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Abstract
The generation and verification of quantum states are fundamental tasks for quantum information
processing that have recently been investigated by Irani, Natarajan, Nirkhe, Rao and Yuen [CCC
2022], Rosenthal and Yuen [ITCS 2022], Metger and Yuen [QIP 2023] under the term state synthesis.
This paper studies this concept from the viewpoint of quantum distributed computing, and especially
distributed quantum Merlin-Arthur (dQMA) protocols. We first introduce a novel task, on a line,
called state generation with distributed inputs (SGDI). In this task, the goal is to generate the
quantum state U |ψ⟩ at the rightmost node of the line, where |ψ⟩ is a quantum state given at the
leftmost node and U is a unitary matrix whose description is distributed over the nodes of the line.
We give a dQMA protocol for SGDI and utilize this protocol to construct a dQMA protocol for the
Set Equality problem studied by Naor, Parter and Yogev [SODA 2020], and complement our protocol
by showing classical lower bounds for this problem. Our second contribution is a dQMA protocol,
based on a recent work by Zhu and Hayashi [Physical Review A, 2019], to create EPR-pairs between
adjacent nodes of a network without quantum communication. As an application of this dQMA
protocol, we prove a general result showing how to convert any dQMA protocol on an arbitrary
network into another dQMA protocol where the verification stage does not require any quantum
communication.
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1 Introduction

While quantum computational complexity has so far mostly investigated the complexity
of classical problems (e.g., computing Boolean functions) in the quantum setting, recent
works [1, 16, 20, 24, 29, 35] have started investigating the complexity of quantum problems
(e.g., generating quantum states). For instance, Ji, Liu and Song [20] and Kretschmer [24]
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have investigated the concept of quantum pseudorandom states from complexity-theoretic
and cryptographic perspectives. Irani, Natarajan, Nirkhe, Rao, and Yuen [16] have made
in-depth investigations of the complexity of the state synthesis problem in a setting first
introduced by Aaronson [1] where the goal is to generate a quantum state by making queries
to a classical oracle encoding the state. Rosenthal and Yuen [35] and Metger and Yuen [29]
have considered interactive proofs for synthesizing quantum states (and also for implementing
unitaries). Here the main goal is to generate complicated quantum states (e.g., quantum
states described by an exponential-size generating quantum circuit) efficiently with the help
of an all-powerful but untrusted prover. Note that in settings where an all-powerful prover
is present, the task of quantum state synthesis is closely related to the task of quantum
state verification (since the prover can simply send the quantum state that needs to be
synthesized).

In this paper, we investigate the task of state generation and verification in the setting of
quantum distributed computing. Quantum distributed computing is a fairly recent research
topic: despite early investigations in the 2000s and the 2010s [3, 8, 9, 13, 36], it is only in
the past five years that significant advances have been done in understanding the power of
quantum distributed algorithms [2, 10, 17, 18, 25, 27, 37]. Fraigniaud, Le Gall, Nishimura,
and Paz [10], in particular, have investigated the power of distributed quantum proofs in
distributed computing, which is the natural quantum version of the concept of distributed
classical proofs (also called locally-checkable proofs [14] or proof-labeling schemes [23]): each
node of the network receives, additionally to its input, a quantum state (called a quantum
proof) from an all-powerful but untrusted party called the prover. The main result from [10]
shows that there exist classical problems that can be solved by quantum protocols using
quantum proofs of length exponentially smaller than in the classical case.

We present two main results about state generation and verification in the setting where
an all-powerful but untrusted prover helps the nodes in a non-interactive way, and apply these
results to design new quantum protocols for concrete problems studied recently in [10, 33].

1.1 First result and applications: State Generation with Distributed
Inputs

One of the main conceptual contributions of this paper is introducing the following problem:
In a network of r + 1 nodes v0, v1, . . . , vr, node v0 is given as input an n-qubit quantum
state |ψ⟩. The goal is to generate the quantum state U |ψ⟩ at node vr, where U is a unitary
matrix whose description is distributed over the nodes of the network. For concreteness, in
this paper we focus on the case where the network is a path of length r and the nodes v0, vr

are both extremities of the path.1
Here is the precise description of the problem. The parties v0, v1, . . . , vr are the nodes of

a line graph of length r: the left-end extremity is v0, the right-end extremity is vr, and nodes
vj and vj+1 are connected for j = 0, 1, . . . , r − 1. Node v0 receives as input the classical
description of an n-qubit state |ψ⟩, as a 2n-dimensional vector.2 The other nodes vj for
j = 1, 2, . . . , r receive as input the description of an n-qubit unitary transformation: each
node vj receives the description of a unitary transformation Uj acting on n qubits. In this
setting, the aim is to generate the quantum state

1 In distributed computing it is standard to first investigate the complexity of computational problems on
simple network topologies such as a path or a ring. A solution on the path can often be extended to
networks of more complex topology, or be used as a building block for solving problems on network of
arbitrary topology.

2 Our protocol actually only requires v0 to be able to generate many copies of |ψ⟩, and thus also works
when the input is a description of a quantum circuit generating |ψ⟩, or even a black box generating |ψ⟩.
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|φr⟩ := Ur · · ·U1|ψ⟩

at the right-end extremity vr. We call this problem n-qubit State Generation with Distributed
Inputs on the line of length r (n-qubit SGDIr). Without a prover, this problem is clearly not
solvable in less than r rounds of communications between neighbors (this can be seen easily
by considering the case where U1 = · · · = Ur = I).

We consider the setting where a prover (an all-powerful but untrusted party) helps the
nodes in a non-interactive way: at the very beginning of the protocol the prover sends to
node vj a quantum state ρj of at most sc qubits, for each j ∈ {0, 1, . . . , r}. Here sc is called
the certificate size of the protocol and the state ρj is called the certificate to vj . The nodes
then run a one-round3 distributed quantum algorithm (called the verification algorithm).
More precisely, the nodes first perform one round of (synchronous) communication: each
node sends one quantum message of at most sm qubits to its neighbors (sm is called the
message size of the protocol). Each node then decides to either accept or reject. Such
protocols, which have been introduced and studied in [10], are called distributed Quantum
Merlin-Arthur (dQMA) protocols (see Section 2 for details). Additionally, when considering
dQMA protocols for n-qubit SGDIr, we add the requirement that node vr outputs an n-qubit
quantum state at the end of the protocol.

Here is our main result:

▶ Theorem 1. For any constant ε > 0, there exists a dQMA protocol for n-qubit SGDIr with
certificate size O(n2r5) and message size O(nr2) satisfying the following: (completeness)
There are certificates ρ0, . . . , ρr such that all the nodes accept and node vr outputs |φr⟩ with
probability 1; (soundness) If all the nodes accept with probability at least ε, then the output
state ρ of node vr satisfies ⟨φr|ρ|φr⟩ ≥ 1 − ε.

The protocol of Theorem 1 is a dQMA protocol with perfect completeness and soundness
ε. Indeed, when receiving appropriate certificates from the prover, all nodes accept with
probability 1 and node vr outputs the state |φr⟩. On the other hand, if the state ρ is far
from |φr⟩, the soundness condition guarantees that for any certificates ρ0, . . . , ρr received
from the prover (including the case of entangled certificates), the probability that at least
one node rejects is at least 1 − ε (remember that the quantity ⟨φr|ρ|φr⟩ represents the square
root of the fidelity between |φr⟩⟨φr| and ρ).

As an application of Theorem 1, we construct a quantum protocol for a concrete computa-
tional task called Set Equality, which was introduced in Ref. [33]. Here is the formal definition
over a network of arbitrary topology (represented by an arbitrary graph G = (V,E)).

▶ Definition 1 (SetEqualityℓ,U [33]). Let ℓ be a positive integer and U be a finite set. Each
node u of a graph G = (V,E) holds two lists of ℓ elements (au,1, . . . , au,ℓ) and (bu,1, . . . , bu,ℓ) as
input, where au,i, bu,i ∈ U for all i ∈ {1, 2, . . . , ℓ}. Define A = {au,i | u ∈ V, i ∈ {1, 2, . . . , ℓ}}
and B = {bu,i | u ∈ V, i ∈ {1, 2, . . . , ℓ}}. The output of SetEqualityℓ,U is 1 (yes), if A = B

as multisets and 0 (no) otherwise.

Using Theorem 1 we obtain the following result:

3 As in almost all prior works on (classical or quantum) distributed proofs, in this paper we consider only
one-round verification algorithms.

MFCS 2023



63:4 Distributed Merlin-Arthur Synthesis of Quantum States and Its Applications

▶ Theorem 2. For any small enough constant ε > 0, there exists a dQMA protocol for
SetEqualityℓ,U on the line graph of length r with completeness 1 − ε and soundness ε that has
certificate size O(r5 log2(ℓr) log2 |U |) and message size O(r2 log(ℓr) log |U |).

While Ref. [33] considered the special case of SetEqualityℓ,U and showed efficient distributed
interactive protocols with small certificate and message size (see Section 1.4), no (nontrivial)
classical dMA protocol (or lower bound) is known before this paper to our best knowledge.
We complement the result in Theorem 2 by showing classical lower bounds and upper bounds
of distributed Merlin-Arthur (dMA) protocols for SetEqualityℓ,U .

▶ Theorem 3. For any dMA protocol for SetEqualityℓ,U on a line graph of length r with
certificate size sc, completeness 3/4, and soundness 1/4,

if |U | < ℓ, then sc = Ω(|U | log(ℓ/|U |));
if |U | = Ω(ℓ), then sc = Ω(ℓ);
if |U | = Ω(rℓ), then sc = Ω(rℓ).

▶ Theorem 4. There exists a dMA protocol for SetEqualityℓ,U on a line graph of length
r with completeness 1 and soundness 0 whose certificate size and message size are both
O(min{rℓ log |U |, |U | log(rℓ)}).

Although the dependence in r is worse than in the classical dMA protocol of Theorem 4, the
dependence of the dQMA protocol of Theorem 2 in ℓ (the number of elements each node
receives) and |U | (the size of the universal set) are polylogarithmic. On the other hand,
in classical case, we have linear lower bounds with respect to ℓ and |U | as in Theorem 3.
Therefore Theorem 2 gives a significant improvement for sufficiently large ℓ and |U |. This
assumption about the input parameters seems reasonable when considering applications
similar to those of the dQMA protocol for the equality problem proposed in Ref. [10]. Note
that our bounds of classical certificate size in Theorem 3 and Theorem 4 are tight up to
poly log(ℓ, |U |, r) factors when |U | < ℓ or |U | = Ω(rℓ).

1.2 Second result and applications: EPR-pairs generation and LOCC
dQMA protocols

Our second contribution is a protocol, based on a recent work by Zhu and Hayashi [41], to
create EPR-pairs between adjacent nodes of a network without quantum communication
in the same setting as above, where a prover helps the nodes in a non-interactive way.
As an application of this protocol, we prove a general result showing how to convert any
dQMA protocol on an arbitrary network into another dQMA protocol where the verification
algorithm uses only classical communication (instead as quantum communication, as allowed
in the definition of dQMA protocols and used in all dQMA protocols of Ref. [10] and
Theorems 1 and 2 above).

More precisely, we say a dQMA protocol is an LOCC (Local Operation and Classical
Communication) dQMA protocol if the verification algorithm can be implemented only by
local operations at each node and classical communication between neighboring nodes (i.e.,
no quantum communication is allowed). Our protocol for generating EPR-pairs enables us
to show the following theorem:

▶ Theorem 5. For any constants pc and ps such that 0 ≤ ps < pc ≤ 1, let P be a dQMA
protocol for some problem on a network G with completeness pc, soundness ps, certificate size
sP

c and message size sP
m. For any small enough constant γ > 0, there exists an LOCC dQMA

protocol P ′ for the same problem on G with completeness pc, soundness ps + γ, certificate
size sP

c +O(dmaxs
P
ms

P
tm), and message size O(sP

ms
P
tm), where dmax is the maximum degree of

G, and sP
tm is the total number of qubits sent in the verification stage of P.
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As an application of Theorem 5, we consider the equality problem studied in Ref. [10]. In
this problem, denoted EQt

n, a collection of n-bit strings x1, x2, . . . , xt is given as input to t
specific nodes u1, u2, . . . , ut (called terminals) of an arbitrary network G = (V,E) as follows:
node ui receives xi, for i ∈ {1, 2, . . . , t}. The goal is to check whether the t strings are equal,
i.e., whether x1 = · · · = xt. By applying Theorem 5 to the main result in Ref. [10] (a dQMA
protocol for EQt

n with certificate size O(tr2 logn) and message size O(tr2 log(n + r))), we
obtain the following corollary:

▶ Corollary 1. For any small enough constant ε > 0, there is an LOCC dQMA protocol
for EQt

n with completeness 1, soundness ε, certificate size O(dmax|V |t2r4 log2(n + r)) and
messages size O(|V |t2r4 log2(n+ r)), where r is the radius of the set of the t terminals and
|V | is the number of nodes of the network G = (V,E).

We can also apply Theorem 5 to the dQMA protocol of Theorem 2, leading to the
following corollary:

▶ Corollary 2. For any small enough constant ε > 0, there is an LOCC dQMA protocol for
SetEqualityℓ,U on the line graph of length r with completeness 1 − ε, soundness ε, certificate
size O(r5 log2(ℓr) log2 |U |) and messages size O(r5 log2(ℓr) log2 |U |).

Note that these LOCC dQMA protocols still have good dependence in the main parameters
we are interested in: the parameter n for EQt

n (for which the dependence is still exponentially
better than any classical dMA protocols) and the parameters ℓ and |U | for SetEqualityℓ,U

(for which the dependence is still exponentially better than any classical dMA protocols, due
to Theorem 3).

1.3 Overview of our proofs
To explain the proof idea of Theorem 1, we only consider the simplified case U1 = · · · = Ur = I.
The general case can be proved similarly by a slightly more complicated analysis.

The dQMA protocol to prove Theorem 1 is based on the dQMA protocol on the line of
length r by Fraigniaud et al. [10]. In the setting of Ref. [10], the left-end extremity v0 has an
n-bit string x, the right-end extremity vr has an n-bit string y, and the other intermediate
nodes have no input. The goal is to verify whether x = y. The dQMA protocol in Ref. [10]
checks whether the fingerprint state |ψ0⟩ = |ψx⟩ [5] prepared by v0 is equal to the fingerprint
state |ψr⟩ = |ψy⟩ prepared by vr (x = y), or |ψ0⟩ is almost orthogonal to |ψr⟩ (x ̸= y). For
this, node vj (2 ≤ j ≤ r − 1) receives a subsystem whose reduced state is ρj as a certificate
from the prover. At the verification stage, any node (except for vr) chooses keeping its
certificate by itself, or sending it to the right neighboring node with probability 1/2 to check
if the reduced states of the two neighboring nodes, ρj and ρj+1, are close, which can be
checked by the SWAP test [5]. If x = y, then the prover can send |ψ0⟩ (= |ψr⟩) for every
intermediate node to pass all the SWAP tests done at the verification stage, which means
accept. Otherwise, the SWAP test done at some node rejects with a reasonable probability
since |ψx⟩ is very far from |ψy⟩, and hence the distance between ρj and ρj+1 should be far at
some j.

Now the case that U1 = · · · = Ur = I (which means that all nodes except v0 have no
input) in the setting of SGDIr (then the goal state |φr⟩ at vr is the same as the state |ψ⟩ of
v0) is similar to the setting of Ref. [10], except that vr also has no input. The difficulty is
that vr has no state that can be generated by itself, and thus the analysis of Ref. [10] cannot
be used as it is.

MFCS 2023
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To overcome this difficulty, we utilize an idea from the verification of graph states [15, 32],
in particular, the idea by Morimae, Takeuchi, and Hayashi [32]. They used the following
basic idea for their protocol in order to verify an arbitrary graph state |G⟩ sent from the
prover (or prepared by a malicious party): (i) the verifier receives (m+ k + 1) subsystems,
in which each subsystem ideally contains |G⟩, from the prover; (ii) the verifier chooses m
subsystems uniformly at random, and discards them; (iii) the verifier chooses one subsystem,
and some test that |G⟩ should pass (stabilizer test) is done for each of the remaining k

subsystems; and (iv) if all the tests passed, the chosen subsystem in (iii) should be close
to |G⟩, which is proved by using a quantum de Finetti theorem with some measurement
condition [28] (exponentially better in the dimension of the subsystem than the standard
quantum de Finetti theorem [6]). Note that (ii) and (iii) are necessary since the assumption
that the total system is permutation-invariant is needed to apply the quantum de Finetti
theorem.

Our protocol applies the idea of Ref. [32] to the verification protocol of Ref. [10] explained
above. Namely, the parties v1, v2, . . . , vr first receives (m+ k + 1) subsystems, where each
subsystem ideally contains |ψ⟩⊗r, sent from the prover. For k subsystems that are randomly
chosen, we apply the verification protocol of Ref. [10]. Actually, we have a subtle problem with
the corresponding steps of (ii) and (iii) in the idea of Ref. [32], since v0, v1, . . . , vr do not have
any shared randomness, and thus those steps cannot be implemented jointly. Fortunately,
this problem can be overcome since the permutation-invariant property is satisfied by the
random permutations of (m+ k + 1) subsystems on each party.

The dQMA protocol for Theorem 2 is based on the distributed interactive protocol
by Naor, Parter, and Yogev [33] using shared randomness4. In our setting (line of length
r), the distributed interactive protocol of Ref. [33] is as follows with two polynomials
αj(x) :=

∏
i(x− aj,i) and βj(x) :=

∏
i(x− bj,i): with shared randomness s (taken from a

large field), (i) v0 prepares A0(s) := α0(s) and B0(s) := β0(s); (ii) vj (j = 1, 2, . . . , r) ideally
receives Aj(s) := α0(s) · · ·αj(s) and Bj(s) := β0(s) · · ·βj(s) from the prover; (iii) Aj(s) =
αj(s)Aj−1(s) and Bj(s) = βj(s)Bj−1(s) are checked for consistency by communication from
vj−1 to vj . We can see that when A = B, Ar(s) = Br(s) for any s, and thus this protocol
accepts with probability 1 by the ideal certificates from the prover, while when A ̸= B,
Ar(s) ̸= Br(s) for most of s, and thus some node rejects with reasonable probability.

Actually, neither interaction nor shared randomness is available in our setting. Instead,
we reduce the protocol by Naor et al. to SGDIr with |ψ⟩ = |ψA⟩ ⊗ |ψB⟩ where |ψA⟩ =∑

s |s⟩|α0(s)⟩, and |ψB⟩ =
∑

s |s⟩|β0(s)⟩, and U = Uj,A ⊗ Uj,B, where Uj,A roughly5 maps
|s⟩|t⟩ to |s⟩|αj(s)t⟩ (j = 1, 2, . . . , r) and Uj,B roughly maps |s⟩|t⟩ to |s⟩|βj(s)t⟩ (j = 1, 2, . . . , r).
Then, Theorem 1 guarantees that vr receives

∑
s |s⟩|Ar(s)⟩ and

∑
s |s⟩|Br(s)⟩ with high

fidelity as long as every node accepts with at least the probability guaranteed by Theorem 1.
The SWAP test between these at vr checks if A = B with high probability.

For the classical lower bound of SetEqualityℓ,U in Theorem 3, we utilize the lower bound
for EQ2

n of [10]. Ref. [10] showed that for any classical protocol for EQ2
n on the line graph,

at least one internal node requires a certificate of linear size. We show that EQ2
n can be

reduced to SetEqualityℓ,U in three cases depending on the size of U . Here we explain the
simplest case: |U | = Ω(ℓ). For a line graph with the left-end extremity v and the right-end
extremity v′, let x = x1x2 · · ·xn be the input of EQ2

n for v and y = y1y2 · · · yn be the input
of EQ2

n for v′. Then we consider an injection f from {0, 1}n to the set of 3ℓ-bit strings with

4 While there is no shared randomness in their setting, shared randomness can be simulated by two
interactions between the prover and the verifier.

5 We actually need some modifications for Uj,A to be unitary.
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Hamming weight ℓ such that the input list (av,1, . . . , av,ℓ) of SetEqualityℓ,U for v includes
the j-th element of the universal set U for |U | > 3ℓ if and only if f(x)j = 1, and the input
list (bv′,1, . . . , bv′,ℓ) of SetEqualityℓ,U for v′ includes the j-th element of the universal set U if
and only if f(y)j = 1. Now these two sets are identical if and only if x = y, which means a
reduction from EQ2

n to SetEqualityℓ,U for ℓ = Θ(n). We thus get a lower bound of Ω(ℓ) from
the Ω(n) lower bound of EQ2

n mentioned above.
The classical upper bound of SetEqualityℓ,U in Theorem 4 is fairly simple: the prover can

send all of inputs A and B to each node to achieve the first upper bound O(rℓ log |U |). For
the second upper bound O(|U | log(rℓ)), the node vi on the line graph {v0, . . . , vr} is given
the information of inputs of vj , j ∈ {0, . . . , i− 1} as the certificate in the form of the number
of each element of U in the corresponding inputs.

The basic proof idea of Theorem 5 is standard: we replace one qubit communicated
between any two nodes u and v by two bits using quantum teleportation [4], assuming that
they share an EPR pair |Φ+⟩ = 1√

2 (|00⟩ + |11⟩) sent from the prover. The problem is that
the prover may be malicious, and u and v should then verify that the pair sent from the
prover is |Φ+⟩. In order to obtain |Φ+⟩ with high fidelity, we actually ask the prover to send
N + 1 copies of the EPR pairs. An honest prover will send the state |Φ+⟩⊗(N+1), but a
malicious prover may naturally send an arbitrary state. Nodes u and v use N among the
N + 1 pairs for the verification. If the verification succeeds, they are guaranteed that the
remaining pair has high fidelity with |Φ+⟩.

This type of verification of |Φ+⟩ in an adversarial scenario by the malicious prover was
considered in a remarkable work by Zhu and Hayashi [41]. Extending the previous result [34]
in a less adversarial scenario, they showed that by taking N = O( 1

ε log( 1
δ )), if the verification

test succeeds with probability at least δ, the state σ of the last pair has a high fidelity with
|Φ+⟩ such that ⟨Φ+|σ|Φ+⟩ ≥ 1 − ε. Furthermore, the measurements in their verification
protocol (essentially the same as those in Ref. [34]) are local, namely, they do not need any
entangled measurement between the two qubits of each pair.

Now the proof idea of Theorem 5 uses the verification protocol of Ref. [41] in our setting.
To do so, we first observe that the amount of classical communication needed between u and
v can be upper-bounded by O(N) (which is the same as the certificate size from the prover),
by rewriting the protocol of Ref. [41] with a slight modification in our setting. Then we
replace the quantum bits sent among the nodes in the original dQMA protocol P by classical
communication. However, it needs not only a single EPR pair but a lot of EPR pairs to be
verified. Thus, we need further analysis to convert P into an LOCC dQMA protocol and to
evaluate the message size of classical communication and the certificate size.

1.4 Related work
The concept of distributed Merlin-Arthur protocols (dMA), which is very similar to the
concept of randomized proof-labeling schemes [12] was introduced by [11] as a randomized
version of locally checkable proofs (LCPs). In a dMA protocol, as in LCPs, the prover assigns
each node a short certificate. The nodes then perform a 1-round distributed algorithm, i.e.,
exchange messages with their neighbors through incident edges. The difference is that in
dMA, this algorithm can be a randomized algorithm, instead of a deterministic algorithm as
in LCPs. This randomization is helpful to reduce the size of certificates for some problems.

The recent paper [22] introduced the interactive extension of dMA, distributed interactive
proofs, in which the prover and the verifier can perform more interaction. They showed that
interaction is also useful to reduce the size of certificates. This concept has recently been
explored in depth by several studies: distributed interactive proofs that utilize quantum
certificates [26], the role of shared and private randomness [7, 30], and more efficient protocols
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for concrete problems [19, 31, 33]. In particular, [33] introduced SetEqualityℓ,U , which is
one of the problems we study in this paper, and showed efficient interactive protocols for
SetEqualityℓ,U when ℓ = |V | and |U | = O(|V |) that require two interactions between the
prover and the verifier with certificate size6 O(log |V |), and five interactions between the
prover and the verifier with certificate size O(log log |V |).

The technique we used in this paper from Refs. [32, 41] belongs to a broad and hot topic
called “state certification (state verification)” [21, 38]. One conceptual contribution of this
paper is providing the first concrete example of the effective use of these techniques for
quantum distributed verification.

2 dQMA protocols

We consider a decision problem on a connected graph (called the network) G = (V,E),
where t inputs x1, x2, . . . , xt are assigned to t nodes v1, v2, . . . , vt ∈ V . We interpret the
decision problem as a Boolean function f , where f(x1, x2, . . . , xt) = 1 is interpreted as “yes”
and f(x1, x2, . . . , xt) = 0 is interpreted as “no”.

The concept of distributed quantum Merlin-Arthur (dQMA) protocols on a graph G =
(V,E) is a quantum version of the concept of distributed Merlin-Arthur (dMA) protocols.
The aim of a dMA protocol is to verify whether f(x1, x2, . . . , xt) = 1 or not. As briefly
explained in Section 1.1, the nodes of G (which correspond to the verifier) first receive a
message from a powerful but possibly malicious party (the prover). The nodes then enter
a verification phase, in which they communicate together (but do not communicate with
the prover anymore). The communication is possible only if two nodes are connected: each
node can send one message to each of its neighbors. In the case of dQMA protocols, the only
difference is that the message from the prover and the communication among the nodes may
be quantum. Note that neither randomness nor entanglement are shared among the nodes in
advance.

Formally, in a dQMA protocol P on G = (V,E), each node u ∈ V first receives a quantum
register Mu from the prover. Then the nodes move to the verification stage, which consists of
the following steps: (i) u applies a local quantum (or classical) operation on the composite
system of Mu and its private register Vu; (ii) u sends a quantum (or classical) register Muv

to any neighboring node v, and (iii) u applies a local quantum (or classical) operation on Mu,
Vu, and ⊗v∈N(u)Mvu, and either accepts or rejects (we call this the decision of u), where N(u)
denotes the set of nodes that are neighbors of u. When local operations at each node and
communication among the nodes in the verification stage are classical, the dQMA protocol is
called LOCC (Local Operation and Classical Communication).

The two main complexity measures of P are the certificate size and the message size.
The certificate size of P, denoted as sP

c , is the maximum number of qubits that are sent to
each node from the prover, that is, sP

c := maxu∈V |Mu|, where |R| denotes the number of
qubits of R. The message size of P, denoted as sP

m, is the maximum number of qubits sent
on edges of G, namely, sP

m := max(u,v)∈E(|Muv| + |Mvu|).
A dQMA protocol P for a decision problem f on G with completeness pc and soundness

ps is defined as a dQMA protocol satisfying the following two conditions:
(completeness) If f(x1, x2, . . . , xt) = 1, there exists some quantum state |χ⟩ on M :=

⊗u∈V Mu such that Pr[all nodes accept] ≥ pc;
(soundness) If f(x1, x2, . . . , xt) = 0, for any quantum state |χ⟩ on M, Pr[all nodes accept] ≤

ps.

6 For SetEqualityℓ,U , the certificate size of their protocol can be written as O(log |U | + log(ℓ|V |)).
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In this paper, we consider the problem of generating a quantum state |φ⟩ on a network
G = (V,E). In this problem, some initially specified nodes w1, . . . , wκ not only make their
decisions (accept or reject) but also output the quantum state |φ⟩ jointly (if they accept). In
our specific problem, the n-qubit SGDIr, all nodes of the line graph with nodes v0, v1, . . . , vr

have an input (v0 has a classical description of |ψ⟩ and vj for j = 1, 2, . . . , r has a classical
description of Uj), |φ⟩ = |φr⟩ (:= Ur · · ·U1|ψ⟩), κ = 1, and w1 = vr.

In a dQMA protocol for the problem of generating |φ⟩ on G, the completeness and
soundness conditions are slightly different from the case of decision problems. For our
purpose we actually only need to discuss perfect-completeness protocols. We say that the
dQMA protocol has perfect completeness and (δ, ε)-soundness if the following completeness
and soundness are satisfied:
(completeness) There exists a quantum state |χ⟩ on M such that

Pr[all nodes accept and w1, . . . , wκ output |φ⟩ jointly] = 1;

(soundness) If all nodes accept with probability at least δ, then the output ρ̃ of w1, . . . , wκ

(under the condition that all nodes accept) satisfies

⟨φ|ρ̃|φ⟩ ≥ 1 − ε.

The soundness condition is regarded as a kind of hypothesis testing (i.e., if the verifier’s
test passes with probability greater than a threshold, then the state would be close to the
ideal one). A similar completeness-soundness condition is used for the interactive proofs for
synthesizing quantum states [35].

3 dQMA Protocol for State Generation with Distributed Inputs

In this section we present our dQMA protocol for the n-qubit State Generation with
Distributed Inputs over the line of length r (n-qubit SGDIr) and prove Theorem 1.

3.1 dQMA protocol for SGDI
The following is our dQMA protocol for n-qubit SGDIr.

Protocol PSGDI: Let k = 144cr2+η and m = 2cnk2(r + 1)1+η for any constant c > 0
and any small constant η ≥ 0.

1. v0 prepares (m+k+1) copies of |ψ⟩ in n-qubit registers R0,j (j = 1, 2, . . . ,m+k+1).
2. The prover sends each vl, where l = 1, 2, . . . , r, (m + k + 1) n-qubit registers

Rl,1,Rl,2, . . . ,Rl,m+k+1.
3. Each vl (l = 1, 2, . . . , r) permutes the (m+k+ 1) registers Rl,1,Rl,2, . . . ,Rl,m+k+1 by

a permutation π on {1, 2, . . . ,m+ k + 1} taken uniformly at random, and renames
Rl,j := Rl,π(j).

4. The parties v0, v1, . . . , vr implement the following subprotocol PSGDIV (a modification
of the verification steps in Ref. [10]) on registers R0,j ,R1,j , . . . ,Rr,j for each j =
2, 3, . . . , k + 1 in order. If some party rejects for some j, the protocol rejects.

5. vr outputs Rr,1.

MFCS 2023
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Protocol PSGDIV: Assume that v0 has |ψ⟩ on n-qubit register R0, and vl (l = 1, 2, . . . , r)
receives n-qubit register Rl.

1. For every j = 0, 1, . . . , r − 1, party vj chooses a bit bj uniformly at random, and
sends its register Rj to the right neighbor vj+1 whenever bj = 0.

2. For every j = 1, 2, . . . , r, if vj receives a register from the left neighbor vj−1, and
if bj = 1, then vj applies Uj on register Rj−1, and performs the SWAP test on the
registers (Rj−1,Rj), and accepts or rejects accordingly; Otherwise, vj accepts.

We can show the following theorem, which induces Theorem 1 by a special case with
η = 0.

▶ Theorem 6. Protocol PSGDI has perfect completeness and ( 1
(crη)1/4 ,

1
(crη)1/4 )-soundness.

The certificate size of PSGDI is O(n2r5+3η) and the message size is O(nr2+η).

3.2 Proof of Theorem 6
We can see that the certificate size of PSGDI is (m + k + 1)n = O(n2r5+3η) from step 2 of
PSGDI. Since PSGDI implements PSGDIV (k + 1) times, and the message size of PSGDI is O(n),
the message size of PSGDI is O(nk) = O(nr2+η).

The completeness clearly holds: since the prover honestly sends

|φl⟩ := Ul · · ·U1|ψ⟩

as the content of Rl,j for each j ∈ {1, 2, . . . ,m + k + 1} and then all the SWAP tests in
PSGDIV accept with probability 1.

The proof of the soundness can be found in the full version.

4 Application: dQMA Protocol for Set Equality

In this section we prove Theorem 2 by constructing a protocol for SetEqualityℓ,U based on
the protocol for SGDIr developed in Section 3.

Proof of Theorem 2. We consider SetEqualityℓ,U (Definition 1) for the line graph of length
r with nodes v0, v1, . . . , vr, where vj has aj,1, . . . , aj,ℓ and bj,1, . . . , bj,ℓ. Let αj(s) :=∏

i∈{1,2,...,ℓ}(s−aj,i) and βj(s) :=
∏

i∈{1,2,...,ℓ}(s−bj,i) for each j ∈ {0, 1, . . . , r}. We identify
au,i, bu,i as elements in a finite field F with size |F| ≥ c̃ℓ(r + 1)2log |U | for some (sufficiently
large) constant c̃ > 0. Our goal is the same as of the interactive protocol of [33] – the node vr

checks if two polynomials pA(s) :=
∏

j∈{0,1,...,r} αj(s) and pB(s) :=
∏

j∈{0,1,...,r} βj(s) take
the same value for uniform randomly chosen s ∈ F, where s is distributed by the interaction.
In order to implement this idea in a non-interactive way, we utilize the framework of SGDI
as follows: Let

|ψ⟩ := 1√
|F|

∑
s∈F

|s⟩|α0(s)⟩

be the initial state that the node v0 can locally produce. Each node vj , j ∈ {1, 2, . . . , r}
has a unitary transformation Uj which maps |s⟩|αj−1(s)⟩ to |s⟩|αj(s)⟩ (to be precise, we
also need to deal with the case where αj(s) is a zero polynomial). Using the protocol for
SGDI in Theorem 1, the node vr outputs the state |φr⟩ = Ur · · ·U1|ψ⟩, which is the uniform
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superposition of |s⟩|pA(s)⟩ over all s ∈ F. Similarly, vr also outputs the uniform superposition
of |s⟩|pB(s)⟩ over all s ∈ F. Finally, vr does the SWAP test for these states, which accepts
with high probability if and only if two polynomials are identical (i.e., A = B as multisets)
since the two polynomials pA(s) and pB(s) take different values for most s ∈ F if A ̸= B. In
the full version we complete the proof by describing the details of the protocol (which we
denote Pseteq) and analyzing it rigorously. ◀

4.1 Classical bounds for SetEqualityℓ,U

Here we prove the classical lower bounds shown in Theorem 3. The proof of Theorem 4 is
deferred to the full version.

Proof of Theorem 3. In order to prove our lower bounds for SetEqualityℓ,U , we utilize
reductions from EQ2

n to SetEqualityℓ,U , then apply the following lower bound of EQ2
n that

appears in [10].

▶ Lemma 1 (Theorem 9 of [10]). Let r ≥ 3 be a positive integer. Consider an instance
of EQ2

n where the two nodes v0 and vr on a line graph v0, . . . , vr are provided with inputs
x ∈ {0, 1}n and y ∈ {0, 1}n. Then, for any dMA protocol that solves EQ2

n for this instance
with completeness 1−p and soundness 1−2p−ε for any p, ε > 0, there exists i ∈ {1, . . . , r−1}
such that the certificate size of vi is Ω(n).

We show three different reductions depending on the size of |U |. Due to space constraints, we
only show the simplest case: |U | = Ω(ℓ). The reductions for the other two cases are deferred
to the full version.

Let P be a dMA protocol for SetEqualityℓ,U with the certificate size sc which appears in
the statement of the theorem. We consider the following instance of EQ2

n on a line graph
v0, . . . , vr of length r ≥ 3: the node v0 is provided with x, and the node vr is provided with y.
Let ℓ be the minimum integer satisfying

(3ℓ
ℓ

)
≥ 2n. Since

(3ℓ
ℓ

)
= 23ℓH(1/3)−O(log ℓ) where H(·)

is the binary entropy function, we have ℓ = Θ(n). Let S = {s ∈ {0, 1}3ℓ : |s| = ℓ} be the
set of 3ℓ-bit strings so that |S| =

(3ℓ
ℓ

)
. We arbitrarily choose one injection f : {0, 1}n → S

(this kind of injection exists since we have |S| ≥ 2n). The network constructs the following
instance of SetEqualityℓ,U for the universal set U = {0, 1, 2, . . . , 3ℓ} without communication:

The inputs x and y are converted to f(x), f(y) ∈ S. Let X = {i : f(x)i = 1} and
Y = {i : f(y)i = 1} be two sets of ℓ elements from the universal set {1, 2, . . . , 3ℓ}. X
and Y are regarded as the inputs (av0,1, . . . , av0,ℓ) and (bvr,1, . . . , bvr,ℓ) of SetEqualityℓ,U .
Furthermore, we set (bv0,1, . . . , bv0,ℓ) = (avr,1, . . . , avr,ℓ) = (0, . . . , 0).
The inputs to each internal node v1, . . . , vr−1 are set to (0, . . . , 0), (0, . . . , 0).

Now the set A and B of this instance of SetEqualityℓ,U are identical as multisets if and only
if f(x) = f(y). Since f is an injection, we have f(x) = f(y) ⇔ x = y and thus the output of
SetEqualityℓ,U on this instance is identical to that of EQ2

n on the input x and y. Now we can
use the protocol P to solve EQ2

n for n = Θ(ℓ). Thus by Lemma 1, we have sc = Ω(ℓ). ◀

5 Conversion of dQMA protocols into LOCC dQMA protocols

In this section we show how to create an EPR pair |Φ+⟩ = 1√
2 (|00⟩ + |11⟩) between two

parties without quantum communication in the setting where a prover helps the nodes in
a non-interactive way. Our protocol is based on the verification protocol of the EPR pair
in the adversarial setting proposed by Zhu and Hayashi [41] (see also [39, 40]), who showed
that a verifier V can check whether a two-qubit state sent from a (possibly malicious) prover
is |Φ+⟩.

MFCS 2023
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The following is the verification protocol given in Ref. [41].

Protocol PZH: Let R1,R2, . . . ,RN ,RN+1 be (N + 1) two-qubit registers from the
prover. Here, |+⟩ := 1√

2 (|0⟩ + |1⟩), |−⟩ := 1√
2 (|0⟩ − |1⟩), |+′⟩ := 1√

2 (|0⟩ + i|1⟩) and
|−′⟩ := 1√

2 (|0⟩ − i|1⟩).

1. Perform a random permutation π on the (N + 1) two-qubit registers, and rename
Rj := Rπ(j) for j = 1, 2, . . . , N + 1.

2. For each j = 1, 2, . . . , N , the verifier V does one of the following three POVMs on
register Rj with probability 1/3 for each:
M1 = {E1, I − E1} with E1 = |00⟩⟨00| + |11⟩⟨11|.
M2 = {E2, I − E2} with E2 = | + +⟩⟨+ + | + | − −⟩⟨− − |.
M3 = {E3, I − E3} with E3 = | +′ −′⟩⟨+′ −′ | + | −′ +′⟩⟨−′ +′ |.

3. Reject if the second components in the POVMs are obtained. Otherwise, the test
passes and outputs RN+1.

Ref. [41] describes E1 = I+Z⊗2

2 , E2 = I+X⊗2

2 and E3 = I−Y ⊗2

2 , where

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
,

while we rewrite them as above (which is a similar expression to the protocol in Ref. [34])
since it would be easy to see for our purpose. Importantly, step 2 implements the POVM
{Ω, I − Ω} on Rj with Ω = 2

3 |Φ+⟩⟨Φ+| + 1
3I for each j, but it is implemented by local

measurements on each qubit of Rj .
The following result was shown for the protocol PZH in Ref. [41].

▶ Theorem 7 (Zhu-Hayashi). There is a number N = O( 1
ε log( 1

δ )) such that if the test passed
with probability at least δ, then the output state σ̃ of PZH (under the condition that the test
passes) satisfies ⟨Φ+|σ̃|Φ+⟩ ≥ 1 − ε.

The protocol PZH uses only local measurements, and thus, it can be used for verifying
the sharing of an EPR pair by two parties who only use local operations and classical
communication (LOCC).

Let V1 and V2 be neighboring parties who expect to receive |Φ+⟩ jointly from the prover.
The following protocol is a simple implementation of PZH with LOCC by V1 and V2.

Protocol PZHLOCC: Let R1,1, . . . ,RN,1,RN+1,1 be (N + 1) one-qubit registers from the
prover to V1, and R1,2, . . . ,RN,2,RN+1,2 be (N + 1) one-qubit registers from the prover
to V2, respectively.

1. V1 chooses a random permutation π on {1, 2, . . . , N + 1} and sends it
to V2, and then both perform π on the (N + 1) two-qubit registers
(R1,1,R1,2), . . . , (RN,1,RN,2), (RN+1,1,RN+1,2). Rename Rj,1 := Rπ(j),1 and Rj,2 :=
Rπ(j),2.

2. V1 chooses N random numbers k1, k2, . . . , kN ∈ {1, 2, 3} and sends them to V2. For
each j = 1, 2, . . . , N , V1 and V2 implement one of the POVMs M1,M2,M3 on register
(Rj,1,Rj,2) jointly as follows.

when kj = 1, they jointly implement M1 = {E1, I −E1}; V1 and V2 measure Rj,1
and Rj,2 in the Z basis {|0⟩, |1⟩}, respectively, and V1 sends the measurement
value to V2, who rejects iff it differs from the measurement value of V2.
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when kj = 2, they jointly implement M2 = {E2, I −E2}; V1 and V2 measure Rj,1
and Rj,2 in the X basis {|+⟩, |−⟩}, respectively, and V1 sends the measurement
value to V2, who rejects iff it differs from the measurement value of V2.
when kj = 3, they jointly implement M3 = {E3, I −E3}; V1 and V2 measure Rj,1
and Rj,2 in the Y basis {|+′⟩, |−′⟩}, respectively, and V1 sends the measurement
value to V2, who rejects iff it is same as the measurement value of V2.

3. The test passes and V1 and V2 output RN+1,1 and RN+1,2, respectively.

It is easy to see that PZHLOCC simulates PZH exactly in a distributed manner. The protocol
PZHLOCC does not use any quantum communication between V1 and V2, while the amount of
classical communication used between V1 and V2 is ⌈log(N+1)!⌉+⌈log 3N ⌉+N = O(N logN).

Furthermore, we can replace a random permutation π in step 1 of PZHLOCC by switching
the jth two-qubit register (Rj,1,Rj,2) and the (N +1)th register (RN+1,1,RN+1,2) by choosing
j uniformly at random from {1, 2, . . . , N + 1} (actually, doing nothing when j = N + 1) since
the output state by such change is the same as protocol PZHLOCC. We call the protocol by
such change P+

ZHLOCC. Now the amount of classical communication used between V1 and V2
in P+

ZHLOCC is improved to ⌈log(N + 1)⌉ + ⌈log 3N ⌉ +N = O(N).
Thus the following theorem holds for P+

ZHLOCC.

▶ Theorem 8. For the same number N = O( 1
ε log( 1

δ )) as Theorem 7, if the test passed with
at least probability δ, then the two-qubit state σ̃ output by V1 and V2 in P+

ZHLOCC satisfies
⟨Φ+|σ̃|Φ+⟩ ≥ 1 − ε.

In the full version, we prove Theorem 5 by showing how to use the protocol P+
ZHLOCC.
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