section is the following.

▶ Theorem 9. Max Min FVS can be solved in time 9.34knO(1).

M. Lampis, N. Melissinos, and M. Vasilakis 62:9

Structure of the Section. In Section 5.1 we define the closely related Annotated MMFVS
problem, and prove that it remains NP-hard, even on some instances of specific form, called
path restricted instances. Subsequently, we present an algorithm dealing with this kind of
instances, which either returns a minimal feedback vertex set of size at least k or concludes
that this is a No instance of Annotated MMFVS. Afterwards, in Section 5.2, we solve
Max Min FVS by producing a number of instances of Annotated MMFVS and utilizing
the previous algorithm, therefore proving Theorem 9.

Oversight of [23]. The algorithm of [23] performs a branching procedure which marks
vertices as either belonging in the feedback vertex set or the remaining forest. The flaw is
that the algorithm ceases the branching once k vertices have been identified as vertices of
the feedback vertex set. However, this is not correct, since deciding if a given set S0 can be
extended into a minimal feedback vertex set S ⊇ S0 is NP-complete and even W[1]-hard
parameterized by |S0| [13]. Hence, identifying k vertices of the solution is not, in general,
sufficient to produce a feasible solution and the algorithm of [23] is incomplete, because it does
not explain how the guessed part of the feedback vertex set can be extended into a feasible
minimal solution. Intuitively, the pitfall here is that, unlike other standard maximization
problems, such as Max Clique, Max Min FVS is not monotone, that is, a graph that
contains a feasible solution of size k is not guaranteed to contain a feasible solution of size
k − 1 (consider, for instance, a K2,n).

5.1 Annotated MMFVS and Path Restricted Instances
First, we define the following closely related problem, denoted by Annotated MMFVS for
short.

Annotated Maximum Minimal Feedback Vertex Set
Input: A graph G = (V, E), disjoint sets S, F ⊆ V where S ∪ F is a feedback vertex set
of G, as well as an integer k.
Task: Determine whether there exists a minimal feedback vertex set S′ of G of size
|S′| ≥ k such that S′ ⊇ S and S′ ∩ F = ∅.

Remarks. Notice that if F is not a forest, then the corresponding instance always has
a negative answer. For the rest of this section, let U = V (G) \ (S ∪ F). Moreover, let
H = {s ∈ S | degF (s) ≥ 2 and degU (s) ≤ 1} denote the set of good vertices of S. An
interesting path of G[U] is a connected component of G[U] such that for every vertex u

belonging to said component, it holds that degF ∪U (u) = 2. If every connected component of
G[U] is an interesting path, then this is a path restricted instance. Furthermore, given an
instance I, let ammfvs(I) be equal to 1 if it is a Yes instance and 0 otherwise.

Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS. We will
present an algorithm that either returns a minimal feedback vertex set S′ ⊆ S ∪ U of G of
size at least k or concludes that this is a No instance of Annotated MMFVS. Notice that
Annotated MMFVS remains NP-hard even on such instances, as dictated by Theorem 10.
Therefore, we should not expect to solve path restricted instances of Annotated MMFVS
in polynomial time.

▶ Theorem 10. (⋆) Annotated MMFVS is NP-hard on path restricted instances, even if
all the paths are of length 2.

MFCS 2023

62:10 Parameterized Max Min Feedback Vertex Set

We proceed by presenting the main algorithm of this subsection, which will be essential
in proving Theorem 9.

▶ Theorem 11. (⋆) Let I = (G, S, F, k) be a path restricted instance of Annotated
MMFVS, and let g denote the number of its good vertices. There is an algorithm running in
time O(3k−gnO(1)) which either returns a minimal feedback vertex set S′ ⊆ S ∪ U of G of
size at least k or concludes that I is a No instance of Annotated MMFVS.

Proof sketch. The main idea of the algorithm lies on the fact that we can efficiently handle
instances where either k = 0 or S = ∅. Towards this, we will employ a branching strategy
that, as long as S remains non empty, new instances with reduced k are produced. Prior to
performing branching, we first observe that we can efficiently deal with the good vertices.
Afterwards, by employing said branching strategy, in every step we decide which vertex will
be counted towards the k required, thereby reducing parameter k on each iteration. If at
some point k = 0 or S = ∅, it remains to decide whether this comprises a viable solution S′.
Notice that S′ may not be a solution for the annotated instance, since even if |S′| ≥ k, it
does not necessarily hold that S′ ⊇ S. ◀

5.2 Algorithm for Max Min FVS
We start by presenting a high level sketch of the algorithm for Max Min FVS. The starting
point is a minimal feedback vertex set S0 of G. Note that such a set can be obtained
in polynomial time, while if it is of size at least k, we are done. Therefore, assume that
|S0| < k. Then, assuming there exists a minimal feedback vertex set S∗, where |S∗| ≥ k and
F ∗ = V (G)\S∗, we will guess S0∩S∗, thereby producing instances I0 = (G, S0∩S∗, S0∩F ∗, k)
of Annotated MMFVS. Subsequently, we will establish a number of safe reduction rules,
which do not affect the answer of the instances. We will present a measure of progress µ,
which guarantees that if an instance I = (G, S, F, k) of Annotated MMFVS has µ(I) ≤ 1,
then G has a minimal feedback vertex set S′ ⊆ S ∪ U of size at least k. Then, we will employ
a branching strategy which, given Ii, will produce instances I1

i+1, I2
i+1 of lesser measure of

progress, such that Ii is a Yes instance if and only if at least one of I1
i+1, I2

i+1 is also a Yes
instance. If we can no further apply our branching strategy, and the measure of progress
remains greater than 1, then it holds that I is a path restricted instance and Theorem 11
applies.

Measure of progress. Let I = (G, S, F, k) be an instance of Annotated MMFVS. We
define as µ(I) = k + cc(F) − g − p its measure of progress, where

cc(F) denotes the number of connected components of F ,
g denotes the number of good vertices of S,
p denotes the number of interesting paths of G[U].

It holds that if µ(I) ≤ 1, then the underlying Max Min FVS instance has a positive answer,
which does not necessarily respect the constraints dictated by the annotated version.

▶ Lemma 12. (⋆) Let I = (G, S, F, k) be an instance of Annotated MMFVS, where
µ(I) ≤ 1. Then, G has a minimal feedback vertex set S′ ⊆ S ∪ U of size at least k.

Reduction rules. In the following, we will describe some reduction rules which do not affect
the answer of an instance of Annotated MMFVS, while not increasing its measure of
progress.

M. Lampis, N. Melissinos, and M. Vasilakis 62:11

▶ Lemma 13. (⋆) Let G = (V, E) be a (multi)graph and uv ∈ E(G). Then, G is acyclic if
and only if G/uv is acyclic.

Rule 1. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u, v ∈ F and uv ∈ E.
Then, replace I with I ′ = (G′, S, F ′, k), where G′ = G/uv occurs from the contraction of u

and v into w, while F ′ = (F ∪ {w}) \ {u, v}.

Rule 2. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u ∈ U and
degF ∪U (u) = 0. Then, replace I with I ′ = (G − u, S, F, k).

Rule 3. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u ∈ U and
degF ∪U (u) = 1, while v ∈ N(u) ∩ (F ∪ U). Then, replace I with I ′ = (G′, S, F ′, k),
where G′ = G/uv occurs from the contraction of u and v into w, while F ′ = (F ∪ {w}) \ {v}
if v ∈ F , and F ′ = F otherwise.

▶ Lemma 14. (⋆) Applying rules 1, 2 and 3 does not change the outcome of the algorithm
and does not increase the measure of progress.

After exhaustively applying the aforementioned rules, it holds that ∀u ∈ U , degF ∪U (u) ≥
2, i.e. G[U] is a forest containing trees, all the leaves of which have at least one edge to F .
Moreover, G[F] comprises an independent set. We proceed with a branching strategy that
produces instances of Annotated MMFVS of reduced measure of progress. If at some
point µ ≤ 1, then Lemma 12 can be applied.

Branching strategy. Let I = (G, S, F, k) be an instance of Annotated MMFVS, on
which all of the reduction rules have been applied exhaustively, thus, it holds that a) ∀u ∈ U ,
degF ∪U (u) ≥ 2 and b) F is an independent set.

Define u ∈ U to be an interesting vertex if degF ∪U (u) ≥ 3. As already noted, G[U] is a
forest, the leaves of which all have an edge towards F , otherwise Rule 3 could still be applied.
Consider a root for each tree of G[U]. For some tree T , let v be an interesting vertex at
maximum distance from the corresponding root, i.e. v is an interesting vertex of maximum
height. Notice that such a tree cannot be an interesting path. We branch depending on
whether u is in the feedback vertex set or not. Towards this end, let S′ = S ∪ {v} and
F ′ = F ∪{v}, while I1 = (G, S′, F, k) and I2 = (G, S, F ′, k). It holds that I is a Yes instance
if and only if at least one of I1, I2 is a Yes instance, while if G[F ′] contains a cycle, I2 is a
No instance and we discard it. We replace I with the instances I1 and I2.

▶ Lemma 15. (⋆)The branching strategy produces instances of reduced measure of progress,
without reducing the number of good vertices. Additionally, whenever the branching places a
vertex on the feedback vertex set, this vertex is good.

Complexity. Starting from an instance (G, k) of Max Min FVS, we produce a minimal
feedback vertex set S0 of G in polynomial time. If |S0| ≥ k, we are done. Alternatively, we
produce instances of Annotated MMFVS by guessing the intersection of S0 with some
minimal feedback vertex set of G of size at least k. Let I = (G, S, F, k) be one such instance.
It holds that µ(I) ≤ k + c, where c = cc(F), therefore the branching will perform at most
k + c steps. Notice that, at any step of the branching procedure, the number of good vertices
never decreases. Now, consider a path restricted instance I ′ = (G′, S′, F ′, k) resulting from
branching starting on I, on which branching, exactly ℓ times a vertex was placed in the

MFCS 2023

62:12 Parameterized Max Min Feedback Vertex Set

feedback vertex set, therefore |S′| − |S| = ℓ. There are at most
(

k+c
ℓ

)
different such instances,

each of which has at least ℓ good vertices, thus Theorem 11 requires time at most 3k−ℓnO(1).
Since 0 ≤ ℓ ≤ k + c, and there are at most

(
k
c

)
different instances I, the algorithm runs in

time 9.34knO(1), since

k∑
c=0

(
k

c

) k+c∑
ℓ=0

(
k + c

ℓ

)
3k−ℓ = 3k

k∑
c=0

(
k

c

) k+c∑
ℓ=0

(
k + c

ℓ

)
3−ℓ = 3k

k∑
c=0

(
k

c

)(
4
3

)k+c

= 4k
k∑

c=0

(
k

c

)(
4
3

)c

= 4k

(
7
3

)k

≤ 9.34k.

6 The Extension Problem

In this section we consider the following extension problem:

Minimal FVS Extension
Input: A graph G = (V, E) and a set S ⊆ V .
Task: Determine whether there exists S∗ ⊇ S such that S∗ is a minimal feedback vertex
set of G.

Observe that this is a special case of Annotated MMFVS, since we essentially set
F = ∅ and do not care about the size of the produced solution, albeit with the difference that
now we will not focus on the case where V \ S is already acyclic. This extension problem
was already shown to be W[1]-hard parameterized by |S| by Casel et al. [13]. One question
that was left open, however, was whether it is solvable in polynomial time for fixed |S|, that
is, whether it belongs in the class XP. Superficially, this seems somewhat surprising, because
for the closely related Maximum Minimal Vertex Cover and Upper Dominating Set
problems, membership of the extension problem in XP is almost trivial: it suffices to guess for
each v ∈ S a private edge or vertex that is only dominated by v, remove from consideration
other vertices that dominate this private edge or vertex, and then attempt to find any feasible
solution. The reason that this strategy does not seem to work for feedback vertex set is that
for each v ∈ S we would have to guess a private cycle. Since a priori we have no bound on
the length of such a cycle, there is no obvious way to achieve this task in nf(k) time.

Though we do not settle the complexity of the extension problem for fixed k, we provide
evidence that obtaining a polynomial time algorithm would be a challenging task, because it
would imply a similar algorithm for the k-in-a-Tree problem. In the latter, we are given a
graph G and a set T of k terminals and are asked to find a set T ∗ such that T ⊆ T ∗ and
G[T ∗] is a tree [15, 29].

▶ Theorem 16. k-in-a-Tree parameterized by k is fpt-reducible to Minimal FVS Exten-
sion parameterized by the size of the given set.

Proof. Consider an instance G = (V, E) of k-in-a-Tree, with terminal set T . Let T =
{t1, . . . , tk}. We add to the graph k − 1 new vertices, s1, . . . , sk−1 and connect each si to
ti and to ti+1, for i ∈ [k − 1]. We set S = {s1, . . . , sk−1}. This completes the construction.
Clearly, this reduction preserves the value of the parameter.

To see correctness, suppose first that a tree T ∗ ⊇ T exists in G. We set S1 = S ∪ (V \ T ∗)
in the new graph. S1 is a feedback vertex set, because removing it from the graph leaves T ∗,
which is a tree. S1 contains S. Furthermore, if S1 is not minimal, we greedily remove from it
arbitrary vertices until we obtain a minimal feedback vertex set S2. We claim that S2 must

M. Lampis, N. Melissinos, and M. Vasilakis 62:13

still contain S. Indeed, each vertex si, for i ∈ [k − 1] has a private cycle, since its neighbors
ti, ti+1 ∈ T ∗. For the converse direction, if there exists in the new graph a minimal feedback
vertex set S∗ that contains S, then the remaining forest F ∗ = V \ S∗ must contain T , since
each vertex of S must have a private cycle in the forest, and vertices of S have degree 2.
Furthermore, all vertices of T must be in the same component of F ∗, because to obtain a
private cycle for si, we must have a path from ti to ti+1 in F ∗, for all i ∈ [k − 1]. Therefore,
in this case we have found an induced tree in G that contains all terminals. ◀

7 Conclusions and Open Problems

We have precisely determined the complexity of Max Min FVS with respect to structural
parameters from vertex cover to treewidth as being slightly super-exponential. One natural
question to consider would then be to examine if the same complexity can be achieved when
the problem is parameterized by clique-width. Regarding the complexity of the extension
problem for sets of fixed size k, we have shown that this is at least as hard as the well-known
(and wide open) k-in-a-Tree problem. Barring a full resolution of this question, it would
also be interesting to ask if the converse reduction also holds, which would prove that the
two problems are actually equivalent.

References
1 Hassan AbouEisha, Shahid Hussain, Vadim V. Lozin, Jérôme Monnot, Bernard Ries, and

Viktor Zamaraev. Upper domination: Towards a dichotomy through boundary properties.
Algorithmica, 80(10):2799–2817, 2018. doi:10.1007/s00453-017-0346-9.

2 Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau. Introducing lop-kernels:
A framework for kernelization lower bounds. Algorithmica, 84(11):3365–3406, 2022. doi:
10.1007/s00453-022-00979-z.

3 Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau. Parameterized complexity
of computing maximum minimal blocking and hitting sets. Algorithmica, 85(2):444–491, 2023.
doi:10.1007/s00453-022-01036-5.

4 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In SODA, pages 951–970. SIAM, 2020. doi:10.1137/1.9781611975994.57.

5 Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, Henning Fernau, Klaus Jansen, Kim-Manuel
Klein, Michael Lampis, Mathieu Liedloff, Jérôme Monnot, and Vangelis Th. Paschos. The
many facets of upper domination. Theor. Comput. Sci., 717:2–25, 2018. doi:10.1016/j.tcs.
2017.05.042.

6 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy
distinguishes treewidth from pathwidth. SIAM Journal on Discrete Mathematics, 36(3):1761–
1787, 2022. doi:10.1137/20M1385779.

7 Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O-joung Kwon. Close relatives
of feedback vertex set without single-exponential algorithms parameterized by treewidth. In
IPEC, volume 180 of LIPIcs, pages 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.IPEC.2020.3.

8 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

9 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,
and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In
WG, volume 11159 of Lecture Notes in Computer Science, pages 65–78. Springer, 2018.
doi:10.1007/978-3-030-00256-5_6.

MFCS 2023

https://doi.org/10.1007/s00453-017-0346-9
https://doi.org/10.1007/s00453-022-00979-z
https://doi.org/10.1007/s00453-022-00979-z
https://doi.org/10.1007/s00453-022-01036-5
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1137/20M1385779
https://doi.org/10.4230/LIPIcs.IPEC.2020.3
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1007/978-3-030-00256-5_6

62:14 Parameterized Max Min Feedback Vertex Set

10 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback vertex
set problems on bounded-treewidth graphs: Chordality is the key to single-exponential parame-
terized algorithms. Algorithmica, 81(10):3890–3935, 2019. doi:10.1007/s00453-019-00579-4.

11 Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-approximation trade-offs
for inapproximable problems. J. Comput. Syst. Sci., 92:171–180, 2018. doi:10.1016/j.jcss.
2017.09.009.

12 Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos. On the max min vertex cover
problem. Discret. Appl. Math., 196:62–71, 2015. doi:10.1016/j.dam.2014.06.001.

13 Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian
Sikora. On the complexity of solution extension of optimization problems. Theor. Comput.
Sci., 904:48–65, 2022. doi:10.1016/j.tcs.2021.10.017.

14 Juhi Chaudhary, Sounaka Mishra, and B. S. Panda. Minimum maximal acyclic matching in
proper interval graphs. In CALDAM, volume 13947 of Lecture Notes in Computer Science,
pages 377–388. Springer, 2023. doi:10.1007/978-3-031-25211-2_29.

15 Maria Chudnovsky and Paul D. Seymour. The three-in-a-tree problem. Comb., 30(4):387–417,
2010. doi:10.1007/s00493-010-2334-4.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

17 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and
Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.

18 Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer,
2017. doi:10.1007/978-3-662-53622-3.

19 Gabriel L. Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel
Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and Uéverton S. Souza. Computing
the largest bond and the maximum connected cut of a graph. Algorithmica, 83(5):1421–1458,
2021. doi:10.1007/s00453-020-00789-1.

20 Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, and Nikolaos
Melissinos. (in)approximability of maximum minimal FVS. J. Comput. Syst. Sci., 124:26–40,
2022. doi:10.1016/j.jcss.2021.09.001.

21 Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight
algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271–
291, 2022. doi:10.1016/j.tcs.2022.05.013.

22 Fabio Furini, Ivana Ljubic, and Markus Sinnl. An effective dynamic programming algorithm
for the minimum-cost maximal knapsack packing problem. Eur. J. Oper. Res., 262(2):438–448,
2017. doi:10.1016/j.ejor.2017.03.061.

23 Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh, and Shuvam Kant Tripathi.
Maximum minimal feedback vertex set: A parameterized perspective. CoRR, abs/2208.01953,
2022. doi:10.48550/arXiv.2208.01953.

24 Laurent Gourvès, Jérôme Monnot, and Aris Pagourtzis. The lazy bureaucrat problem with
common arrivals and deadlines: Approximation and mechanism design. In FCT, volume
8070 of Lecture Notes in Computer Science, pages 171–182. Springer, 2013. doi:10.1007/
978-3-642-40164-0_18.

25 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.

26 Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, and Tsuyoshi Yagita. Finding a
maximum minimal separator: Graph classes and fixed-parameter tractability. Theor. Comput.
Sci., 865:131–140, 2021. doi:10.1016/j.tcs.2021.03.006.

27 Ararat Harutyunyan, Michael Lampis, and Nikolaos Melissinos. Digraph coloring and distance
to acyclicity. In STACS, volume 187 of LIPIcs, pages 41:1–41:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.41.

https://doi.org/10.1007/s00453-019-00579-4
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.dam.2014.06.001
https://doi.org/10.1016/j.tcs.2021.10.017
https://doi.org/10.1007/978-3-031-25211-2_29
https://doi.org/10.1007/s00493-010-2334-4
https://doi.org/10.1145/3506707
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/s00453-020-00789-1
https://doi.org/10.1016/j.jcss.2021.09.001
https://doi.org/10.1016/j.tcs.2022.05.013
https://doi.org/10.1016/j.ejor.2017.03.061
https://doi.org/10.48550/arXiv.2208.01953
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1007/978-3-642-40164-0_18
https://doi.org/10.1016/j.tcs.2021.03.006
https://doi.org/10.4230/LIPIcs.STACS.2021.41

M. Lampis, N. Melissinos, and M. Vasilakis 62:15

28 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

29 Kai-Yuan Lai, Hsueh-I Lu, and Mikkel Thorup. Three-in-a-tree in near linear time. In STOC,
pages 1279–1292. ACM, 2020. doi:10.1145/3357713.3384235.

30 Michael Lampis. Minimum stable cut and treewidth. In ICALP, volume 198 of LIPIcs, pages
92:1–92:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ICALP.2021.92.

31 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.

32 Sounaka Mishra and Kripasindhu Sikdar. On the hardness of approximating some np-
optimization problems related to minimum linear ordering problem. RAIRO Theor. Informatics
Appl., 35(3):287–309, 2001. doi:10.1051/ita:2001121.

33 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In MFCS, volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

34 Meirav Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM J.
Discret. Math., 31(4):2440–2456, 2017. doi:10.1137/16M109017X.

MFCS 2023

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3357713.3384235
https://doi.org/10.4230/LIPIcs.ICALP.2021.92
https://doi.org/10.4230/LIPIcs.ICALP.2021.92
https://doi.org/10.1137/16M1104834
https://doi.org/10.1051/ita:2001121
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1137/16M109017X

	1 Introduction
	2 Preliminaries
	3 Treewidth Algorithm
	4 ETH Lower Bound
	4.1 Preliminary Tools
	4.2 Construction
	4.3 Correctness

	5 Natural Parameter Algorithm
	5.1 Annotated MMFVS and Path Restricted Instances
	5.2 Algorithm for Max Min FVS

	6 The Extension Problem
	7 Conclusions and Open Problems

